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Amorphous carbon is considered as a prospective and serviceable anode for the storage of sodium. In this contribution, we
illuminate the transformation rule of defect/void ratio and the restrictive relation between specific capacity and rate capability.
Inspired by this mechanism, ratio of plateau/slope capacity is regulated via temperature-control pyrolysis. Moreover, pore-forming
reaction is induced to create defects, open up the isolated voids, and build fast ion channels to further enhance the capacity and
rate ability. Numerous fast ion channels, high ion-electron conductivity, and abundant defects lead the designed porous hard
carbon/Co3O4 anode to realize a high specific capacity, prolonged circulation ability, and enhanced capacity at high rates. This
research deepens the comprehension of sodium storage behavior and proposes a fabrication approach to achieve high performance
carbonaceous anodes for sodium-ion batteries.

1. Introduction

Recently, many alternatives of lithium-ion batteries (LIBs),
which are restricted by the rising costs, are investigated to
satisfy the demand of energy storage. Particularly, sodium-
ion batteries (SIBs) are widely researched due to (1) abundant
resource (23600 ppm in the earth crust, 1000 times more
than lithium) and the even distribution of sodium, (2) low
cost of sodium, and (3) similar physicochemical properties to
lithium [1–3].Therefore, the successful experience of cathode
for LIBs might be copied to SIBs firsthand [4, 5]. Unfortu-
nately, some decent-performance anodes of LIBs in current
research, such as Sn [6], Si [7], and their alloys, titanium-
based salts [8], and metal oxides/sulfides/phosphides or their
analogues (Fe3O4 [9], MnO [10], Mn3O4 [11], Co3O4 [12, 13],
SnO2 [14], CoSe2 [15], CoS2 [16], MoS2 [17–19], and Sn4P3
[20]), are problematic in SIBs.Hence, it is of great significance
to develop suitable anodes for SIBs.

Graphite is the promising and competitive anode for LIBs.
Nevertheless, it has not exhibited equivalent performance

for SIBs, which is probably due to the larger radius of Na+
[21, 22]. At present, kinds of other amorphous carbonaceous
materials that possess large interlayer distance and disordered
structure have been developed as anodes for SIBs. Hard
carbon (HC), including heteroatom-doped hard carbon [7,
23, 24] and biomass-derived carbon [25–31], exhibits strong
competitiveness. These amorphous carbon materials can
insert/extract sodium ions at a low voltage [25, 32–34].

Amorphous carbon exhibits distinct behaviors of sodium
storage at different voltages. Thereby, the charge-discharge
curve can be divided into slope and plateau segments. There
are diverse explanations for the sodium-ion storage behav-
ior of amorphous carbon: insertion-absorption, absorption-
insertion, and absorption-filling mechanisms [35]. Among
them, absorption-filling mechanism is widely verified [28,
36–38], which means the following: (1) defects, fringes, and
the surface among the regional graphitizing area contribute
to the slope capacity; (2) nanodomains and nanovoids are
ascribed to the reserve of sodium ions in the plateau capacity
[39–42].
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Figure 1: General diagram of the preparation process and formation mechanism of PHC/Co3O4.

Inspired by this mechanism, HC can be modified via
the following routines: (1) increasing defects and edges to
improve the slope capacity, (2) creating more domains and
voids to enhance the plateau capacity, and (3) constructing
fast sodium-ion channel. Thus, optimal performance can
be realized by regulating the ration of slope and plateau
region. On one hand, different carbonization temperature
can adjust the graphitization degree of carbon, and thereby
the ratio of slope region and plateau region is controllable
[28, 43, 44]. On the other hand, the pore-forming process
can create more voids and build fast sodium-ion channels.
Chemical activating reagent (such as KOH [45, 46] and
HNO3 [45]) and metal chlorides/oxides (including NiCl2
[25] and FeO [47]) are adopted to etch substrate of HCs.
Subsequently, the substrate loaded numerous defects can be
created due to the hollow and loose framework [24, 48, 49].
Cobalt salt ramification (e.g., Co3O4), significantly, can form
more homogenous nanoscale pores and numerous active
sites in carbon to produce fast sodium-ion channels [50]. In
addition, Co3O4 is also proposed as a promising potential
candidate anodic host material for SIBs [28]. In view of these
advantages, temperature-control and pore-forming strategies
will open up a novel way to fabricate high-performance
carbonaceous anodes for rechargeable SIBs.

