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ABSTRACT

Given a set P of n points in the plane, the two-circle point-labeling problem consists

of placing 2n uniform, non-intersecting, maximum-size open circles such that each point
touches exactly two circles.

It is known that this problem is NP-hard to approximate. In this paper we give a
simple algorithm that improves the best previously known approximation factor from

4/(1 +
√

33) ≈ 0.5931 to 2/3. The main steps of our algorithm are as follows. We first
compute the Voronoi diagram, then label each point optimally within its cell, compute

the smallest label diameter over all points and finally shrink all labels to this size. We
keep the O(n log n) time and O(n) space bounds of the previously best algorithm.

Keywords: Computational geometry, cartography, approximation algorithm, multi-label point
labeling, Voronoi diagram

1. Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines, and
polygons must be labeled to convey information. The interest in algorithms that au-
tomate this task has increased with the advance in type-setting technology and the

∗Research supported by the NSF of China under grant No. 19731001.

1



amount of information to be visualized. Due to the computational complexity of the
label-placement problem, cartographers, graph drawers, and computational geome-
ters have suggested numerous approaches, such as expert systems,2,9 zero-one in-
teger programming,26 approximation algorithms,7,10,21,24 simulated annealing6 and
force-driven algorithms11 to name only a few. An extensive bibliography about
label placement can be found at Ref. [22]. The ACM Computational Geometry
Impact Task Force report5 denotes label placement as an important research area.
Manually labeling a map is a tedious task that is estimated to take 50 percent of
total map production time.14

In this paper we deal with a relatively new variant of the general label placement
problem, namely the two-label point-labeling problem. It is motivated by maps
used for weather forecasts, where each city must be labeled with two labels that
contain for example the city’s name or logo and its predicted temperature or rainfall
probability.

The two-label point-labeling problem is a variant of the one-label problem that
allows sliding. Sliding labels can be attached to the point they label anywhere
on their boundary. They were first considered by Hirsch11 who gave an iterative
algorithm that uses repelling forces between labels in order to eventually find a
placement without or with only few intersecting labels. Van Kreveld et al.20 gave a
polynomial time approximation scheme and a fast factor-2 approximation algorithm
for maximizing the number of points that are labeled by axis-parallel sliding rect-
angular labels of common height. They also compared several sliding-label models
with so-called fixed-position models where only a finite number of label positions
per point is considered, usually a small constant like four.6,10,21 Sliding rectangular
labels have also been considered for labeling rectilinear line segments.13 The prob-
lem of labeling points with arbitrarily oriented sliding labels, a generalization that
is of interest in the case of graphical, not textual labels, was investigated as well.7,25

Point labeling with circular labels, though not as relevant for real-world applica-
tions as rectangular labels, is a mathematically interesting problem. The one-label
case has already been studied extensively.7,8,19 For maximizing the label size (i.e.
diameter), the best approximation factor8 now is 1/3.6.

The two- or rather multi-label placement problem was first considered by Kak-
oulis and Tollis12 who presented two heuristics for labeling the nodes and edges of
a graph drawing with several rectangles. Their aim was to maximize the number
of labeled features. The algorithms are based on their earlier work; one is itera-
tive, while the other uses a maximum-cardinality bipartite matching algorithm that
matches cliques of pairwise intersecting label positions with the elements of the
graph drawing that are to be labeled. They do not give any runtime bounds or
approximation factors.

For maximizing the size of square labels, two per point, Zhu and Poon24 gave
the first approximation algorithm. It had an approximation factor of 1/4 that was
subsequently improved to 1/3 by Zhu and Qin25 and to 1/2 by Qin et al..16

For the problem that we consider in this paper, namely maximizing the size of
circular labels, two per point, again Zhu and Poon24 gave the first approximation
algorithm. They achieved an approximation factor of 1/2. Like all of the following
algorithms, their algorithm relies on the fact that there is a region around each
input point p such that the region of p does not intersect the region of any other
input point. The size of the region—in their case a circle centered at p—makes it
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possible to place labels whose size is a constant fraction of an upper bound for the
maximum label size.

