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ABSTRACT
Due to their growing prevalence, smartphones can access an
increasing amount of sensitive user information. To better
protect this information, modern mobile operating systems
provide permission-based security, which restricts applica-
tions to only access a clearly defined subset of system APIs
and user data. The Android operating system builds upon al-
ready successful permission systems, but complements them
by allowing application components to be reused within and
across applications through a single communication mecha-
nism, called the Intent mechanism.

In this paper we identify three types of inter-application
Intent-based attacks that rely on information flows in appli-
cations to obtain unauthorized access to permission-protected
information. Two of these attacks are of previously known
types: confused deputy and permission collusion attacks. The
third attack, private activity invocation, is new and relies
on the existence of difficult-to-detect misconfigurations intro-
duced because Intents can be used for both intra-application
and inter-application communication. Such misconfigured
applications allow protected information meant for intra-
application communication to leak into unauthorized ap-
plications. This breaks a fundamental security guarantee
of permissions systems: that applications can only access
information if they own the corresponding permission.

We formulate the detection of the vulnerabilities on which
these attacks rely as a static taint propagation problem based
on rules. We show that the rules describing the permission-
protected information can be automatically generated though
static analysis of the Android libraries - an improvement over
previous work. To test our approach we built PermissionFlow,
a tool that can reliably and accurately identify the presence
of vulnerable information flows in Android applications.

Our automated analysis of popular applications found that
56% of the top 313 Android applications actively use inter-
component information flows; by ensuring the absence of
inter-application permission leaks, the proposed analysis
would be highly beneficial to the Android ecosystem. Of the
tested applications, PermissionFlow found four exploitable
vulnerabilities.

1. INTRODUCTION
Users of modern smarphones can install third-party appli-
cations from markets that host hundreds of thousands of
applications [1, 2] and even more from outside of official
markets. To protect sensitive user information from these po-
tentially malicious applications, most operating systems use
permission-based access-control models (Android [3], Win-
dows Phone 7 [4], Meego [5] and Symbian [6]).

Permissions are a well known and powerful security mech-
anism, but - as with any new operating system - there is
the possibility that Android-specific features may reduce the
guarantees of the classic permissions model. One such fea-
ture is the new communication mechanism (called Intents),
which can be used to exchange information between com-
ponents (called Activitys) of the same application or of
different applications.

One attack that exploits Intents for malicious purposes is
permission collusion. In this attack, an application that
individually only has access to harmless permissions aug-
ments its capabilities by invoking a collaborating application
through sending and receiving Intents. To stage this attack,
malevolent developers could trick users into installing such
cooperating malicious applications that covertly compromise
privacy.

A second type of attack using Intents is the confused deputy
attack. Confused deputy attacks rely on misconfigured appli-
cations; components that interact with other applications are
invoked by unauthorized callers and allow them to perform
protected actions or access permission-protected information.

We discovered a third type of attack, private activity invoca-
tion, which is a more virulent form of the confused deputy
attack: it affects applications not meant to communicate
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with other applications. Even if a developer’s intention was
to disallow external invocation of internal Activitys, other
applications may be able to invoke them if the application
does not have the necessary configuration. This is possible
because Intents can be used for inter-application invocations
as well as intra-application invocations.

One possible approach for leveraging static analysis to dis-
cover these vulnerabilities is to merge the call graph of
each application and to enhance it with edges represent-
ing the possible call edges between applications. On this
inter-application call graph, one could check using static taint
analysis whether protected information leaks to applications
that do not own the required permissions. However, this ap-
proach could be time-consuming because of the large number
of applications that must be analyzed together.

We propose an alternative approach that first summarizes the
permission-protected APIs of the Android libraries. Then,
using taint analysis, it tracks the information flow through
both the Android libraries and the application, checking if the
information reaches a misconfigured or otherwise vulnerable
component that allows permission-protected information to
escape to other applications.

Tested on 313 popular Android Market applications, our
tool, PermissionFlow, identified that 56% of them use inter-
component information flows that may require permissions.
Four exploitable vulnerabilities were found. The structure of
the paper is the following. The relevant parts of the Android
development model and permission system are described in
Section 2. Section 3 illustrates possible attack scenarios.

We express the vulnerabilities as a taint propagation prob-
lem in Section 4 and in Section 5 we present the design of
our analysis. Its main components are the Permission Map-
per, which summarizes the protected information sources
accessible to any application, and the Rule Generator, which
generates taint rules that specify vulnerable flows; these rules
serve as input for our static analysis engine. We experimen-
tally evaluate our analysis in Section 6. We further discuss
our experimental findings, and make recommendations for
Android application security, in Section 7. Section 8 is ded-
icated to related work, and we conclude in Section 9. Our
contributions are the following:

• We classify Intent-based vulnerabilities in Android
applications, identifying a new variant of the confused
deputy attack, and describe ways of protecting against
attacks.

• We developed PermissionFlow, a tool for discovering
vulnerabilities in the bytecode and configuration of
Android applications.

• We propose a novel approach for automatic generation
of taint flow sources for permission-based systems by
considering permission-protected APIs to be sources
of taint. Our Permission Mapper improves on previ-
ous work by performing fully automatic analysis for
Android Java APIs.

• We evaluate PermissionFlow on leading Android Mar-
ket applications and show that 177 out of the 313

applications tested would benefit from our tool. Per-
missionFlow found three permission-protected leaks in
widely used applications and an additional vulnerabil-
ity that allows leaking of information that should be
protected by custom permissions.

2. BACKGROUND
The vulnerabilities we identify involve knowledge about the
Android development model, the Android inter-process com-
munication mechanism and its permissions system. These
components are the focus of the following subsections.

2.1 Android development
Android applications are typically written in Java using both
standard Java libraries and Android-specific libraries. On
Android devices, the Java code does not run on a standard
JVM, but is compiled to a different register-based set of
bytecode instructions and executed on a custom virtual ma-
chine (Dalvik VM). Android application packages, also called
APK s after their file extension, are actually ZIP archives
containing the Dalvik bytecode compiled classes, their asso-
ciated resources such as images and the application manifest
file.

The application manifest is an XML configuration file
(AndroidManifest.xml) used to declare the various compo-
nents of an application, their encapsulation (public or private)
and the permissions required by each of them.

Android APIs offer programmatic access to mobile device-
specific features such as the GPS, vibrator, address book,
data connection, calling, SMS, camera, etc. These APIs are
usually protected by permissions.

