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Abstract

In this paper, a theoretical analysis is presented of the degree
of correctness to which the accuracy figures of a grid Digital
Elevation Model (DEM) have been estimated, measured as
Root Mean Square Error (RMSE) depending on the number

of checkpoints used in the accuracy assessment process.

The latter concept is sometimes referred to as the Reliability
of the DEM accuracy tests.

Two theoretical models have been developed for esti-
mating the reliability of the DEM accuracy figures using
the number of checkpoints and parameters related to the
statistical distribution of residuals (mean, variance, skew-
ness, and standardized kurtosis). A general case was
considered in which residuals might be weakly correlated
(local spatial autocorrelation) with non-zero mean and
non-normal distribution. Thus, we avoided the “strong
assumption” of distribution normality accepted in some
of the previous works and in the majority of the current
standards of positional accuracy control methods.

Sampled data were collected using digital photogrammet-
ric methods applied to large scale stereo imagery (1:5 000).
In this way, seven morphologies were sampled with a 2 m
by 2 m sampling interval, ranging from flat (3 percent
average slope) to the highly rugged terrain of marble quarries
(82 percent average slope).

Two local schemes of interpolation have been employed,
using Multiquadric Radial Basis Functions (MRBF) and Inverse
Distance Weighted (iDw) interpolators, to generate interpo-
lated surfaces from high-resolution grid DEMs. The theoretical
results obtained were experimentally validated using the
Monte Carlo simulation method.

The proposed models provided a good fit for the raw
simulated data for the seven morphologies and the two
schemes of interpolation tested (r* > 0.96 as mean value).
The proposed theoretical models performed very well for
modeling the non-gaussian distribution of the errors at the
checkpoints, a property which is very common in geographi-
cally distributed data.

Introduction

Digital Elevation Models (DEMs) have become an important
tool in many remote sensing applications like SAR simulators,
classification of ground cover types, orthorectification of
satellite and airborne images, and Geographic Information
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Systems (GIS). Consequently, DEMs provide GIS with a vertical
dimension which allows them, for example, to capture 3D
information from an area in a 2D environment. It is precisely
in this field where a very beneficial integration has been
taking place in the last few years between imagery analysis
and GIS. In fact, DEMs, together with orthoimages, are becoming
the main cover of GIS, contributing a rapid and cost effective
methodology for updating spatial information, which allows
for briefer conventional cycles for cartographic updating
(Baltsavias and Hahn, 1999).

However, in spite of the usefulness and relatively high
cost of this type of digital products, they are usually pre-
sented without an associated estimate of their reliability.

In this context, reliability might be defined as the degree
of correctness to which the DEM accuracy figures have been
estimated (Li, 1991). Curiously, while nobody would pur-
chase a television set without an instruction booklet and

a warranty against potential defects, it is still common to
acquire expensive digital geographic data without any kind
of quality documentation. Thus, the responsible DEM user
must be able to answer these three questions:

1. What precisely is the application for the DEM?

2. What type of DEM will best meet these needs?

3. How do I know that I am getting what I ordered (Daniel and
Tennant, 2001)?

This work focuses precisely on the answer to, at least, part
of the last question, because if GIS users are not aware of its
DEM accuracy, perfectly logical GIS analysis techniques can
lead to incorrect results. In other words, the data may not be
fit-for-use in a certain context (Fisher, 1998). For this reason,
measuring the positional error of geo-spatial data is becom-
ing one of the major research issues in the area of quality
assessment of spatial data (Shi and Bedard, 2004)

At present, the great majority of vertical accuracy stan-
dards is based on computing the vertical accuracy of a finite
sample data set (checkpoints) from the differences between
data set coordinate values and coordinate values from an
independent source of higher accuracy for identical check-
points (Maune et al., 2001a). In some cases, the vertical Root
Mean Square Error (RMSE) is converted to vertical accuracy at
an established confidence level, normally 95 percent, assum-
ing a normal distribution of the residuals. However, vertical
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errors in a DEM do not often follow a normal distribution
(Lépez, 1997a; Maune et al., 2001b).

Likewise, it would be very interesting to know the sample
size (number of checkpoints) needed to compute the DEM RMSE
with a certain reliability, because checkpoints should be
roughly three times more accurate than the expected accuracy
to be verified (FGCC, 1984) and so, a large number of check-
points may be costly to produce (Li, 1991).

Therefore, in 1998 the Federal Geographic Data Commit-
tee (FGDC, 1998) published “The National Standards for
Spatial Data Accuracy (NSSDA)” where a statistical and
testing methodology was implemented for estimating the
positional accuracy of points on a map and in the digital
geospatial data produced, revised, or disseminated by or for
the Federal Government. However, the NSSDA are perhaps
not too specific with regard to the number and distribution
of checkpoints sample. For example, it recommends the
distribution of a minimum of 20 checkpoints to reflect the
geographical area of interest and the distribution of error
in the data set. Obviously, since outliers should always be
eliminated, a higher number should be taken. Even in the
NssDA Appendix 3-C, Section 3, it states that, due to the
diversity of user requirements for digital geospatial data and
maps, it is not realistic to include statements that specify
the spatial distribution of checkpoints. Thus, data and/or
map producers must determine checkpoint locations and
number. Some agencies have adapted the NSSDA standards,
which is the case of the U.S. Federal Emergency Manage-
ment Agency, which specifies that a minimum of 20 check-
points will be used in each of three or more land-cover
categories representative of the area being mapped, i.e.,

a minimum of 60 checkpoints.