In this present work, we illuminate the transformation
rules of defect/void ratio which affect the plateau/slope
capacity. Moreover, the constraint relationship between spe-
cific capacity and rate capability is also explained. Inspired
by this correlativity, porous hard carbon/Co3O4 particles
(PHC/Co3O4) are prepared via the temperature-control car-
bonization (to achieve the optimal structure) and the pore-
forming strategy (to build fast ion channels and ameliorate
the retention ratio at high rate). Owing to the optimal
defect/void ratio and fast ion channels, the PHC/Co3O4
anode exhibits excellent sodium-ion insertion/extraction
performance with high reversible capacity, prolonged cyclic
ability, and enhanced capacity at high rate. Our research
proposes a synthetic method for preparation of economic
carbonaceous anode for SIBs based on the sodium storage
mechanism.

2. Results and Discussion

Platan tree plays an important role in building a beautiful
urban environment in most cities.The fluffy catkins of platan

fruit act as a raw material of HC due to its natural abundance
and renewability. Cutting the platan fruit to fructus, plenty
of fluffy catkins with diameters of 4 cm closely grown on
the hard core (1.85 cm) can be seen (Figure S1). Additionally,
the fluffy catkins possess a tubular structure with circular
radius of 15-20 𝜇m and the tube wall is 1.5 𝜇m in the enlarged
drawing. Figure 1 illuminates the transformation from fluffy
catkins to PHC/Co3O4. There are two processing steps:
temperature-control pyrolysis and pore-forming reaction.

2.1. Temperature-Control Pyrolysis. The ratio of defects and
voids in HCs is adjusted by a simple pyrolysis process
from 600∘C to 1600∘C (namely, HC600 to HC1600). With
increasing the temperature, the graphitization degree of HCs
is enhanced. Graphitization means the reduction of defects
and the formation of voids. X-ray diffraction (XRD) and
Raman spectra are used to characterize the interior structure
of HCs (Figures 2(a) and 2(b)). There are two broad peaks at
around 24∘ and 43∘ in XRD patterns. These two broad peaks
refer to (002) and (101) diffraction arrangements and indicate
the dominating amorphous structure in HCs (JCPDS 75-
1621). Noticeably, the (002) peaks shift to higher angle slightly
from 600∘C to 1600∘C due to the increase of graphitization
as the defect-dominated arrangement. Some impurity peak
of HC600 is ascribed to the incomplete pyrolysis. Moreover,
the Raman spectra exhibit two characteristic bands. The
differences in Raman spectra amongHCs are attributed to the
transformation of graphitic degree. As shown in Figure 2(b),
D band (∼1340 cm−1) and G band (∼1590 cm−1) are manifest
and the values of ID/IG are 3.85, 2.86, 2.56, 1.85, 1.45, and
1.22 corresponding to the different pyrogenic temperatures.
The decrease of values (ID/IG) indicates the growth of atomic
configuration.

Cyclic voltammetry (CV) tests in the first 5 cycles of all
HCs are carried out at a specific scanning speed (0.1 mV
s−1). All the HCs exhibit the distinct oxidation peak in the
first cycle due to the formation of solid electrolyte interface
(SEI) (Figure S2). HC600 exhibits differentiated curves due
to the incomplete carbonization. Beyond that, the other HCs
synthesized at different pyrolysis temperature show similar
CV curves: all samples exhibit an obvious redox peak at
around 0.5 V. To further display the specific capacity change
for all HCs treated at different temperature, the CV curves of
all HCs in 5th cycle are summarized in Figure S3. It is obvious
that the interior area raises from HC600 to HC1200 and
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Figure 2: (a) XRD patterns and (b) Raman spectra of HCs. (c) Rate performance of HCs (1 C=300 mA g−1). The transformation mechanism
of defects/voids and specific slope/plateau capacities of HCs treated at (d) 600∘C, (e) 1000∘C, (f) 1200∘C, and (g) 1600∘C.

decreases to HC1600 subsequently. Consequently, HC1200
shows the largest CV curve area among all HCs, suggesting
the largest specific capacity.