Let’s take for example the Vibrator class: to use the
android.os.Vibrator.vibrate(long milliseconds) func-
tion, which starts the phone vibrator for a number of millisec-
onds, the permission android.permission.VIBRATE must be
declared in the application manifest, as seen on line 2 of
Listing 1.

Application signing is a prerequisite for inclusion in the
official Android Market. Most developers use self-signed
certificates that they can generate themselves, which do
not imply any validation of the identity of the developer.
Instead, they enable seamless updates to applications and
enable data reuse among sibling applications created by the
same developer. Sibling applications are defined by adding a
sharedUid attribute in the application manifest of both, as
seen in line 1 of Listing 1.

Activitys. The Android libraries include a set of GUI com-
ponents specifically built for the interfaces of mobile devices,
which have small screens and low power consumption. One
type of such component is Activitys, which are windows on
which all visual elements reside. An Activity can be a list
of contacts from which the user can select one, or the camera
preview screen from which he or she can take a picture, the
browser window, etc.

Intents. Applications often need to display new Activitys .
For example, choosing the recipient of an SMS message is per-
formed by clicking on a button that spawns a new Activity.



1 <mani fe s t package=”com . android . app . myapp” sharedUid=” u i d I d e n t i f i e r ”>
2 <uses−permis s ion name=”android . permis s ion .VIBRATE” />
3 <a c t i v i t y name=”MyActivity ”>
4 <in tent− f i l t e r>
5 <ac t i on name=”com . zx ing .SCAN” />
6 <category name=”category .DEFAULT” />
7 </ intent− f i l t e r>
8 </ a c t i v i t y>
9 </ mani f e s t>

Listing 1: An Activity declaration in AndroidManifest.xml with declarations of used permissions and an
intent filter.

This Activity displays the contacts list and allows the user
to select one. To spawn the new Activity, the programmer
creates a new Intent, specifies the name of the target class,
and then starts it, as shown in the following snippet:

In tent i = new In tent ( ) ;
i . setClassName ( this , ”package . Ca l l e eAc t i v i t y ” ) ;
s t a r tA c t i v i t y ( i ) ;

Usually the parent Activity needs to receive data from the
child Activity, such as - in our SMS example above - the
contact phone number. This is possible through the use of
Intents with return values, The parent spawns a child by us-
ing startActivityForResult() instead of startActivity()
and is notified when the child returns through a callback (the
onActivityResult() function), as shown in Listing 2. This
allows the parent to read the return code and any additional
data returned by the child Activity.

1 void onAct iv i tyResu l t ( int requestCode , int
resultCode , In tent data ) {

2 i f ( requestCode == CREATE REQUEST CODE)
{

3 i f ( resu l tCode == RESULT OK) {
4 St r ing i n f o = i n t e n t . ge tSt r ingExtra (

”key ”) ;
5 }
6 }
7 }

Listing 2: Code snipped showing how a caller
accesses information returned by a child Activity.

1 Intent i n t e n t = new In tent ( ) ;
2 i n t e n t . putExtra ( ”key ” , ”my value ” ) ;
3 this . s e tRe su l t (RESULT OK, i n t e n t ) ;
4 f i n i s h ( ) ;

Listing 3: Code snippet showing how child Activitys
can return data to their caller.

As shown in Figure 3, the child Activity needs to call the
setResult function, specifying its return status. If additional
data should be returned to the parent, the child can attach an
Intent along with the result code and supply extra key/value
pairs, where the keys are Java Strings and the values are
instances of Parcelable types, which are similar to Java
Serializable classes and include Strings, arrays and value
types.

Sending Intents to explicitly named Activitys , as described
above, is called explicit Intent usage. Android also allows
creation of Intents specifying a triple (action, data type,
category) and any Activity registered to receive those at-
tributes through an intent-filter will be able to receive of
the Intent. If there are multiple Activitys that can receive
the Intent, the user will be asked to select one.

The explicit Intent feature is mostly used in intra-application
communication, as described in the following section, but
can be useful for inter-application communication too and its
existence is the root cause of the vulnerabilities discovered
by us.

2.2 Inter-application Intents and data security
Inter-process communication with Intents. Intents
can be used for communication between Activitys of the
same application or for inter-application communication. In
the second case, Intents are actually inter-process message-
passing primitives. To specify a subset of Intents that an
Activity answers to, developers add to the application man-
ifest an intent-filter associated with the Activity. The
intent-filter in Figure 1 specifies that MyActivity can be
invoked by sending an Intent with action com.zxing.SCAN;
such an Intent is called an implicit Intent because it does
not specify a particular Activity to be invoked. Implicit
Intents are created using the single parameter constructor
new Intent(String).

Component encapsulation. Developers enable or disable
inter-application invocation of their Activitys by setting the
value of the boolean exported attribute of each Activity

in the application manifest. The behavior of this attribute
is a detail that may be a source of confusion, as the mean-
ing depends on the presence of another XML element, the
intent-filter:

• If an intent-filter is declared and the exported at-
tribute is not explicitly set to true or false, its default
value is true, which makes the Activity accessible by
any application.

• If an intent-filter is not declared and the exported

attribute is not set, by default the Activity is only
accessible through Intents whose source is the same
application.

An exception to the above rules is allowed if the developer



Figure 1: Before installing any application, the user
is presented with a list of permissions that the ap-
plication needs access to.

specifies the attribute sharedUid in the manifest file. In
that case, another application may run in the same process
and with the same Linux user ID as the current application.
This addition changes the behavior of Activitys that are
not exported: they can be invoked not only from the same
application, but also from the sibling application with the
same user ID. Listing 1 shows the use of the sharedUserId

attribute.

It is important to realize that the intent-filter mechanism
does not provide any security guarantees and is meant only
as a loose binding between Activitys and Intents; any
Activity with an intent-filter can still be sent an explicit
Intent in which case the intent-filter is ignored. The
presence of this attribute, however, changes the behavior of
the security-related exported attribute, as detailed above.
We found that many developers overlook the security-related
implications when using intent-filters.

2.3 Android permissions system
For a user, Android permissions are just lists of capabilities
that he or she has to accept before installing applications.

As seen in Figure 1, when installing an application from the
official Android Market, the user is presented with a list of
permission names, each with a short description.