From this brief introduction, we can deduce that there
are a number of issues needing further investigation for
modeling uncertainties in spatial data and analysis. These
include theoretical studies, method development, and
application issues (Shi et al., 2002). Thus, the main objec-
tives of this work are the following:

1. To develop theoretical models for estimating the degree
of correctness, so-called, Reliability, to which a grid DEmM
accuracy figures, measured as RMSE, have been estimated
depending on the number of checkpoints used in the accuracy
assessment process. Notice that we avoided the “strong
assumption” of normal distribution of errors assumed in some
of the previous works (e.g., Li, 1991) and in the majority of
the current standards of positional accuracy control methods
(e.g., NSSDA).

2. To validate the developed models using Monte Carlo
simulation.

3. To analyze the practical application of the proposed models
when they are applied to a finite sample of checkpoints.

This paper has been structured in the following four main
sections:

1. Theoretical approach: where a detailed theoretical develop-
ment of the two proposed models to reliability calculation is
outlined.

2. Experimental validation: where the data sets and experimen-
tal design used to validate the theoretical models developed
in the last section are described. At the end of this section,
the numerical procedure of Monte Carlo method employed
to simulate observed data is also explained.

3. Results and Discussion: where the results corresponding to
the residuals populations generated are shown and discussed.
Furthermore, it is presented an analysis to study the degree
of agreement of observed and predicted reliabilities for the
two models developed in the first section. A sensibility
analysis is also approached to find out the effect of the
uncertainty of standardized kurtosis estimation over the
calculated reliability.

4. Conclusions: where the main findings of the present work
are briefly expounded.
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Theoretical Approach
Suppose that the difference in height between terrain surface
and interpolated DEM surface is a random variable X. This
being the case, a sample of size n height differences may be
used to estimate the mathematical expectation (mean value)
and standard deviation (dispersion) of the said height
differences on the whole surface (Li, 1988). A general case
was considered in which height differences may be weakly
correlated (local spatial autocorrelation) with non-zero mean
and non-normal distribution. The population mean and
variance of random variable X will be denoted by u and o2,
respectively, where u represents the systematic error or bias
for the interpolated DEM, while o characterizes the on-
systematic random component of that error.

This sample X = {x;, x,, . . . , X,} can be considered
as the residuals calculated at the n check points used for
computing the DEM accuracy. Note that the theoretical
analysis in this study is based on the assumption that the
checkpoints are error free. Reliability, meaning the degree
of correctness to which the DEM accuracy figures have been
estimated, could be obtained as the coefficient of variation
of the resulting sample variance (Li, 1991). In this way,
reliability should be considered as a quantitative and relative
value for measuring the error of the DEM accuracy test. The
differences between the two theoretical models proposed
having a bearing on how the said coefficient of variation is
determined.

Model 1
In Model 1, the general case, reliability would be calculated
according to Equation 1:
Sd(Sd,)
R=-"20 1
Sd. (1)

where R is reliability and Sd(Sd,) the standard deviation of
the standard deviation computed for sample X (residuals at
the n checkpoints). But, which is the statistical distribution
of the sample variance Sd?? First, the mathematical expres-
sion of the sample variance will be drawn as:

2 (x; — X)?
Sd? = - —
¥ n

. where X = ©=2— and (2)
n

X being an unbiased estimator of the population mean
because E(X) = u (operator E denotes the mathematical
expectation). Note that the expected value of Sd,? for a
sample size n is then given by Equation 3. That is to say,
the sample variance, expressed as shown in Equation 2,
is not an unbiased estimator of population variance. This
subject will be further reconsidered.

E(Xi— I-’«]Z
E(Sd?) = E % - &P
(3)
2 2 _
:UH_E(X_“)Z:UZ_LZH 10.2
n n n

Similarly, the expected variance of the sample variance is
given by the following expression:

— 12 _ _
Var(Sd?) = %( . o4>,
n (4)
> x - %)
where p, = =2 - , and
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w4 being the fourth central moment of sample X. The algebra
from which Equation 4 is derived is rather tedious and has
not been included in this paper.