Rate and cycling performances of all HCs are evaluated
using half-cells (Figures 2(c) and S4). HC1200 shows the
highest specific capacity in cyclic performance test. However,
the sodium storage behaviors of HC1200 are not perfect,

especially the rate capability. To further clarify the capac-
ity change mechanism, the galvanostatic discharge/charge
profiles are analyzed at different rates (Figure S5). All the
HCs display similar voltage profiles comprising a sloping
segment (high voltage) and a plateau segment (low voltage).
According to absorption-filling mechanism, the slope and
plateau capacities are corresponding to the sodium storage
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performance of defects and voids, respectively. Brunauer-
Emmett-Teller (BET) results are conducted to prove the
assumption. Figure S6 shows the pore size distribution ofHCs
(from HC800 to HC1400). The specific surface area and the
number of pores decrease with the increase of carbonization
temperature, indicating the decrease of defects. This is owing
to the increase in graphitic degree and the agglomeration of
pores in graphite layers.

The change rule of slope and plateau capacity of all
the HCs is presented clearly in Figures 2(d)–2(g). HC600
is full of defects and a few voids (Figure 2(d)), which
exhibits a high slope capacity and low plateau capacity. With
the increase of pyrolysis temperature, the voids in HC1000
increase significantly and the defects decrease slightly due
to the cross-pile-up of graphitization carbon (Figure 2(e)),
whereas too high degree of graphitization for HCs will
cause orderly-pile-up of graphitization carbon, resulting in
significant reduction of voids and ion channels. This process
is presented by the high-resolution TEM (HRTEM) images
vividly (Figures 2(d)–2(g) and S7). The graphite layers are
short and disordered when carbonized at low temperature.
The chaotic layers will elongate and arrange in order when
the carbonized temperature increases. Variation of capacity
is caused by the change of structure. As shown in Fig-
ure 2(g), both the slope and plateau capacities of HC1600
decrease. Moreover, the initial Coulombic efficiencies are
shown in Figure S8. Figure S9 summarizes the variation of
plateau/slope capacity. Therefore, it is concluded that (a) the
high capacity anode with excellent rate performance due to
the interinhibitive relationship between defects and voids is
hard to acquire and (b) optimal pyrolysis temperature will
help in achieving the high volume of voids and optimizing the
ratio of slope and plateau capacities. Taking all these factors
into consideration, HCs cannot be acquired simultaneously
without further modification.

2.2. Pore-Forming Reaction. HC1200, the highest capacity
sample, shows a poor rate performance (Figure 2(f)). Inspired
by themechanismdiscussed above, the pore-forming strategy
can open the fast transfer channels for sodium ions and break
the bottleneck of capacity. The pore-forming process is also
illustrated in Figure 1. HCs are immersed in Co(CH3COO)2
solution and heated at 400∘C in air to form a porous structure.
The surface of HCs is confronted with a corrosion process
[51]. The specific corrosion process is illustrated as follows:
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Carbon reacts with Co(CH3COO)2 and results in the
formation of Co3O4 (see (1)). In this process, Co3O4 is the
key material to form porous structure. Mutual conversion
of Co3O4 and CoO consumes part of the carbon. During
the heat treatment process, the chain reactions (see (2) and
(3)) proceed continuously and porous carbon with abundant
defects is prepared.

The SEM image of PHC/Co3O4 displays a rough surface,
while HC1200 demonstrates a relatively smooth surface
(Figures 3(a)-3(b)). The high-magnification SEM images
(Figure 3(b) inset and Figure S10) present that the close-
packed sags and crests are formed on the surface of tubular
HCs after the reactions. Moreover, HRTEM images can
display the graphitic layer.There aremany disordered regions
in PHC/Co3O4, and these regions are composed of curved
parallel graphene layers (Figure 3(c)). Figure S10a displays
carbon edges on the surface, which serve as important active
sites for insertion and deintercalation of sodium ions. In
addition, a HRTEM micrograph of porous carbon tube is
shown in Figure S10b. The distances between two layers are
0.246 nm and 0.204 nm referring to the (311) and (400)
crystal faces in Co3O4, respectively. Figures S10c-d show
the TEM images of PHC. Compared with HC1200, the
overall surface of PHC changes from “flatter” to “sags and
crests”. Besides, the energy dispersive spectrometer (EDS) is
conducted to reveal the distribution of Co3O4 in PHC/Co3O4
(Figure 3(d)).The undertint outline refers to carbon substrate
and white particles refer to Co3O4. C, Co, and O elements
match well with the image, which offers new evidence for the
homogenous distribution of Co3O4.