Later Qin et al.16 improved this result. They gave an approximation algorithm
with a factor of 1/(1 + cos 18◦) ≈ 0.5125. They also state that it is NP-hard to
decide whether a set of points can be labeled with 2n disjoint unit circles, and,
even more, that the maximum label size cannot be approximated arbitrarily well
unless P = NP. The regions into which they place the labels are the cells of
the Voronoi diagram. They do not compute the Voronoi diagram explicitely, but
use certain properties of its dual, the Delaunay triangulation. For estimating the
approximation factor of their algorithm they rely on the same upper bound for the
maximum label size as Zhu and Poon, namely the minimum (Euclidean) distance
of any pair of input points.

Recently Spriggs and Keil18 presented an algorithm with an approximation fac-
tor of 4/(1 +

√
33) ≈ 0.5931. They use a different upper bound for the maximum

label size than the previous two algorithms.
In this paper we give an algorithm that places the labels of each point into its

Voronoi cell. However, unlike the algorithm by Qin et al.16 we do this optimally and
compare the label diameter of our algorithm not to an upper bound but directly
to the optimal label diameter. This yields an approximation factor of 2/3. At
the same time we keep the O(n log n) time and O(n) space bounds of the previous
algorithms, where n is the number of points to be labeled. Both the idea of our
new algorithm and the proof of its approximation factor are simpler than those of
its predecessor. If a library with some geometric algorithms is available, then the
implementation is straight forward as well.

The actual label placement within the Voronoi cells is a special case of a gift
wrapping problem, where the gift is a coin (as large as possible) and the wrapping a
convex polygonal piece of paper with m edges that can only be folded once along a
line. Our problem is special in that it specifies a point on the folding line and thus
takes away a degree of freedom. For the problem without this restriction, there is an
optimal linear-time algorithm.4 For our special problem we gave an O(m log m)-time
algorithm in a previous version of this paper.23 That algorithm relies on standard
techniques for computing the lower envelope of a set of “well-behaving” functions.
In this paper we give a very simple and geometrical algorithm that takes only linear
time. We have implemented this algorithm in Java. An interactive demo is available
online at http://www.math-inf.uni-greifswald.de/map-labeling/points/two-circles/.

This paper is organized as follows. In Section 3 we prove that in each cell of the
Voronoi diagram of the given point set P there is enough space for a pair of uniform
circular labels whose diameter is 2/3 times the maximum diameter for labeling P
with circle pairs. In Section 4 we show how to label points optimally within their
Voronoi cells and state our central theorem. Finally in Section 5 we show why our
method does not work well on related labeling problems.

Throughout this paper we consider labels to be topologically open, i.e. labels
may touch each other. We define the size of a solution to be the diameter of the
uniform circular labels. A solution is optimal if no two labels intersect and labels
have the largest possible size. We will only consider sets of at least two points since
the size of an optimal solution is unbounded otherwise.

3



2. Previous Work

Zhu and Poon24 have suggested the first approximation algorithm for the two-
circle point-labeling problem. Their algorithm always finds a solution of at least
half the optimal size. The algorithm is very simple; it relies on the fact that D2,
the minimum Euclidean distance between any two points of the input point set P ,
is an upper bound for the optimal label size (i.e. diameter), see Figure 1. On the
other hand, given two points p and q in P , the two open circles Cp,D2/2 and Cq,D2/2

with radius D2/2 centered at p and q do not intersect. Thus if each point is labeled
within its circle, no two labels will intersect. Clearly this allows labels of maximum
diameter D2/2, i.e. half the upper bound for the optimal label size.

D2

Fig. 1. D2 is an upper bound for the optimal label size.

The difficulty of the problem immediately comes into play when increasing the
label diameter d beyond D2/2, since then the intersection graph of the (open) disks
Cp,d with radius d centered at points p in P changes abruptly; the maximum degree
jumps from 0 to 6.