In any case, our objective is to deduce the expression
Var(Sd,). For this, a change of variable is carried out as
follows: Sd, = Wand Sd,> = Y=Y = W?, i.e., we have
obtained a general expression Y = G(w;, w,, . . . , w,) that
can be approximated by a linear function using the Taylor
series method (see Equation 5). The first order of the Taylor
series expansion of G may be considered locally as a good
approximation and simplifies the definition of error propa-
gation because we can write the following equation (e.g.,
Burrough and McDonnell, 1998):

3

aY 9y
2Py Sdy; Sdyj———— (5)

wj
1j=1 ow; dw;

M=

Var (Y) =

i

where p;; is the correlation coefficient between w; and w;.
Applying the latter equation to our case (m = 1) the follow-
ing expression can be deduced:

Y \?
Var (Y) = Sdi(ﬁ) = Sd?4w?=Var|Sd?|
= 4Var[SdX]Sd§. 6)
That is to say,
_ 2 — —
4Var (Sd)Sd? = i( (n—1f - == 0'4>. 7)
n n n

Operating in Equation 7 and supposing that Sd > = o2, we
can write:

Sd?(Sd,] _L< (n—1)°
Sd2  4n 2 4

But the expression u,/o* — 3 is known as the standardized
kurtosis denoted by v,. The standardized kurtosis measures
the relative peak (positive value) or flatness (negative value) of
a given distribution compared to a normal distribution which
presents a vy, value of zero. Substituting vy, and operating in
Equation 8, it yields:

(n — 3)(n — 1))

nZ

(8)

n o

Sd[Sd,]
02529 _ p(op)

100 (n — 1)? _ (=3)n-1)
= 2\5 \/< 2 (v, +3) 2 )

with R(%) being reliability measured as a percentage. Thus,
reliability measures the error, specifically the variation coeffi-
cient of this error, purely due to sampling the continuous
terrain surface with a finite number of checkpoints for comput-
ing the global interpolated DEM surface accuracy (Aguilar et al.,
2006). Equation 9 will be considered as “Model 1.”

As we noticed before, the sample variance shown in
Equation 3 is a biased estimator of population variance.
Thus, if sample variance was written with an unbiased
estimator, it could be expressed as follows:

i (x; — X)?

10

= E(Sd?) = o2 (10)

Operating in the same way as above, we can derive the
following expression for reliability:
n—3 )
n—1/)

('y2+3*
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100

R(%) = Z\T

(11)

Note that if the residual population distribution trend is
normal, i.e., v, = 0, then the last equation can be simplified:

100
V2(n — 1)

Equation 12 reproduces the model developed by Li (1991),
where a normal distribution of the residuals population is
assumed.

R(%) = (12)

Model 2

Because the most widely used global accuracy measure for
evaluating the performance of DEMs is the Root Mean Square
Error (RMSE) (Li, 1988; Wood, 1996), and bearing in mind
the practicality of the proposal methodology for computing
reliability, a model based on the variation coefficient of the
resulting RMSE has been proposed:

Sd(RMSE,)

R = —pmsE,

(13)

where R is reliability and Sd(RMSE,) the standard deviation
of the RMSE computed from sample X (vertical residuals at
the n checkpoints) following the next expression:

(14)

with x; being the vertical residual at the i® checkpoint

and n the sample size. Notice that RMSE, is not referred
to x-coordinates, but it is related to the vertical error or
z-coordinates.

Again, the algebra to solve Equation 13 is rather tedious
and has not been included in this paper because it would
occupy a lot of space. In any case, the following expression
could be obtained as follows:

10002 4wy, 4 u?
R%)=————— |y, + 3+ 2 4 28
(%) 2n(o? + p?) \/yZ o o?

with vy, being the standardized kurtosis and vy, the skewness
parameter obtained from the expression u;/o®, where pj is
the third central moment of sample X. Skewness character-
izes the degree of asymmetry of the residuals distribution
around its mean.

However, the last model may be quite complex to apply
because four residuals distribution parameters need to be
estimated. It can be simplified if the systematic errors are
considered null, i.e., the mathematical expectation of X is
zero (E(X) = u = 0). Now Equation 15 can be rewritten as:

-1 (15)

100

R(%) = ﬁWz + 2.

(16)

The last expression will be considered as “Model 2”.

Experimental Validation of the Proposed Models

Study Sites and Original Datasets

The two study areas are located in Almeria, Southeastern
Spain. The first one is situated in what is known as “Comarca
del Marmol,” specifically in the municipal area of Macael.

It is a zone of marble quarries with a high level of extraction
activity, which has formed a terraced and artificial relief,
with a predominance of steep slopes and even vertical
walls. The second study area is situated in “Comarca del
Campo de Nijar,” bordering on the “Cabo de Gata” Nature
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TABLE 1. GENERAL CHARACTERISTICS OF THE TOPOGRAPHIC SURFACES STUDIED. ALL SURFACES ARE GRID DEMs CompPouNDED BY 10,000 PoINTS
(100 BY 100 POINTS WITH A 2 METER BY 2 METER SPACING. THE STANDARD DEVIATION OF UNITARY VECTORS PERPENDICULAR TO THE
TOPOGRAPHIC SURFACE IS DENOTED BY SDUV

NIJAR MACAEL

Terrain descriptive Slightly Steep-rugged

statistics Flat Rolling1 Rolling2 mountainous Mountainous hillside Highly rugged
Average elevation (m) 166.54 176.94 195.42 178.96 215.16 762.29 922.5
Zmax-Zmin (m) 6.70 17.25 23.08 34.43 45.17 201.32 116.48
Z coefficient of 0.97 2.28 2.20 3.79 3.98 6.52 4.28

variation (%)
Average Slope (%) 3.30 9.27 10.01 19.42 31.18 82.14 65.12
Slope coefficient of 48.02 45.66 69.59 58.62 38.27 30.91 77.01

variation (%)
SDUV (m) 0.03 0.09 0.10 0.19 0.31 0.35 0.64

Reserve. This is an area with a smooth relief sculpted by
natural agents.