From the point of view of the Android programmer, each
permission provides access to one or more Android Java
APIs that would otherwise throw an exception when used.
Permissions also protect Android ContentProviders, which
are SQLite databases indexed using a URI. Different URIs
mean different permissions might be needed to access the
corresponding data.

To request permissions, the developer needs to declare them
in the application manifest, as seen in Listing 1, through an
uses-permission attribute that specifies the exact permis-
sion as a String value. Users have a reasonable expectation
that if they do not give permission to an application to access
information (for example, their contacts), that application

will not have access to that information through some other
means.

3. ATTACKS
All Android applications with a graphical user interface
contain at least one Activity, which means vulnerabilities
related to Activitys can affect a majority of applications.
All the vulnerabilities that we identify have in common
the existence of information flows that are meant to allow
child Activitys to communicate with authorized parents,
but can instead be used by unauthorized applications to
access sensitive information without explicitly declaring the
corresponding permission.

We identified three different attack scenarios, discussed in the
following paragraphs and out tool, PermissionFlow, identifies
the flow vulnerabilities that enable all of them. Permission-
Flow validation can be used as a prerequisite for applications
before being listed in Android Market and by developers to
ensure the security of their applications or by users.

Note that other operating systems sandbox applications
and do not offer a mechanism for direct inter-application
communication; in spite of this, some of these attacks are
still possible. For example, in iOS, the colluding applications
attack can be performed through URL Schemes [7].

1. Attacks on misconfigured applications happen when
an attacker application installed on the device can exploit
the flows of a misconfigured application. If an application
has any one of the configuration parameter combinations
listed in Table 1 as high risk, then any application on the
device can spawn it.

If in the application manifest an Activity is listed with
an intent-filter and is not accompanied by a exported=

"false" attribute, any other application on the system can
invoke it. Then, in the absence of dynamic permission check-
ing by the developer (not standard practice), information
returned to the caller through the Intent result may com-
promise permission-protected information, as no permission
is required of the caller.

In the example from Figure 2 (left), the user installed malev-
olent application B (a music streaming app) with permission
to access the Internet. B can exploit the honest but miscon-
figured contact manager application A by invoking Activity
A2 that returns the contacts; B can then send the contacts
to a remote server. If A2 is built to reply to external requests
and it just failed to check that B has the proper permis-
sion, then the attack is a classic confused deputy attack.
However, because in Android Intents are also used as an
internal (intra-application) communication mechanism, it is
possible that A2 is not built for communicating with another
application and is just misconfigured. This private activity
invocation is a more powerful attack than confused deputy
because it targets internal APIs and not only public entry
points. These internal APIs are generally not regarded as
vulnerable to confused deputy and so not they are not se-
cured against it. Further, by increasing the number of APIs
that can be targeted, this attack increases the likelihood that
the returned information is permission-protected (Protected
information tends to flow between internal components such
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Figure 2: Possible attacks: internal Activity invocation or confused deputy, application sharing user ID with
a compromised application (center) and permission collusion by malevolent applications (right).

as A1 and A2, even when it does not leave the application.)
PermissionFlow allows developers to identify the existence
of permission-protected information flowing between compo-
nents and use this information to properly configure their
applications.

For Activitys that are designed to be invoked by unknown
applications, developers can ensure that callers own a set of
permissions in one of two ways: declaratively (in the manifest
file, using the permission attribute of the Activity) or dy-
namically (by calling the function checkCallingPermission(

String permission)). Note that the permission attribute
can only be used to enforce a single permission and is dif-
ferent from the uses-permission node in Listing 1, which
controls what permissions the application needs in order to
function.

The safest approach is to completely disable outside access
to internal Activitys that may leak protected information.
Table 1 shows the combinations of configuration parameters
that may lead to information leaks. Each of the combinations
also lists if any callers are allowed for that Activity or if
the Activity restricts access to only applications from the
same developer.

2. Collusion attacks obtain permission-protected infor-
mation without requesting the permission, by exploiting
the combination of assignment of Android permissions on
a per-application basis and the exchange of applications
information without making this explicit to the user.

In Figure 2 (right), we show a scenario in which a user is
tricked by a malevolent developer MD into installing two
separate applications, that seem to have little risk associated
with them. For example, a camera application that does
not require the Internet permission seems safe, as it cannot
upload the pictures to the Internet. Similarly, a music stream-
ing application that does not request the Camera permission
would be acceptable. However, if the two applications are
malicious, the music streaming application can invoke the
camera application and send the pictures obtained from it
remotely. The Android security system does not inform the
user of this application collusion risk.

Note that the camera application can include checks on the
identity of the caller, such that it returns the pictures to

no other application except the music streaming one, which
allows such colluding applications to pass a dynamic security
analysis that invokes all possible Activitys and checks the
returned information.

3. Attack on applications sharing the user ID. We
have not yet discussed an additional type of attack that
our approach can recognize, but is improbable in practice
because of its narrow applicability. This type of attack is on
sibling applications.

These attacks target honest developers who had one of their
applications compromised through methods unrelated to our
work, such as:

• The developer’s certificate is compromised (these are
self-signed certificates, vulnerable to exploitation since
they cannot be revoked [?]); the certificate can be
used to sign and publish a malevolent update to an
application N of that developer.

• One of the developer’s applications N is compromised
directly through some other vulnerability.

This vulnerability allows an attacker to access the permission-
protected information of applications sharing the user ID
with the already compromised N. If N is configured to have
the same user ID as application M (as shown in Figure 2
center), it can then obtain the information from M. To set
up this attack, an attacker would need to control application
N of developer D, N should have any exfiltration permission
(sending short messages, accessing the Internet, etc.) and N
should share user ID with an application by D that returns
permission-protected information. Then, N can invoke most
Activitys of M, even if M is configured according to the
rows with low risk level in Table 1. PermissionFlow can
detect this vulnerability too.

4. TAINT PROPAGATION
We express the problem of leaking permission-protected in-
formation to other applications by tracking flows of sensitive
information (taints) inside each application from informa-
tion sources protected by permissions to values that these
applications return to callers.

The taint analysis uses the following sources and sinks:



Activity configuration Application configuration Consequence
Exported Intent-filter SharedUid Callers accepted Risk level
exported=“true“ present any any HIGH
exported=“true“ absent any any HIGH
exported=“false“ present set from same developer LOW
exported=“false“ absent set from same developer LOW
default present any any HIGH
default absent set from same developer LOW

Table 1: Different configurations lead to different levels of vulnerability.