The microstructures of HC1200, PHC/Co3O4, and PHC
are also analyzed by XRD and Raman spectroscopy.TheXRD
patterns illustrate the interior structure and ingredient (Fig-
ure 3(e)). Two broaden diffraction peaks located at 24∘ and
43∘ in the XRD patterns suggest the similar disordered and
amorphous structure of three samples. Moreover, the distinct
characteristic peaks of Co3O4 phase (JCPDS 01-1152) can be
seen in the pattern of PHC/Co3O4. As shown in Figure 3(f),
there are two broadened peaks in the same position with
the same ID/IG value (1.85) for all samples in Raman spectra
and an extra typical cobalt oxide peak at 675 cm−1 appears
only in PHC/Co3O4. Thermogravimetric analysis (TGA) is
conducted for testing the weight change of PHC/Co3O4 and
HC1200 in air. Comparative thermograms of three samples
are shown in Figure 3(g). The profile of PHC/Co3O4 has a
higher residue after heating to 800∘C revealing the Co3O4
content. A mass loss at low temperature (lower than 180∘C)
in both PHC/Co3O4 and PHC is attributed to the higher
moisture. The content of Co3O4 is measured by inductively
coupled plasma-optical emission spectrometry (ICP). As
shown in Table S1 and Figure S11, the content of Co3O4 is 18.11
wt.% in PHC/Co3O4. Correspondingly, the measured Co3O4
content in PHC is 0.01 wt.%which is negligible. From theXPS
full spectra, obvious Co peaks only appear in PHC/Co3O4
(Figure S12). The Co 2p spectrum contains two oblique
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Figure 3: Characterization results of HC1200, PHC/Co3O4, and PHC. SEM images of (a) HC1200 and (b) PHC/Co3O4; (c) TEM images
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and PHC; (h) XPS Co 2p spectrum of PHC/Co3O4. (i) Nitrogen adsorption/desorption isotherms of HC1200 and PHC/Co3O4.

Co2p1/2 (795.3 eV and 797.7 eV) and Co2p3/2 (780.2 eV and
781.8 eV) peaks revealing the presence of Co2+ and CO

3+

(Figure 3(h)), corresponding to the cobalt oxide CoO and
Co2O3 inCo3O4 [52]. To characterize the specific surface area
of PHC/Co3O4, nitrogen adsorption/desorption isotherms
are performed. As we expected, PHC/Co3O4 shows supernal
pores and higher specific surface area (117.2 m2 g−1) than
HC1200 (9.5m2 g−1) (Figure 3(i)). In addition, PHCpossesses
a higher surface area than PHC/Co3O4 due towiping off from
Co3O4.

The sodium-ion storage properties of PHC/Co3O4, PHC,
and HC1200 electrodes are evaluated via half-cells with 1
M NaClO4 electrolyte. The CV curve of PHC/Co3O4 shows

a little broader area, and the redox peak at 0.54 V refers to
the overlap of Co3O4 and carbon redox peaks (Figure S13a).
The CV curve at a low scan rate of 0.05 mV s−1 is shown in
Figure S13c. The redox peaks of Co3O4 at about 1.6 V, 0.36 V,
and 0.96V can be identified [12, 53].WhenCo3O4 is removed
by HNO3, the CV curve of PHC returns to the spiculate
redox peak (Figure S13b). Figure 4(a) represents the rate
performances of PHC/Co3O4, PHC, and HC1200 electrodes
between 0.1 C and 5 C. Evidently, the PHC/Co3O4 electrode
shows the highest capacity. The capacity of PHC/Co3O4 is
about 100 mAh g−1 at 5 C, while HC1200 is less than 5 mAh
g−1. The highest capacity of PHC/Co3O4 is contributed to
the synergistic of Co3O4 and rich-defect carbon. In addition,
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Figure 4: Electrochemical performance of the half-cells and the mechanism. (a) Rate performance and (b) cycling performance of HC1200,
PHC/Co3O4, and PHC anodes. (c)The actionmechanism of Co3O4 as catalyst to increase the slope and plateau capacity. (d) Slope and plateau
capacities of PHC/C at different rates.