For the development of this study topographic surfaces
were selected covering an area of 198 meters by 198 meters
(approximately 3.92 hectares), two situated in Macael and
five in Nijar; the morphological characteristics can be
examined in Table 1. It is interesting to observe the great
variability of the morphologies utilized, both in terms of
their roughness and of their average slope. As a roughness
descriptor, we used the Standard Deviation of Unitary
Vectors (SDUV) perpendicular to the topographic surface
calculated as described by Aguilar et al. (2006).

The DEM of each topographic surface was obtained
automatically by stereo image matching. Later on, a revision
and a manual edition of the grid DEM (areas with poor
digital correlation because the lack of texture, moving or
deleting badly posed points, adding mass points, etc.) were
carried out to improve its adjustment to the real terrain
surface. The photogrammetric flight presented an approxi-
mate scale of 1:5 000 and was taken with a Zeiss RMK TOP
15 metric camera using a wide-angle lens with a focal
length of 153.33 mm. The negatives were digitized with
a Vexcel 5000 photogrammetric scanner with a 20 pm
geometric resolution and a radiometric resolution of 24-bits
(8-bits per RGB channel). In the case of the Nijar study area,
the DEM was constructed using the module Automatic
Terrain Extraction of the digital photogrammetric system
Leica Geosystems SOCET SET® NT 4.3.1. For the study area
of Macael, the DEM was constructed using the modules
ImageStation Automatic Elevations and ImageStation DTM
Collection of the digital photogrammetric system Z/I Imaging
ImageStation® SSK. In both cases, we obtained a final DEM
in grid format with a spacing of 2 m by 2 m, orthometric
elevations, map projection UTM Zone 30 North, and European
Datum 1950.

Experimental Design

The generation of the different residual data sets from the
interpolated grid DEM and from every morphology tested
were obtained by means of two different schedules, called
Experiment 1 and Experiment 2, respectively. In both of
them, residuals populations were generated uniformly
distributed to reflect the geographical area of interest with
a grid spacing of 2 m by 2 m.

Experiment 1

In this first experiment the residuals population for every
morphology was obtained by means of the algorithm shown
in Figure 1. The interpolation schedule employed, six
closest neighbors from adjacent columns, guarantees that the
separation distance between sample points and interpolated
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Original Grid DEM (10000 points spacing 2 by 2 m)
One for every morphology tested (e.g. Rollingl)

] ]
[ Removal the odd columns] [ Removal the even co]umnsJ
] ]

Even columns of the
original grid DEM

Interpolation of the odd columns using Interpolation of the even columns using
MRBF from the six closest neighbors MRBF from the six closest neighbors

! !

[ Interpolated odd data set J

Odd columns of the
original grid DEM

[ Interpolated even data set}

@ Joining of the two interpolated data sets and removal of ?
the points located at the edge of the grid (98 by 98 nodes)

e ==

Comparison with the original grid DEM and
residuals data set assessment (9604 residuals}

Figure 1. Flowchart of the scheme used to obtain the
different residuals data sets in the Experiment 1.

points takes values from 2 m to 2.82 m (see Figure 2).
This decrease in interpolation distance, together with the
introduction of a systematic interpolation schedule based
on mobile square windows, sought to generate residuals
population with a low absolute value of errors and local
spatial autocorrelation (weak autocorrelation) following
Tobler’s Law. Since dispersion value around the mean is
low, it would be very probable to find a high presence of
outliers, defining outliers as errors over three times the size
of standard deviation.

In as much as the method of interpolation, Multiquadric
Radial Basis Function, has been applied due to its suitability
for interpolating from high resolution DEMs, it performs very
well with local support and will produce residuals with a
low absolute value (Aguilar et al., 2005), which is the main
objective of experiment one. The selected value of the
smoothing factor was zero because it usually yields better
results (Aguilar et al., 2005).

Experiment 2

In the second experiment the residuals population was
obtained using the schedule shown in Figure 3. The seed data
set for every morphology, compound by 128 ground points
including their X, Y, and Z coordinates, was extracted from
each original grid DEM by stratified random sampling (four by
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Odd column Odd column

Even interpolated column

Six closest
neighbours

)

Interpolated
point

Figure 2. Scheme of the interpolation used in Experiment
1. Even interpolated columns from odd original grid DEmM
columns.

four sampling quadrants), which guarantees a homogenous
distribution of the seed data over the whole working area.
Based on the initial data sets obtained, a grid DEM with 2 m
by 2 m spacing was generated for every morphology using
the Inverse Distance Weighted (IDW) interpolation method
from the local support of the six closest neighbors. The IDW
is a well-known interpolation method where weighting

is assigned to data using the inverse separation distance

to a power as a weighting function (Aguilar et al., 2005).
To be specific, a weighting power parameter of 2 was used
in our case.