• Sources: the permission-protected APIs in the Android
libraries. Additionally, there may be other sources,
such as callbacks registered by the application to be
called when some events occur, for example when a
picture is taken using the phone camera.

• Sink: Activity.setResult(int code, Intent intent).
The Intent parameter of calls to this function is acces-
sible to the caller of the current Activity, so any data
attached needs to be protected.

From a confidentiality perspective, applications must also
protect other types of sources that are not protected by any
of the standard permissions defined by Android, for example
credit card numbers, account information, etc. This is done
by using custom permissions that protect the invocation
of their Activitys. The relationship between the custom
permission and the data or API it protects is not obvious, so
there is no way to automatically generate taint rules checking
for custom permissions. PermissionFlow can track these
flows only through additional rules that apply to application-
specific sources of taint.

5. SYSTEM DESCRIPTION
PermissionFlow has two main parts. The first one is a general,
reusable taint analysis framework; the second consists of all
other components, which are Android-specific.

To analyze real Android Market applications, whose source
code is usually not available, we support input in the form
of Android binary application packages (APK files). This
means PermissionFlow can also be used by Android users,
developers and security professionals.

The system design (Figure 3) consists of the following com-
ponents:

• The Permission Mapper (labeled 1 in the Figure 3)
builds a list of method calls in the Android API that
require the caller to own permissions. Its inputs are An-
droid classes obtained by building the Android source
code, with any modifications or additions performed
by the device manufacturer. Having the complete sys-
tem code as input allows the mapper to extract all
the permissions-protected APIs that will be present
on the device. It builds a permissions map, which
maps permission-protected methods to their required
permissions.

Permissions Map

1. 
Permission 

mapper

2.
Rule Generator

Taint Rules 
(for permissions)

3.
Andromeda

Flows

 
Library .jars

Library .jarsAndroid 
Library .jars

Additional Taint Rules 
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Application 
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Decompiled
Application (.jar)
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(ApkTool)

Binary Manifest 
(AndroidManifest,xml)

6. 
XML Extraction

XML Manifest 
(AndroidManifest,xml)

7. 
Decision Maker

Figure 3: The components of PermissionFlow

• The permissions map is passed to the Rule Gener-
ator, which builds the taint analysis rules relating
the sources in the map with their corresponding sinks.
In our case, the only sink is the Activity.setResult

method with an Intent parameter.

• Our taint analysis engine, (labeled 3) reads the gen-
erated rules and any extra rules manually added for
detecting application-dependent private information. It
outputs the flows that take the protected information
from sources to sinks. For this it needs access to the
application classes and the Android library classes. The
taint analysis engine also needs access to the Android
library, in order to track flows that go through it, for
example callbacks that get registered, Intents that get
passed to the system, etc.

• The dex2jar decompiler [8] (labeled 4) is used to
extract from the application APK a JAR archive con-
taining the application bytecode.

• To extract the binary application manifest from the
application package we use the ApkTool [9] (labeled



5); the decompilation step needed to get the textual
XML representation is performed by AXMLPrinter2
[10] (labeled 6).

• The taint analysis engine outputs the flows from sources
to sinks if there are any, but the presence of flows does
not in itself imply that the application is vulnerable.
The Decision Maker (labeled 7) looks for the pat-
terns identified in Table 1 in the application manifest
file - these patterns correspond to misconfigurations
that allows successful attacks to take place. If an ap-
plication contains a vulnerable information flow and is
improperly configured, only then is it vulnerable.

Currently, all the described components are implemented,
except the decision maker, whose role was performed through
manual inspection.

5.1 The Permission Mapper
The Permission Mapper matches function calls used for per-
mission enforcement in the Android libraries to Android
library functions that use these calls. In short, it uses static
analysis to identify permission-protected methods and to map
them to their required permissions; this analysis is indepen-
dent of any application analysis and needs to be performed
only once for each input Android configuration.

Identifying sources of permission-protected information is
challenging because of a phenomenon known as the Android
version and capability fragmentation. Android has under-
gone a quick succession of 15 API improvements, some with
multiple revisions, most of which are still in active use today.
Relying on the documentation to find which APIs require
permissions would bind our analysis to a particular version of
Android whose documentation we used as input. Even more
differences between Android APIs are introduced by hard-
ware manufacturers such as Samsung and HTC who build
their own additions to Android (Sense and Touchwiz, respec-
tively). These add-ons include everything from drivers and
libraries to user interface skins and new system applications,
which leads to capability fragmentation. Because of fragmen-
tation, when an application performs a call to a library that
is not distributed with the application, Android fragmenta-
tion makes identifying which permissions are needed for that
call very difficult, as the exact permissions may be different
depending on the exact Android version and add-ons. Identi-
fying sources of permission-protected information could also
be attempted by crawling the documentation. However, it is
incomplete even for public, documented classes and does not
include public, but non-documented methods and does not
account for Java reflection on non-public methods. It also
does not account for any modifications and additions to the
Android API performed by the phone manufacturer. Previ-
ous work [11] showed that it is possible to identify which API
calls require permissions though a combination of automated
testing and manual analysis, but they use techniques that
allow false negatives, need partial manual analysis and do
not handle the version and feature fragmentation problem of
Android.

For these reasons, we built the Permissions Mapper, a reliable
and automatic tool for identifying permission-protected APIs
and their required permissions. The Permissions Mapper

1 public void v ib r a t e ( long time ) {
2 i f ( mService == null ) {
3 Log .w(TAG, ”Se r v i c e not found . ” ) ;
4 return ;
5 }
6 try {
7 mService . v i b r a t e ( time , mToken ) ;
8 } catch ( RemoteException e ) {
9 Log .w(TAG, ”Fa i l ed to v i b r a t e . ” , e ) ;

10 }
11 }

Listing 4: Code snippet showing how API calls use
services to perform protected functionality.

takes as input the JAR archives of the Android distribution
that needs to be summarized, including any additional code
added by the hardware manufacturer. This allows for a
complete analysis that works without user input and can
reliably deal with API differences between various versions
of the OS.

In the Android libraries, several mechanisms are used to
enforce permissions:

• Calls to the checkPermission function located in the
Context and PackageManager classes or
checkCallingOrSelfPermission function located in
the Context class;

• Linux users and groups (used, for example when en-
forcing the WRITE_EXTERNAL_STORAGE and BLUETOOTH

permissions);

• From native code (such as the RECORD_AUDIO or CAMERA
permissions).