the initial Coulombic efficiency of PHC/Co3O4 (66.27%)
is similar to HC1200. Figure 4(b) exhibits the long cycling
results of three samples.The PHC/Co3O4 electrode preserves
a high capacity (200 mAh g−1) that can remain stable
(remain 87%) after 1000 cycles, superior to PHC (148 mAh
g−1) and HC1200 (serious capacity deterioration). Moreover,
Co3O4 in PHC/Co3O4 (18.114 wt.%) can provide certain extra
capacity and the synergistic effect of Co3O4 and PHC is also
contributed to the enhanced capacity (details are shown in
computation part in Supporting Information). In addition,
the Coulombic efficiency of PHC/Co3O4 is over 99% during
cycling (except for the first cycle). As a reference, pure
commercial Co3O4 displays a serious capacity deterioration
to about 5 mAh g−1 after only 4 cycles (Figure S14). Advan-
tages of the designed porous structure of PHC/Co3O4 with
enhanced electrochemical performance are emphasized here:
(1) shorten the ion/electron transfer path which is favorable
for high rate applications, (2) amplify the full-cell voltage
because HC possesses a low and explanate redox potential,
(3) accelerate the shuttle of electrolyte in the HC anode, and
(4) enhance the slope capacity resulting from the presence of
defects and edges.

The diagrams of the galvanostatic discharge/charge pro-
files at different rates are further analyzed to prove this
hypothesis (Figure S15). Figure 4(c) describes the action
mechanism of Co3O4 to increase the slope and plateau
capacity. HC1200 presents the highest capacity due to

the optimal plateau/slope ratio. The pore-forming reaction
creates numerous defects (slope capacity), builds fast ion
channels for the nanovoids (plateau capacity), and provides
additional capacity by residual Co3O4. Figure 4(d) shows a
clear capacity distribution in the slope and plateau capacities
of PHC/Co3O4. Compared with HCs, the retentions of both
slope and plateau capacities of PHC/Co3O4 at high rates are
greatly enhanced via pore-forming strategy.

To further demonstrate its potential applications for SIBs,
the PHC/Co3O4 anode is coupledwithNa(Ni0.8Co0.1Mn0.1)O2
(NNCM) cathode to assemble full cells. Figure 5(a) illustrates
that the capacity of PHC/Co3O4//NNCM is over 100 mAh
g−1 at a high rate of 5 C and can return back to almost the
original capacity of around 270 mAh g−1 at a low rate of
0.1 C. Moreover, the charge/discharge curve of full cells is
displayed in Figure S16. In addition, the PHC/Co3O4/NNCM
cell delivers a stable and prolonged cycling performance as
the specific capacity still retains about 83% after 1000 cycles
(Figure 5(b)).

3. Conclusions and Outlook

In summary, we have illuminated the mechanism for high-
performance PHC/Co3O4 anode via two processing steps:
temperature-control pyrolysis and subsequent pore-forming
reaction. Firstly, a relative high-performance hard carbon
is successfully prepared by temperature-control pyrolysis.
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Figure 5: Electrochemical performance of PHC/Co3O4/NNCM full batteries. (a) Rate performance and (b) long cycling performance.

Then, PHC/Co3O4 is fabricated from the hard carbon via sub-
sequent pore-forming reaction. The pore-forming reaction
can create abundant defects and build fast sodium-ion chan-
nels to further greatly enhance both capacity and rate capa-
bility. Moreover, after the pore-forming process, the residual
Co3O4 offers extra capacity due to the synergistic effect of
PHC and Co3O4. Therefore, the PHC/Co3O4 anode exhibits
a high capacity (270 mAh g−1), enhanced capabilities at high
rates, and prolonged cyclic stability.These consequences take
into account the sodium-ion storage behavior from a new
perspective and furthermore deepen the understanding of
plateau/slope controllable carbonaceous anode for SIBs.
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