Note that in Experiment 2, the separation distance
between the interpolated points and the set of local support
points will be greater and more variable than in Experiment 1,
and so the interpolation errors will be greater. That is to say,

One for every morphology tested (e.g. Rollingl)

I

Stratified random sampling (4 by 4
cuadrants) over the whole working area

I

Seed data set compound of 128 points
belonging to the original grid DEM

I

Interpolation of a 100 by 100 nodes grid using IDW method from the six closest
neighbors. The interpolated grid DEM and the original grid DEM are spatially
coincident

LOriginal Grid DEM (10000 points spacing 2 by 2 m) J

J

Comparison between the original and the interpolated grid
DEMs, and residuals data set assessment (10000 residuals)

Figure 3. Flowchart of the scheme used to obtain the
different residuals data sets in Experiment 2.

the probability of outliers occurring will also be lower. In this
sense, the interpolation schedule employed in Experiment 2
can be considered less sophisticated and artificial than the one
used in Experiment 1.

Since the interpolated and the original grid DEMs are
spatially coincident and equally spaced, it is easy to com-
pute the height differences between both DEMs at each node
to obtain a set of 10,000 residuals which will be considered
as the residuals population.

For both experiments it is also important to find out
whether the errors at the checkpoints may be spatially
autocorrelated, because the two proposed models have not
taken into account the effect of spatial autocorrelation
between residuals. Thus, we explored this property for
every data set using the grid correlogram, which indicates
how well grid values correlate across the grid. The correlo-
grams were calculated using the methodology implemented
in the software SURFER® 8 (Golden Software, Inc., 2002).
As an example, in Figure 4 we can see how the profile
of the grid correlogram computed for Rolling 2 terrain,
belonging to Experiment 1, shows a positive spatial correla-
tion (coefficient of correlation p > 0) between residuals
located at close points (separation distance < 10 m), but a
weak or non-existent correlation (p = 0) between residuals
located at a distance greater than 10 m. Notice the sharp
hill located at the center of Figure 4 (high p values for low
separation distances) and the wide sill (low p values for
separation distances > 10 m) which surround the said hill.
Therefore, the residuals showed a local spatial autocorrela-
tion. Roughly the same pattern was observed in the rest of
the data sets for both experiments.

Numerical Approximation Using the Monte Carlo Method

The Monte Carlo simulation method has been applied to
validate the proposed models because it is easily imple-
mented and generally applicable for simulating error propa-
gation without using analytical equations (Heuvelink et al.,
1989). The aim of this method is to calculate the reliability
R = Sd(RMSEx)/RMSEx repeatedly, with size n input
samples X that are randomly selected from each original
residual data set.

It must be remarked that the application of model one
assumes the use of the standard deviation as a measure of
uncertainty, meanwhile model two employs a more common
measure as RMSE. In fact, RMSE is likely the most widely
used global accuracy measure for evaluating the performance
of DEMs. Furthermore, let us remember that standard devia-
tion and RMSE present similar value when residuals tend to
an expected value near to zero (E(X) = 0). Only under that
hypothesis it is possible to apply the model one using the

Correlation coefficient

Distance between residuals (m)

Figure 4. Profile of the grid correlogram computed from
the residuals population data of Rolling 2 terrain for
Experiment 1.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

December 2007 1371



RMSE as an uncertainty measurement. Taking into account
this subject and bearing in mind the practicality of the
proposed methodology, the simulated reliability was com-
puted as the coefficient of variation of the RMSE instead of
the standard deviation.

In our case, a stratified random sampling in 4 by 4
quadrants was carried out to guarantee the homogeneous
distribution of sampling points within the scope of the
original grid DEM (Burrough and McDonnell, 1998). The
sample size of residuals, i.e., the number of checkpoints n,
took the following values: 16, 32, 64, 128, 192, 288, 384, 576,
960, and 1,440. If the RMSE is computed for every random
size n sample X, and the process is run M times, a random
sample of size M from the distribution of RMSEXx can be
obtained in the same way as the mean and standard devia-
tion can be estimated from the sample, and so the reliability
corresponding to samples of checkpoints n could be simu-
lated. Because the accuracy of the Monte Carlo method is
inversely related to the square root of the M number of runs,
a reasonably high number of M runs = 1,000 was used in
this work for the robustness of the process.

Results and Discussion

Characteristics of the Residuals Populations Generated

Table 2 shows some statistics of the residuals population for
the seven morphologies studied in the case of Experiment 1.
The values of skewness, in general, may be considered as
close to a normal distribution (an absolute value < 0.5 could
be accepted (Daniel and Tennant, 2001). At the same time,
the mean values are very close to zero, which indicates a low
presence of systematic errors. However, it must be stressed
that the high values of standardized kurtosis obtained (> 0 in
all cases), i.e., the residuals distribution, are leptokurtic for all
morphologies. Leptokurtosis indicates there are more occur-
rences far away from the mean than predicted by a normal
distribution, probably because of the presence of outliers or
gross errors. In other words, the probability distribution
function peaks at the center and it has longer tails.