Our work targets complete coverage of APIs enforced through
the first category, which includes the majority of Android
permissions.

To illustrate how permission checks work, we can use for
example the VIBRATE permission. To use the phone vibrator,
an application needs to own the VIBRATE permission; all
functions that require this permission check for it. One such
function is Vibrator.vibrate, whose source code is shown
in Figure 4. When this function is called, the Android API
forwards the call to a system service instance mService (line
8), which executes in a different process from the application.
The mService instance is returned by a stub of the vibrator
service:

mService = IV ib ra t o rS e rv i c e . Stub . a s I n t e r f a c e (
ServiceManager . g e tS e r v i c e ( ‘ ‘ v i b r a t o r ”) ) ;

This is because in Android, developers build Android In-
terface Definition Language (AIDL) interfaces, from which
remote invocation stubs are automatically generated [?], sim-
ilar to Java RMI development.

The service process is the one that makes the actual permis-
sion checks, before performing any protected operation, as



1 public class Vibra to rSe rv i c e extends I V i b r a t o r S e r v i c e . Stub {
2 public void v ib r a t e ( long m i l l i s e c o n d s , b inder ) {
3 i f ( context . checkCa l l ingOrSe l fPermi s s i on (VIBRATE) ) != PackageManager .PERMISSION GRANTED){
4 throw new Secur i tyExcept ion ( ”Requires VIBRATE permis s ion ” ) ;
5 }
6 }
7 }
8
9 public class ContextImple extends Context {

10 public int checkCa l l ingOrSe l fPermi s s i on ( St r ing permis s ion ) {
11 return checkPermiss ion ( permiss ion , Binder . ge tCa l l i ngP id ( ) , Binder . ge tCa l l ingUid ( ) ) ;
12 }
13 }

Listing 5: Code snippet showing how services check the permissions of the application.

shown in Listing 5.

The interprocedural dataflow analysis is built using IBM
WALA[13] and starts by building the call graph of the An-
droid libraries, including all methods as entry points. All
call chains containing a Context.checkPermission(String)

method call are then identified. To find the actual permission
string that is used at a checkPermission call site, we follow
the def-use chain of the string parameter. Once found, we
label all callers upstream in the call chain as requiring that
permission. Note that different call sites of checkPermission
will have different permission strings - each such string needs
to be propagated correctly upstream, building set of required
permissions for each function.

For the vibrate() example, the permission enforcement
call chain is in Figure 4. The string value of the vibrate

permission is located by following the def-use chain of the
checkPermission parameter (dashed lines) until the source
String constant is found. Once the constant is found, we
need to identify which functions on the call chain need this
permission. We start by labeling the function that contains
the first (“most downstream”) call site through which the
def-use chain flows. In our case, the def-use chain goes first
though the call site of checkCallingAndSelfPermission

in IVibratorService.vibrate (line 4 in Figure
5), where the VIBRATE variable is specified as a
parameter, so IVibratorService is labeled with
“android.permission.VIBRATE”.

After labeling IVibratorService.vibrate, the same label
must be propagated to callers of that function, but in our
case there are no callers except the proxy stub.

Because the communication between Android proxy stubs
and their corresponding services (shown as dotted edges in
Figure 4) is done through message passing, it does not appear
in the actual call chain built by WALA. To work around
this problem we add the permissions labels of the service
methods to the corresponding proxies; the labels are then
propagated to any callers of those methods.

5.2 Taint Rule Generator
The output of the Permission Mapper is a hash table mapping
each Android API function that needs permissions to the

Vibrator.vibrate(1000)

IVibratorService.vibrate(long millis)

Context.checkCallingOrSelfPermission(VIBRATE)

Contet.checkPermission(String s)

String permissions.VIBRATE =
      “android.permission.VIBRATE”

IVibratorService.Stub.Proxy.vibrate(long millis)

Figure 4: The permission analysis exemplified on
the vibrate() call

set of one or more permissions that it requires. The taint
rule generator turns that information into rules usable by
the taint analysis engine.

The rules specify the tracked taint flows: from the sources in
the permissions map to the Activity.setResult function.
The set of rules automatically generated in this way can be
manually augmented by providing additional rules describing
what application data should be private (protected by custom
application permissions).

5.3 Taint Analysis Engine
For the taint analysis engine, we used Andromeda [14], which
is highly scalable and precise; it builds on IBM WALA [13].
Andromeda uses as input rules composed of two sets: sources
and sinks. The sources are parameters and return values of
functions that are the origin of tainted data and the sinks are
security-critical methods. The engine tracks data flow from
the source through assignments, method calls, and other
instructions, until the data reaches a sink method. If the
taint analysis engine discovers that tainted data reaches a
sink method, the flow is included in the taint analysis engine
output.

6. EXPERIMENTAL RESULTS
6.1 Evaluation of the permissions map



We evaluated the Android API Permissions Mapper by di-
rectly comparing its output permissions map with that of
previous work. The two approaches considered are that of
Felt et al. [11], based on automated testing, and that of
Bartel et al.[?], based on static analysis. To perform the
comparison with the work by Felt et al. we eliminated permis-
sions from their map that are enforced through mechanisms
other than the checkPermissions calls, because our analysis
only targets checkPermissions-enforced permissions.

Comparing the size of their reference map (which includes
1311 calls that require permissions) with ours (4361 calls
with permissions) shows that our tool finds more functions
that require permissions. The larger size of our map is partly
explained by the lack of false negatives for the analyzed Java
APIs. However, a direct comparison is not possible as the
input classes on which Felt et al. ran their analysis is not
specified in their paper. Our input was the full set of classes
in the android.* and com.android.* packages, as well as
Java standard classes that are used inside those (a total of
40,600 methods). Our map also includes functions in internal
and anonymous classes, which partially explains the higher
number of methods in the permissions map.

Through manual comparison, we identified one false negative
in their map (probably due to the automated testing not
generating a test and the subsequent analysis not detect-
ing the omission). The function is MountService.shutdown,
which usually needs the SHUTDOWN permission, but if the me-
dia is shared it also needs the MOUNT_UNMOUNT_FILESYSTEMS

permission. The existence of missing permissions in the
testing-based methods shows that testing methods, even if
party automated and enhanced by manual analysis, cannot
offer guarantees with respect to false negatives.