Later Qin et al.16 gave an approximation algorithm that overcomes this difficulty
and labels all points with circles slightly larger than the threshold of D2/2. Their
diameter is d? = D2/(1 + cos 18◦) ≈ 0.5125D2. Their algorithm also assigns each
point a certain region such that no two regions intersect and each point can be
labeled within its region. The regions they use are not circles but the cells of the
Voronoi diagram3 of P , a well-known multi-purpose geometrical data structure.
Instead of computing the Voronoi diagram explicitely they use the dual of the
Voronoi diagram, the Delaunay triangulation DT(P ) to apply a packing argument.
DT(P ) is a planar geometric graph with vertex set P and edges for each pair of
points that can be placed on the boundary of an open disk that does not contain
any other points of P .3 Qin et al. argue that in DT(P ) each point p can have at
most six short edges, where an edge pq is short if the Euclidean distance d(p, q) of
p and q is shorter than 2d?. They show that among the lines that go through these
short edges there must be a pair of neighboring lines that form an angle α of at least
36◦. They place the circular labels of p with diameter d? such that their centers
lie on the angular bisector of α. Finally they prove that these labels lie completely
within the Voronoi cell Vor(p) of p. The Voronoi cell of p is the (convex) set of all
points in the plane that are closer to p than to any other input point. Thus the
Voronoi cells of two different input points are disjoint and the labels of one input
point cannot intersect the labels of any other.

Recently Spriggs and Keil18 have further improved the result of Qin et al.. The
algorithm they presented has an approximation factor of 4/(1+

√
33) ≈ 0.5931 and

works as follows. For each point p Spriggs and Keil determine the orientation θp

that maximizes the diameter dp of a region that (a) allows to place labels whose size
is a certain fraction λlower of dp and (b) guarantees that there is no placement with
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labels whose size is greater than a fraction λupper of dp. Finally they label all points
with circles of size minp∈P dpλlower; the circle pair of each point p in orientation θp.
The afore mentioned approximation factor then is λlower/λupper.

3. The Lower Bound

Our strategy is as follows. We first show that there is a region Zfree(p) around
each input point p that does not contain any other input point. The size of Zfree(p)
only depends on the optimal label diameter dopt. Let Zlabel(p) be the “Voronoi
cell” of p that we would get if all points on the boundary of Zfree(p) were input
points. We compute the largest label diameter dlower such that two disjoint circular
labels of p completely fit into Zlabel(p). It turns out that dlower = 2/3 · dopt. We do
not know the orientation of Zlabel(p) relative to p, but we know that Zlabel(p) lies
completely in Vor(p). Thus our algorithm must go the other way round: we label
each point optimally within its Voronoi cell, compute the smallest label diameter
over all points and finally shrink all labels to this size. Then we know that each
label is contained in the Voronoi cell of its point, and that the labels have at least
diameter dlower.

Let Copt be a fixed optimal solution of the input point set P . Copt can be specified
by the label size dopt and an angle 0 ≤ αp < 180◦ for each input point. The angle
αp specifies the position of a line through p that contains the centers of the labels of
p (at a distance dopt/2 from p). By convention we measure αp from the horizontal
line (oriented to the right) through p to the line (oriented upwards) through the
label centers. In the following we assume that dopt = 1; the input point set can
always be scaled so that this is true.

Definition 1 Let Cm,r be an open disk with radius r centered at a point m and
let Hpq be the open halfplane that contains p and is bounded by the perpendicular
bisector of p and q. For each p ∈ P , let the point-free zone Zfree(p) = CZ1,

√
3/2 ∪

CZ2,
√

3/2 ∪ Cp,1, where Z1 and Z2 are the centers of the labels L1 and L2 of p in

a fixed optimal solution Copt. The label zone Zlabel(p) is the intersection of all
halfplanes Hpq with q a point on the boundary of Zfree(p).

Note that Zfree(p) and Zlabel(p) are symmetric to the lines that form angles of
αp and αp + 90◦ through p. The size of these areas only depends on dopt, their
orientation only on αp. In Figures 2 and 3 we set αp = 0◦.