Table 3 shows the statistics of the residuals population
for every morphology tested in the case of Experiment 2. A
quick analysis of these figures allows us to observe higher
values in the standard deviation (o) than the ones registered
from Experiment 1. That is to say, the residuals or errors are
greater and present more variability. Likewise, these standard
deviations are highly correlated with the roughness of every
morphology, lower for flat terrain and greater for highly
rugged terrain. Meanwhile, the skewness continues to be
similar to the one observed in Experiment 1, the standardized
kurtosis is much lower and, therefore, the residuals popula-
tions show a moderate leptokurtosis. Again the presence of
mean values lower than the standard deviations indicates the
absence of systematic errors.

The outliers can corrupt the true statistical distribution
of the errors. From a statistical point of view, they cannot be
considered as belonging to the same population as the other
observations (Lopez, 1997a). Therefore, outliers should be
removed to normalize, in a certain way, residuals distribu-
tion. Taking into account that outliers are generally defined
as errors over three times the size of standard deviation o,
the “3-sigma” rule (lerror-u| > 30) was applied to the
different data sets to remove outliers and obtain “corrected”
data sets. This technique is generally applied for removing
outliers in the DEM quality assessment of lidar data (Daniel
and Tennant, 2001).

In Tables 4 and 5 are shown the statistics of the residuals
population from Experiments 1 and 2, respectively, when
the 3-sigma rule was applied. According to Torlegard et al.
(1986), and analyzing errors in real DEMs, outliers typically
account for less than 3 percent of the data set, which is fairly
coherent with the residuals removed applying the 3-sigma
rule for our case. Notice that, after 3-sigma rule application,
a remarkable decrease in kurtosis values must be highlighted,
which is a sign indicating a tendency toward normalization
of the residuals distribution. Anyway, it is important to point
out that the residuals data sets continued being non-normal
when they were checked using the Smirnov-Kolmogorov test
(Royston, 1982) with a confidence level of 95 percent. It was
especially true in the data from Experiment 1.

TABLE 2. STATISTICS OF THE RESIDUALS POPULATION FOR EVERY MORPHOLOGY TESTED. RAW DATA FROM
EXPERIMENT 1 (INTERPOLATOR: MULTIQUADRIC RADIAL BASIS FUNCTION)

Standardized
Morphology wu (cm) o (cm) Skewness (vy,) Kurtosis (vy,)
Mountainous 0.02 11.16 0.39 12.18
Rolling 1 0.01 2.72 0.84 13.20
Flat 0.01 2.08 0.64 23.99
Steep rugged hillside 0.48 41.01 0.60 21.55
Highly rugged —0.87 135.02 0.12 31.95
Slightly mountainous 0.12 6.36 1.12 21.12
Rolling 2 —0.08 1.84 —0.37 29.66

TABLE 3. STATISTICS OF THE RESIDUALS POPULATION FOR EVERY MORPHOLOGY TESTED. RAW DATA FROM
EXPERIMENT 2 (INTERPOLATOR: INVERSE DISTANCE WEIGHTED)

Standardized
Morphology u (cm) o (cm) Skewness (vy,) Kurtosis (y,)
Mountainous —2.15 166.84 —0.49 1.67
Rolling 1 1.59 52.08 0.54 2.50
Flat —1.65 16.75 —0.69 3
Steep rugged hillside —68.44 448.56 —0.64 1.81
Highly rugged 99.45 884.57 1.08 4.73
Slightly mountainous —18.57 122.32 —0.49 2.90
Rolling 2 6.24 53.06 —0.44 4.93

1372 December 2007

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



TABLE 4. STATISTICS OF THE RESIDUALS POPULATION FOR EVERY MORPHOLOGY TESTED. “3-SIGMA” RULE CORRECTED DATA
FROM EXPERIMENT 1 (INTERPOLATOR: MULTIQUADRIC RADIAL BASIS FUNCTION)

Standardized Residuals
Morphology w© (cm) o (cm) Skewness (y,) Kurtosis (vy,) removed (%)
Mountainous —0.12 8.20 —0.04 3.07 2.32
Rolling 1 —0.13 1.88 0.41 3.79 2.73
Flat —0.01 1.35 —0.04 4.15 2.16
Steep rugged hillside 0.22 30.34 0.04 3.16 1.90
Highly rugged —1.51 87.57 0.02 6.05 2.25
Slightly mountainous 0.03 4.42 0.10 4.39 2.49
ROlling 2 —0.03 1.11 —0.25 5.11 2.15

TABLE 5. STATISTICS OF THE RESIDUALS POPULATION FOR EVERY MORPHOLOGY TESTED. “3-SIGMA” RULE CORRECTED DATA
FROM EXPERIMENT 2 (INTERPOLATOR: INVERSE DISTANCE WEIGHTED)