Another reason for the higher number of methods found in
our map is the existence of false positives: permissions that
are reported as required but are not. We have identified the
following sources of false positives, all of which are known
weaknesses of static taint analysis:

• Checking for redundant permissions. For example
checking for ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION in
TelephonyManager.getCellLocation(), where either
one is sufficient for enforcement; our method reports
both, because it is oblivious to control flow.

• Data dependent checks. For example, a check for the
VIBRATE permissions depends on the value of a param-
eter such as in NotificationManager.notify().

• Android provides the pair of functions clearIdentity

and restoreIdentity that are used to change all checks
so that they are performed on the service instead of
the application using the service.

Another advantage of testing-based analysis is that it can
cover areas, such as the permissions enforced in native code,
which static analysis does not target (such as RECORD_AUDIO).

To perform a more detailed comparison of our approach with
the work by Felt et al., we compared results obtained for

a simple security analysis, identification of overprivileged
applications, based on the permission map. This analysis
consists of identifying Android applications that request in
their manifest more permissions than they actually need to
perform their functions. The results are used to reduce the
attack surface of applications by removing unused permis-
sions from the manifest. To perform this analysis, we built
another static analysis tool based on IBM WALA, which
records the API calls that can be performed by an appli-
cation and computes, based on the permissions map, the
permissions required by that application. The set of discov-
ered permissions is then compared to the set of permissions
obtained from the application manifest ( obtained from the
compiled application package through the use of the Android
SDK tool aapt).

We used both permission maps as input for the analysis of the
Top Android Market Free Applications (crawled in December
2011) that were compatible with Android 2.3 and available in
the US (354 applications). For a fair comparison, we removed
from Felt et al.’s reference map the parts that relates content
provider databases to their permissions, as these were outside
the scope of our work. After eliminating applications that
crashed the dex2jar [8] decompiler or generated incorrect
bytecode, we were left with 313 applications. Of these, both
our analysis and theirs found 116 to be overpriviledged. No
permissions identified as unused by us were identified as
used by Felt et al., which is consistent with the lack of false
negatives expected from a static analysis approach. However,
47 permissions were identified as used by us and as unused
by Felt et al..

Comparison with Bartel et al. [?] was more difficult as their
results are not publicly available. Their analysis focused
on Android 2.2, which has a slightly lower number of APIs
and so a lower number of permission checks. Their results
identify a much smaller number of overprivileged applications:
12% of applications are identified as vulnerable by Bartel
et al., but the ratio, as identified by Felt, et al. is closer
to 30%. We obtain a 37% rate, which is explained by our
not considering native code permissions. Bartel et al. have
a similar disadvantage, which should have skewed the rate
towards higher values. This inconsistency may have been
caused either by their use of a call graph that is too imprecise
or by using a different set of applications as input. Our
analysis yields a result similar to Felt et al. and uses a
similar input (Android Market applications), whereas Bartel
et al. used an alternative application store.

Regarding the performance of the tool, the Permissions Map-
per runs in under two minutes on our dual core i5 (2.4GHz,
8GB RAM) whereas their map takes two hours to build on a
quad core (2.4GHz, 24GB RAM). The performance difference
can be explained in part by their trying to eliminate false pos-
itives by ignoring permission checks between clearIdentity

and restoreIdentity calls in the kernel; however this tech-
nique does not seem to improve accuracy for their experi-
mental results and considerably increases execution time.

6.2 Evaluation of PermissionFlow
We tested PermissionFlow on the same applications used to
evaluate the permission map. To confirm the correctness of
the results we manually inspected all applications. Out of



the 313 applications, 177 use the Activity.setResult with
an Intent parameter to communicate between components
(both internal or external). These 56% of the applications
may be vulnerable if they also contain flows from taint sources
to sinks and are not configured properly. They can use
PermissionFlow to check that they are secure.

To check for correctness, we ran PermissionFlow with our
permissions map and the one produced by Felt. Using the
map from Felt, PermissionFlow correctly identified two ap-
plications as vulnerable and had no false positives. With
the permissions map built by our analysis, PermissionFlow
outputs a larger set of vulnerable applications, but the addi-
tional applications are all false positives. As we saw in the
previous section both permissions maps are incomplete: ours
does not track permissions enforced through non-Java mech-
anisms and Felt’s allows the possibility of missing permission
checks. Choosing one of the two maps amounts to either
using a possibly incomplete map (Felt, et al.) and finding no
false positives, or identifying the complete set of Java-based
flows and accepting some false positives but missing flows
based on native code or Linux permissions checks.

Our analysis may have false negatives for applications that
pass protected information between components before re-
turning it; for example, Activity A may return protected
information to Activity B, which is improperly secured. We
cannot guarantee the identification of such cases because
the use of implicit Intents prevents identification of the
class names for invoked Activitys. For implicit Intents,
the receiving class depends on the manifest configuration
of all applications installed on the system and may depend
on user preferences (if there are multiple Activitys with
the same intent-filter the user is asked to select one that
should be invoked). If one requires an analysis without false
negatives, our analysis can convert the possible false nega-
tives to possible false positives, by adding, as an additional
source for the taint analysis, the Intent parameter of the
onActivityResult callback.

In the following subsections we present the three vulnerable
applications discovered by our analysis that leak Android
permission-protected information. Section 6.2.4 describes
one more vulnerable application that leaks information which
should be protected with custom permissions.

6.2.1 Case Study: Adobe Photoshop Express
Adobe Photoshop Express contains an interesting vulnerable
flow. The application has an Activity that displays a list
of Contacts and allows the user to pick one. The flow starts
from getContentResolver().query(

Contacts.CONTENT_EMAIL_URI), and reaches the user inter-
face; from there, the handler for the Click operation builds
an Intent containing the email of the selected contact and re-
turns it to the caller. In Android, read access to the Contacts
database is protected by the READ_CONTACTS permission and
callers of this Activity work around this restriction.

The exported attribute is not set and, because an
intent-filter is present, the Activity is callable from any
application. It seems the developer used the intent-filter

as a security mechanism, which it is not. After disassem-
bling the application and finding the appropriate category

attribute for the Intent and the Activity class name, any
malevolent developer can exploit it. Even if the user is re-
quired to click a contact, there is no way for the user to
identify whether the Activity returns the information to
the legitimate caller (the Photoshop application) or some
other application. Because the attack can be performed by
any application, the risk in this case is high.