Lemma 1 Zfree(p) does not contain any input points except p.

Proof. Refer to Figure 2. Intuitively speaking, it indicates that the boundary
of Zfree(p) is the locus of all potential input points that are as close to p as possible.

First we show that the two disks Ci := CZi,
√

3/2 (i = 1, 2) do not contain any
input point other than p. Let Ti and Bi be the top- and bottommost points on Ci,
respectively. The arc that forms the boundary of Zfree(p) between the points B1

and T1 stems from rotating a potential input point q around the label L1 of p in Copt

such that the labels of q both touch L1. This means that the centers of these three
labels of diameter 1 form an equilateral triangle whose height

√
3/2 corresponds

to the distance of q and Z1. In other words, if there was a point q ∈ P \ {p}
with d(q, Z1) <

√
3/2 = radius(C1), then in Copt a label of q would intersect L1, a

contradiction to Copt being an optimal solution. Due to symmetry the same holds
for C2.
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T1
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Fig. 2. The point-free zone of p.

p

Zfree(p)

Zlabel(p)

qHpq

Fig. 3. The label zone of p.

It remains to show that Cp,1, the third of the three circles that contributes to
Zfree(p), does not contain any input point other than p. Consider the arc that
forms the boundary of Zfree(p) between the points T1 and T2. This arc is caused by
rotating another potential input point q′ around p such that each of the labels of q′

touches a label of p. Observe that the centers of the four labels of q′ and p form a
rhombus of edge length 1 when q′ moves continously from T1 to T2. Since q′ and p
are the midpoints of two opposite edges of the rhombus, their distance during this
movement remains constant. Clearly the distance of the edge midpoints equals the
edge length of the rhombus, i.e. 1, which in turn is the radius of Cp,1. Thus if q′

entered the area Cp,1 \ (C1 ∪ C2), a label of q′ would intersect a label of p in Copt:
a contradiction. 2

Lemma 2 The Voronoi cell of p contains the label zone Zlabel(p) of p.

Proof. The Voronoi cell of p can be be written as Vor(p) =
⋂

v∈P\{p} Hpv. It

contains Zlabel(p) =
⋂

v′∈boundary(Zfree(p)) Hpv′ since for all input points v 6= p there

is a point v′ = boundary(Zfree(p)) ∩ pv such that Hpv contains Hpv′ . 2

Lemma 3 For each input point p there are two disjoint circles of diameter dlower =
2/3 · dopt that touch p and lie completely within Zlabel(p).

Proof. We do not compute the boundary of Zlabel(p) (see Figure 3) explicitely
but parameterize the radius r of the labels of p such that we get the largest possible
labels that do not touch the constraining halfplanes of Zlabel(p).

Our coordinate system is centered at p and uses four units for dopt, see Figure 4.
We show that for any point q on the boundary of Zfree(p) the halfplane Hpq does
not intersect the labels of p whose centers we place at Z1(−r, 0) and Z2(r, 0). Due
to symmetry we may assume that q lies in the first quadrant of our coordinate
system. We may further assume that q lies on the circle C2 since Figure 4 shows
that Hpq does not add any relevant constraint if q lies on the other circle Cp,dopt

that contributes to Zfree(p). Let q′ be the point in the center of the line segment
pq. Then q′ lies on the densely dotted circle C ′

2 with the equation (x−1)2 +y2 = 3.
We parameterize the x-coordinate of q′ using the variable t ∈ [1, 1 +

√
3]. The

vector q′ = (t,
√

3 − (t − 1)2) is normal to the boundary hpq of the halfplane Hpq.
Hence the distance of any point s to hpq is given by the normalized scalar product
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of (s − q′) and q′, namely

d(s, hpq) =
|(s − q′)q′|

‖q′‖ .

For s = Z2(r, 0), the center of one of the labels of p, we have

r = d(Z2, hpq) =
|rt − 2t − 2|
√

2(t + 1)
.