Standardized Residuals
Morphology w© (cm) o (cm) Skewness (y,) Kurtosis (vy,) removed (%)
Mountainous 4.22 154.19 —0.14 0.80 1.30
Rolling 1 0.10 45.86 0.22 0.82 1.84
Flat —0.88 14.75 —0.16 1.05 1.72
Steep rugged hillside —51.66 414.75 —0.28 0.53 1.21
Highly rugged 43.72 732.46 0.38 2.45 2.37
Slightly mountainous —13.61 107.76 —0.09 1.58 1.90
ROlling 2 6.64 45.60 0.10 1.31 1.70

Validation of the Proposed Models

To understand how the models predict the observed data
obtained in the Monte Carlo simulation, the regression coef-
ficients (r?) of the different fits are shown in Tables 6 and 7
for Experiments 1 and 2, respectively. In the case of the raw
residuals data sets for Experiment 1, Model 1 presented the
best fit, closely followed by Model 2 (Table 6, raw residuals).
The same occurs with the raw residuals from Experiment 2,
where, once more, Model 1 appears to be slightly better than
Model 2 (Table 7). We must remember that the expression
used for Model 2 is really a simplification of the general
Model 2 given by Equation 15, where the absence of system-
atic errors is supposed. When a great part of the outliers are
removed by means of the 3-sigma rule, the skewness and
standardized kurtosis diminish, and Model 2 becomes as
good as Model 1 with r? values > 0.98 for the two experi-
ments. In Figures 5 and 6 (a and b), we can see the plots of
the observed data versus the predicted data for Model 1 for
the two sets of experimental data, highlighting how the fit
results slightly improve when the 3-sigma rule is applied,
especially in the case of the higher values of standardized
kurtosis originated in Experiment 1.

On the other hand, Li’s model presented low r? values
when applied to the raw data derived from Experiment 1,
although it performed somewhat better in the case of cor-
rected data (Table 6). This evidence confirms its inefficacy
to model non-gaussian residuals population with a high
presence of outliers, or what is the same, of high standard-
ized kurtosis. In fact, when the input data are closer to a
normal distribution, as in Experiment 2 (Table 7), it can be
observed how the results offered by Li’s model improve
notably, even though they are very close to the ones offered
by the models proposed in this article for the 3-sigma
corrected data. Nonetheless, as we can see in Figures 5 and 6
(c and d), the errors registered when using Li’s model are
systematic. Thus, Li’s model underestimated the observed
data in all the morphologies because it is based on the
restrictive hypothesis of residuals normality. The quantitative
differences between Model 1 or Model 2 and Li’s model are
significant both in raw residuals data set and in corrected

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

data set. As could be expected, the results offered by Li’s
model tend to improve when the residuals distribution is
closer to a normal distribution. Shortly, Li’s model shows
notable difficulties to model the reliability of the accuracy
assessment from non-gaussian error distributions.

The three models tested have not taken into account the
effect of spatial autocorrelation between residuals, although
this DEM error property has been reported by several authors
(Wood, 1996; Fisher, 1998; Weng, 2002). If the error at the
checkpoints is in fact not independent, we could state that
the actual sample size is lower than n. Therefore, the use of
a data set of n spatially autocorrelated residuals would lead
to a variability of RMSE which is lower than it should be.
Thus, the models proposed in this paper perform quite well
with weakly correlated errors (local spatial autocorrelation
shown in Figure 4), but they could have difficulties to
handle the problem of heavily correlated errors in space.
Similar problems have been reported by Lépez (1997a) about
certain error detection procedures which obviate the spatial
autocorrelation phenomenon (Lépez, 1997b; Felicisimo,
1994). This problem should be approached in another study
in the future.

Finally, Figure 7 shows a 3D graphical representation of
Model 1. A high leptokurtic residuals population forces us
to use a great number of checkpoints to obtain a low value
theoretical error in the assessment of DEM accuracy. Con-
versely, normal residuals distributions allow us to obtain
low values of reliability with a reasonably low number of
checkpoints. It must be pointed out that surveyed check-
points can be expensive to obtain. So we need to limit the
number of checkpoints because the DEM accuracy assessment
should not cost more than the DEM data acquisition.

That way, in Figure 7 we can observe an interesting
property. The slope of the curve for a constant value of v,
significantly diminishes for a number of around 150 check-
points. That is to say, in terms of efficiency it would be
suitable to measure the DEM error in at least 150 checkpoints
distributed over the whole working area. Any effort focused
on using more than around 150 checkpoints will mean little
improvement in the accuracy figures of the DEM assessment
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TABLE 6.