6.2.2 Case Study: SoundTracking
The popular SoundTracking application allows users to share
a message to their social networks with the name of a song
they are listening to and their geo-location. Permission-
Flow finds that it is vulnerable to leaking users’ geo-location
to other applications: the Activity responsible is marked
with an intent-filter, so any other application can invoke
it. Manual analysis showed that no fewer than 43 differ-
ent Activitys of this application have intent-filters, and
there is no evidence of dynamic or declarative permission
checking, suggesting that the developers are confused as to
the proper use of the intent-filters. The risk level is high.

6.2.3 Case Study: Sygic GPS Application
The Sygic GPS application allows users to take pictures
using an Activity developed in house, instead of reusing
the regular Android camera application. To do this, the
Activity CameraActivity registers a callback using the
Camera.takePicture function. The system invokes the call-
back when the picture is taken and attaches the actual byte
array representing the image to it. It then calls setResult

and finish, sending the raw picture to the caller. However,
the Activity has no intent-filter. Because the exported

attribute is not set, the default value is false. The Activity

could only be exploited by another application signed by the
same developer, so we classify it as low risk. For now, none
of the other applications of the same developer currently
in the market seem to invoke this Activity, but this may
change in the future. This vulnerability is difficult to detect
statically because the source is not in the application code;
the application passes a function to the camera API and the
operating system calls that function with tainted parameters
(the picture array). The Intent passes through a message
queue, from where it is forwarded to the correct application
handler. Identification of this vulnerability was possible be-
cause we analyze the application together with the Android
libraries and manually added a rule to PermissionFlow that
marks the function that distributes the Intents to handlers
as having a tainted Intent parameter.

6.2.4 Sensitive-information flows
Many applications have access to other types of sensitive
information that are not protected by standard Android per-
missions. For example, a banking application needs to protect
credit card information and a social networking application
needs to protect family-related and location information. To
protect this kind of information, developers should define
custom permissions, but because of the coarse-grained na-
ture of the custom permissions (assigned to applications as
opposed to APIs) it is not possible to automatically identify
the taint sources for such information. For this reason, Per-
missionsFlow allows specification of additional rules to be
used for identifying such vulnerabilities.



Through manual inspection of the market applications we
found proof that sensitive information often crosses inter-
component boundaries. The existence of these flows shows
that PermissionFlow would be a useful tool for developers in
configuring their application to not be vulnerable to leaking
data protected by either standard or custom permissions.

Some applications fail to protect this information properly.
For example, Go Locker has a lockscreen passcode selection
Activity that can leak the phone lockscreen password. The
Go SMS application from the same developer has a similar
flow, but the manifest contains the sharedUserId attribute,
so it is exploitable. An attacker that can control another
application with the same user ID can access the password.
Because of the shared user ID restriction, we consider GO
SMS as low risk.

Some of the inter-component flows of sensitive information
that are not protected using standard permissions are de-
scribed next. These applications are correctly configured, so
they are not vulnerable, but their developers could benefit
from using our tool because they can easily check if their
applications are protected. If the developers took steps to
protect sensitive information, these are listed in parentheses
after the description of the flows.

• The WeatherChannel application contains an Activity

that can leak the name of the last recorded video or
picture from the camera.

• The Accuweather application can leak the location as
selected by the user. Because the string representation
of the location does not come from permission protected
APIs, the automatically generated rules to not recog-
nize it. However, adding a rules manually is possible
and enables detection of this kind of information flow
violations.

• Adobe Reader contains an ARFileList Activity that
returns the absolute path to a file selected by the user
(not exported, no intent-filter).

• The Facebook application and Facebook Messenger
allow the user to select friends from the friends list and
returns their profiles, which contain their names, links
to their image, etc. (not exported, no intent-filter).

• HeyZap Friends has a TwitterLoginActivity that re-
turns information received from the server after login
(including username) that may contain information that
can be used to compromise the privacy of the users’
Twitter account (not exported, no intent-filter).

• The mobile CNN application has a similar Activity

that can leak the user postal code, after he selects it
from a list (not exported, no intent-filter).

• The Kayak application leaks the user login email if the
user logins with the Login screen that the vulnerable
application displays (not exported, no intent-filter).

• Launcher EX contains an Activity that returns the
name of an installed application (not exported, no
intent-filter).

• The GoContactsEX and the FunForMobile applications,
contain Activitys that return contact information (no
intent-filter, not exported).

• Google Translate has a flow that involves returning the
text of a user selected SMS message (not exported, no
intent-filter) after the user selects one contact.

• The official Twitter application uses an Activity re-
turn value to return the Twitter OAuth token that
allows access to the twitter API as the user that gener-
ated it. The Activity is meant to be invoked by other
applications (has an intent-filter ) and is safely con-
figured through declarative permission enforcement.
Two other web-related apps, PicsArt Photo Studio and
IMDB, contain Activitys that return OAuth tokens,
but are correctly protected.

• The official Hotmail app contains an Activity that re-
turns the URI of an email, but the actual content has to
be fetched from a Content Provider that declaratively
enforces read and write permissions.

• The Walgreens application returns the path and name
to the picture taken by the camera. (no intent-filter,
not exported).

7. DISCUSSION OF FINDINGS
We discovered three vulnerable permissions-leaking appli-
cations that may compromise information protected by the
CAMERA, READ_CONTACTS and either ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION permissions.

We also found 70 applications containing flows that need
protection but are correctly configured; around 23% of the
Android Market applications could use our analysis to confirm
proper configuration. As 177 applications had Activitys that
returned extra information, 56% of the applications could
use our tool to pinpoint if they need to secure their protected
information against such attacks. PermissionFlow identified
all vulnerable applications correctly and had one false positive
(because of a bug we are currently investigating); however
it reached the 30 minutes time-out on 4 (non-vulnerable)
applications.

All the vulnerabilities discovered require the user to perform
some action using the GUI of an application that was not
explicitly started. This should look highly suspicious to a
security-conscious user, making successful attacks less likely
to succeed. However, it is easy to perform a similar attack
that does not require user intervention and regular users may
be easily tricked.