Since the enumerator is always less, and the denominator greater than zero, we get

r = f(t) =
2(t + 1)

t +
√

2(t + 1)
.

The zeros of the derivative f ′ of f are given by the equation

√

2(t + 1) − 1 − (t + 1)
√

2(t + 1)
= 0

which yields a minimum of r = 4/3 at t = 1 for t ∈ [1, 1 +
√

3]. This value of r
corresponds to the largest circle centered at Z2(r, 0) that lies in all halfplanes Hpq

for q ∈ Zfree(p). The diameter of this circle is 2/3 · dopt. The case for Z1(−r, 0) is
of course symmetric. 2

q

p

2

2
√

3

Z2

4

4

1 +
√

3

q′

r
1

hpq

C2

Zfree(p)

C ′
2

label of p
√

3

Fig. 4. Estimating the size of the labels of p.

q

p

Zfree(p)

Vor(p)

q̄

q?

Fig. 5. An example point set

showing that our approximation

factor is tight.

In Figure 5 we show why the approximation factor of our algorithm is tight.
Recall that the point q = (2, 2

√
3) minimizes the size of the largest possible labels

of p = (0, 0) in the analysis above (for t = 1). Consider the point set {p, q, q̄, q?},
where q, q̄ = (2,−2

√
3), and q? = (−2 − 2

√
3, 0) lie on the boundary of Zfree(p).

Given these four points, our algorithm labels p with labels (shaded in Figure 5) of
diameter 8/3 within the Voronoi cell Vor(p) of p, while the labels in the optimal
solution (circles with solid lines) have diameter 4.
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4. The Algorithm

In this section we first show how to label a point optimally within its Voronoi
cell. We do this in time and space linear in m, the number of edges of the cell. We
refer the reader to our interactive online demo mentioned in the introduction. Using
the result of the previous section, we give our factor-2/3 approximation algorithm
for two-circle point labeling.

We introduce some notation. Let G be a convex polygon, possibly unbounded,
m > 1 the number of edges of G and p a point in the interior of G. Let µp be the
function that mirrors each point of the plane at p, and let G′ = G ∩ µp(G) be the
intersection of G and a copy of G point-mirrored at p, see Figure 6. Note that G′

contains all sets M ⊆ G that are point-symmetric to p.

G
G′

p

µp(G)

Fig. 6. The polygons G, µp(G) and G′ = G ∩ µp(G).

The optimal solution of the one-circle labeling problem in G, for short an optimal
1-circle of G, is a maximum-size open circle C1 that touches p and is contained in
G. Similarly, the optimal solution of the two-circle labeling problem in G, for short
an optimal 2-circle of G, is a maximum-size open circle C2 such that C2 touches p
and both C2 and µp(C2) are contained in G.

Our strategy is very simple. We reduce the problem of finding an optimal 2-
circle in G to that of finding an optimal 1-circle in G′. The polygon G′ can be
computed in linear time, 15 and we show how to find an optimal 1-circle in G′ in
linear time with the help of the medial axis. Recall that the medial axis of G is the
set of points in G that are centers of circles that lie in G and touch its boundary
in at least two points. For the computation of the medial axis we assume that the
edges of G are given in cyclic order.

Lemma 4 The centers of all optimal 1-circles of G lie on the medial axis of G.

Proof. Let C1 be an optimal 1-circle of G. If C1 does not touch the boundary
of G in at least two points, then C1 can be slightly turned around p away from the
boundary of G and then stretched by a small amount, contradicting its optimality.
2

Lemma 5 An optimal 1-circle of G can be computed in O(m) time and space.

Proof. Due to Lemma 4 we can restrict the search for centers of optimal
1-circles to the medial axis of G. Since G is a convex polygon, the medial axis
of G can be computed in linear time.1 It consists of O(m) straight line segments
that form a tree whose leaves are the vertices of G. Each (open) line segment s
consists of the centers of all circles that lie in G and touch the boundary of G in the
same two edges e and f . When constructing the medial axis, each segment can be
labeled with these two edges. A candidate for being the center of an optimal 1-circle
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G

e

f

p
s

πf
πe

medial axis of G

Fig. 7. Constructing candidates for centers of optimal 1-circles of G′.

must not only lie on the medial axis but also on the locus of those points that have
equal distance to p and some edge g of G, namely the parabola πg with focus p and
directrix g. Thus the only candidates on s are the intersection points of s and πe

(or πf ), see Figure 7. For each (closed) line segment of the medial axis there are
at most two such intersection points, and they can be computed in constant time.
Among all O(m) intersection points those with maximum distance to p correspond
to optimal 1-circles. 2

Lemma 6 Any optimal 1-circle of G′ is an optimal 2-circle of G.

Proof. G contains G′, and G′ is point-symmetric to p. Hence if a set M is
contained in G′, then M and µp(M) lie in G. Therefore each optimal 1-circle of G′

is also an optimal 2-circle of G′ and a (possibly suboptimal) 2-circle of G. Now let
C2 be an optimal 2-circle of G. According to the definition of optimal 2-circles both
C2 and µp(C2) lie in G. Since the union of these two circles is a point-symmetric
set, it must lie in G′. However, C2 cannot be larger than an optimal 1-circle of G′,
which proves the claim. 2

Lemma 7 An optimal 2-circle of G can be determined in O(m) time and space.

Proof. In order to compute an optimal 2-circle of G, we first compute G′ in
O(m) time, e.g. by Ref. [15] although for our special case a much simpler algorithm
is sufficient. Clearly G′ is convex and has O(m) edges. Thus we can compute an
optimal 1-circle C in G′ in O(m) time according to Lemma 5. Finally Lemma 6
assures that C is also an optimal 2-circle in G. 2

G

G′

p
bα

cα

B

e

π+
e

`α

Fig. 8. Computing the boundary B of
⋂

e
π+

e .

We have another algorithm for labeling a point with optimal 2-circles in a convex
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polygon that does not use the medial axis. It is easier to implement but it is harder
to see its linear complexity, that is why we only sketch it here. We mention it since
it gives a new perspective of the problem. For an edge e of G let π+

e be the part
of the plane that contains p and is bounded by the parabola πe with focus p and
directrix e, see Figure 8. Then the boundary B of the intersection of all π+

e is the
trace of the center of a circle that is rotated around p while touching p and being
of maximum size within G. The points on B that are furthest from p are thus the
centers of optimal 1-circles. Let `α be a line that goes through p and forms an angle
of α with the horizontal. This line intersects B in two points bα and cα. Angles α
that maximize rα = min{|pbα|, |pcα|} correspond to optimal 2-circles of radius rα

whose centers lie on `α.
It is not hard to see that given B an optimal 2-circle can be found in linear time.

One can compute B incrementally using the given cyclic order of the edges e1, . . . , em

around G. Let πi = πei
and Πi = π+

1 ∩ . . . ∩ π+
i and let πj be the last parabola

with an arc Aj on the boundary of Πi. Observe that two parabolas intersect exactly
twice, namely in the centers of the two unique circles that touch p and the directrices
of the parabolas. Is not hard to see that each parabola contributes at most one arc
to Πi. When intersecting Πi with π+

i+1 it is enough to analyze the behavior of the

two arcs Aj and A = πj ∩ π+
i+1. From each of the four cases (a) A ⊂ Aj , (b)

Aj ⊂ A, (c) A∩Aj = ∅, and (d) A∩Aj 6∈ {∅, A,Aj} it is immediately clear whether
or not πj and πi+1 will contribute to Πi+1. This is the key to the linear runtime
for computing B.

After this sketch we state our main theorem.

Theorem 1 A set P of n points in the plane can be labeled with 2n non-inter-
secting circular labels, two per point, of diameter 2/3 times the optimal label size in
O(n log n) time using linear space.