During our manual analysis we paid special attention to
applications that handle financial information such as credit
card information and online shopping account details and
found that these application generally use Intents only for
confirmation and not for communication of sensitive informa-
tion such as PINs, credit card numbers or passwords. Other
applications, such as the ones in the case studies above are
indeed vulnerable.

We did not find any trace of malevolent attacks performed
by the top Android Market applications; most applications



correctly configure internal Activitys by not supplying an
exported="true" attribute or an intent-filter.

We believe that part of the cause of the vulnerabilities is the
complexity of properly configuring an Android application,
as three attributes are involved: exported, intent-filter
and sharedUid are not easy to get right.

The complexity involved increases the need for safe defaults.
Our recommendation is that Android should require, by
default, that any caller of a third-party application must own
the permissions required by the callee. This would mean that
any Intent invocation loses any possible permission collusion
capability and only serves as a code reuse mechanism.

For applications such as Barcode Reader that effectively
sanitize their data, the developer could add permission at-
tributes to the manifest that lists permissions that should
not be needed from callers (whitelist instead of blacklist).

Another helpful but larger change would be for inter- and
intra-application Intent flows to use separate APIs; this
would reduce developer confusion and split a large attack
surface into smaller chunks that can be protected each with
appropriate tools.

7.1 Recommendations for secure applications
The first and most important advice for security-aware An-
droid developers is to pay close attention to the configura-
tion of their application (specifically, any combination of
parameters listed in Table 1 is, without additional checks,
vulnerable). If such a parameter combination is needed for
functionality reuse or other constraints, here are some ways
of maintaining security:

• A safe approach is to always request explicit user con-
firmation for the invocation of any Activity that may
be part of an inter-application flow. The user should be
informed to which caller the information will be sent.
This method has the disadvantage that it decreases the
ease-of-use of the application.

• To enforce that callers of your Activitys own cer-
tain permissions, developers can use either declarative
permission requirements in the application manifest
and dynamic permission checks using checkPermission

calls. (both are shown in Section 3)

• Developers should consider using work-arounds for send-
ing sensitive information over inter-component bound-
aries. For example, several of the applications analyzed
leak information from an ordered set of items such as
contact names/phone number or zip code. For these
applications there is no need for complex mechanisms
to avoiding the vulnerability; it may be sufficient to
return an integer index to the information database,
instead of the actual information; the caller would need
to query the database to obtain the actual information.

• Passing sensitive information over inter-component
boundaries of the same application in an encrypted
form is recommended to protect against unintended

callers, but does not help if an attacker has compro-
mised another application with which the current ap-
plication shares the user id.

8. RELATED WORK
Privilege escalation attacks on Android applications have
been previously mentioned in literature [16]. However, such
an attack requires usage of native code, careful identification
of buffer overflow vulnerabilities and high expertise. We
focus only on vulnerabilities specific to Android and help
protect the information before such attacks happen.

Michael Grace et al. [17] focused on static analysis of stock
Android firmware and identified confused deputy attacks
that enable the use of permission-protected capabilities. Our
analysis is complementary in that it identifies not actions
that are performed, but information that flows to attackers.
Also we focus not on stock applications, but third-party
applications.

TaintDroid [18] uses dynamic taint tracking to identify infor-
mation flows that reach network communication sinks. Both
PermissionFlow and TaintDroid can potentially support other
sinks, and their dynamic approach is complementary to our
static approach because it can better handle control flow (for
example, paths that are never taken in practice are reported
as possible flows by our tool). It can also enforce only safe
use of vulnerable applications by denying users the capability
to externalize their sensitive information.

SCanDroid [19] is the first static analysis tool for Android
and can detect information flow violations. The tool needs
to have access to both the vulnerable application and the
exploitable application. To the best of our knowledge, SCan-
Droid is not easily extensible with new taint propagation
rules. ComDroid [?] is the first tool that analyses inter-
application communication in Android. However, it reports
warnings which may or may not be vulnerabilities. Auto-
matic rule and permission map generation, as well as analysis
of the dangers of using the same mechanism for both intra-
and inter-application communications, are contributions that
separate our work from theirs.

Mann and Starostin [?] propose a wider analysis based on
typing rules that can discover flow vulnerabilities. They have
no experimental results on applications and did not realize
that private components are vulnerable to inter-application
attacks. With additional rules, PermissionFlow can analyze
all vulnerabilities suggested by them.

A different aspect of the inter-application flow vulnerabilities
is described by Claudio Marforio et al. whose work focused
on colluding applications[?]; they identified several possible
covert channels through which malevolent applications can
communicate sensitive information, for example by enumerat-
ing processes using native code or files. Most of them however
are not Android-specific, no tool was built to prevent them,
and no vulnerable or malevolent application was found. The
contribution of the work consists of identification of the dan-
ger of colluding applications for modern permission-based
operating systems. Our analysis identifies when permission-
protected information leaves the application, but this may be
needed to perform the function of the application. Hornyack



et al. [20] propose a system that replaces protected infor-
mation with shadow data and they concluded that 34% of
applications actually need to leak information to perform
their function. A combination of PermissionFlow and their
tool might lead to better protection of the user privacy, while
maintaining functionality.

9. CONCLUSION
This paper proposes a solution for the problem of checking
for leaks of permission-protected information; this is an
important security problem as such leaks compromise users’
privacy.

Unlike previous work, our method is completely automated;
it is based on coupling rule-based static taint analysis with
automatic generation of rules that specify how permissions
can leak to unauthorized applications. We demonstrate
the benefits of this analysis on Android, and identify the
Intent mechanism as a source of permission leaks in this
operating system; we found that permissions can leak to
other applications even from components that are meant to
be private (i.e., accessed only from inside the application)
through a more virulent form of confused deputy attack -
private activity invocation.

Our automated analysis of popular applications found that
56% of the top 313 Android applications actively use inter-
component information flows. Among the tested applications,
PermissionFlow found four exploitable vulnerabilities. Be-
cause of the large scale usage of these flows, PermissionFlow
is a valuable tool for security-aware developers, for security
professionals and for privacy-conscious users. Our approach
extends beyond Android, to permission-based systems that
allow any type of inter-application communication or remote
communication (such as Internet access). Most mobile OSes
are included in this category and can benefit from the pro-
posed new application of taint analysis. By helping ensure
the absence of inter-application permission leaks, we believe
that the proposed analysis will be highly beneficial to the
Android ecosystem and other mobile platforms that may use
similar analyses in the future.
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