Proof. Our algorithm is as follows. First we compute the Voronoi diagram of
P . This takes O(n log n) time and linear space.3 Then for each input point p we
use the algorithm described in the proof of Lemma 7 to compute the largest pair of
circles that labels p within the Voronoi cell Vor(p) of p. Let dp be the diameter of
these circles. Since the complexity of the Voronoi diagram is linear3 in n, labeling
all points takes O(n) time and space in total. Next we set dalgo = minp∈P dp and
go through all input points once more. We scale the labels of each point p by a
factor of dalgo/dp using p as the scaling center. We output these scaled labels, all of
which now have diameter dalgo. Clearly this algorithm runs in O(n log n) time and
uses linear space.

Its correctness can be seen as follows. Since dalgo/dp ≤ 1, the scaled labels lie
completely within the original labels. Each of these lies in its label zone which in
turn lies in the corresponding Voronoi cell according to Lemma 2. Thus no two of
the scaled labels intersect. It remains to show that dalgo ≥ dlower.

Lemma 1 guarantees that for each input point p there is an orientation (namely
that determined by the centers of the labels of p in Copt) such that the label zone
Zlabel(p) lies completely within Vor(p). We do not know this orientation, but
Lemma 3 asserts that there are two disjoint labels for p, both of diameter dlower,
that lie within Zlabel(p)—and thus within Vor(p). This is true even for a point q
that receives the smallest labels before scaling, i.e. dq = dalgo. On the other hand
we have dq ≥ dlower since dq is the maximum label diameter for a pair of labels for
q that lies completely within Vor(q). 2
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5. Related Labeling Problems

We hoped that the “Voronoi method” could also be applied to other label-size
maximization problems. However, we can only state a few negative results here.
It is the two-circle point-labeling problem that seems to go best with the Voronoi
diagram. Figures 9 to 11 give the counter examples. In each figure the labels of an
optimal labeling have solid outline, a possible outcome of the Voronoi method has
shaded labels, and the edges of the Voronoi diagram are marked by dotted lines.

1 2

6

1 ε

1

Fig. 9. one-circle

labeling

Fig. 10. two-square

labeling

Fig. 11. one-square

labeling

First, consider the one-circle point-labeling problem.8 With the Voronoi method
the points (−1, 0), (0, 0), and (0, 1) can only be labeled with labels of diameter 1,
since the Voronoi cell of the middle point is a strip of that width, see Figure 9. How-
ever, some basic geometry19 shows that the optimal labels for these three points

have diameter 2/(1 −
√

2
√

3 − 3) ≈ 6.29. Thus our method would yield an ap-
proximation factor of at most 1/6.29 which is considerably worse than that of the
currently best approximation algorithm,8 namely 1/3.6.

Second, we investigate two-square point labeling.16 For square labels it is not the
Euclidean (or L2-) metric, but the maximum (or L∞-) metric that helps to bound
the maximum label size.24 Using the Voronoi diagram induced by the maximum
norm, the three points (0, 1), (2, 0), and (6, 3) in Figure 10 can be labeled with
labels of edge length at most 2, while the maximum label size (i.e. edge length) for
three points always equals their L∞-diameter.24 This is 6 in our case, and thus our
method would yield at most a 1/3-approximation, which is less than the currently
best 1/2-approximation.16 Using the Voronoi diagram induced by the Manhattan
(i.e. L1-) metric would result in labels of the same size, while they would be even
slightly smaller in the Euclidean case.

Third, we take a look at one-square point labeling. The currently best known
algorithm17 for this problem has an approximation factor of 1/2. Consider the five
points (0, 0), (1, 1), (−ε,+ε), (−ε,−ε), and (+ε,−ε) for some ε > 0, see Figure 11.
The Voronoi cell of (0, 0) is a rectangle of height

√
2ε whose edges form an angle

of 45◦ with the coordinate axes. While the maximum label size for the five points
is 1 + ε, the largest label that fits into the Voronoi cell of the origin has an edge
length of only ε. This is true for the Voronoi diagram induced by any of the L1-,
L2- and L∞-metrics, the last of which is depicted in Figure 11. Thus for one-square
labeling the Voronoi method does not give any approximation at all.
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