REGRESSION COEFFICIENTS R%(%) FOR THE FITTING OF THE DIFFERENT MODELS TESTED TO THE SIMULATED

DATA FROM THE MONTE CARLO METHOD. DATA FROM EXPERIMENT 1 (INTERPOLATOR: MULTIQUADRIC RADIAL BAsIS FUNCTION)

Raw residuals population

“3-sigma” rule corrected residuals

Morphology Model 1 Model 2 Li‘s model Model 1 Model 2 Li’s model
Mountainous 99.83 99.46 64.52 99.02 99.73 86.01
Rolling 1 99.75 98.56 64.58 99.67 99.86 83.08
Flat 99.01 96.83 53.92 99.76 99.43 85.89
Steep rugged hillside 97.13 93.61 58.68 99.35 99.86 86.37
Highly rugged 94.17 89.31 52.32 98.66 99.11 75.01
Slightly mountainous 95.39 91.24 60.19 99.17 99.31 82.15
Rolling 2 95.96 91.66 52.34 99.33 99.30 79.77
Average value 97.32 94.38 58.07 99.28 99.51 82.61

TABLE 7.

REGRESSION COEFFICIENTS R%(%) FOR THE FITTING OF THE DIFFERENT MODELS TESTED TO THE SIMULATED DATA

FROM MONTE CARLO METHOD. DATA FROM EXPERIMENT 2 (INTERPOLATOR: INVERSE DISTANCE WEIGHTED)

Raw residuals population

“3-sigma” rule corrected residuals

Morphology Model 1 Model 2 Li's model Model 1 Model 2 Li's model
Mountainous 98.86 97.69 96.70 97.99 96.64 99.78
Rolling 1 99.43 98.56 92.65 99.48 99.08 98.95
Flat 99.80 99.35 89.27 99.68 99.64 97.43
Steep rugged hillside 99.79 99.90 94.07 99.55 99.89 98.82
Highly rugged 98.11 96.35 85.07 98.11 96.78 93.51
Slightly mountainous 97.95 96.27 92.07 99.15 98.34 96.38
Rolling 2 94.39 90.53 88.45 99.36 99.05 96.75
Average value 98.33 96.95 91.18 99.04 98.49 97.37
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Figure 5. Plots of the Reliability observed and predicted by the model one (a and b) and Li’s model

(c and d) for the case of Experiment 1. (a) and (c) are models fitted using the raw residuals population.
(b) and (d) are models fitted afterward “3-sigma” rule residuals correction. Diagonal line would mean

a full agreement between observed and predicted reliability (r> = 100%).
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Figure 7. 3D graphical representation of the model
one.

process. Recently, Ariza et al. (2005) found that the use of the
minimum sample size (20 checkpoints) proposed by the NsSSDA
method leads to a variability of the horizontal accuracy results
in the order of 11 percent, which means an insufficient
confidence level of 89 percent with regard to the theoretical
value of 95 percent. Along these lines, the same authors stated
that the checkpoints sample size must be in the order of 100
to have a 95 percent confidence level in the planimetric or
horizontal accuracy estimated using the standard NSSDA. It
must be stressed that the synthetic residuals population used
in the above mentioned article presented a perfectly normal
distribution, and so, the situation could clearly be worse
working with non-normal distributions.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Standardized Kurtosis Estimation

From a practical point of view, the models developed could
not be used to design tests of DEM accuracy for a fixed level
of reliability because, although the number of necessary
checkpoints could be selected a priori, the standardized
kurtosis of residuals population would be unknown. How-
ever, the theoretical models could be applied to estimate the
reliability obtained in the measure of global DEM accuracy
(RMSE) from a certain sample of n residuals X = {x;, x5, x,,}.
In this case the population standardized kurtosis could be
estimated from the following expression:

* _ 1’1(1’1 + 1) n .
[ <(H —1)(n — 2)(n — 3)Sd? i§1(Xi X) >
(17)
__m-1p
(n — 2)(n — 3)

with y,* being the estimated standardized kurtosis, n the
number of checkpoints, and Sd, the sample standard devia-
tion. Obviously, a good estimation of vy, will result in a good
approach to the theoretical value of the reliability of the DEM
test accuracy computed from sample X. Thus, attempts to
circumvent the problem of kurtosis estimation from size n
samples have concentrated on using the Monte Carlo method
to find out an answer to the following question: how good is
Equation 17 for estimating y,? The procedure employed was
the following. We extracted 1,000 size n samples (n = 16,
32, 64, 128, 192, 288, 384, 576, 960, 1,440, and 2,880) by
means of the stratified random sampling of 4 by 4 quadrants
from every morphology (original grid DEM). For every sample,
v,* was computed according to Equation 17, obtaining its
expected value (mean value) and dispersion (standard
deviation) over the 1,000 runs for each sample size. Thus,
the 95 percent confidence interval upper and lower limits of
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Figure 8. Evolution of the standardized kurtosis
estimation error found versus the sample size used
for its calculation. All data come from Experiment 1:
(a) raw data, and (b) “3-sigma” rule corrected data.
Note: Error = 100 | v, — v2* | /v2, being y,* the
estimated standardized kurtosis and vy, the population
standardized kurtosis or true kurtosis.

v,* were calculated, to obtain a measure of the uncertainty of
the kurtosis estimation.

In Figure 8 we can observe the expected error of the
standardized kurtosis estimation (y,*) with regard to the
population kurtosis (vy,) and for all the morphologies tested,
as a function of the sample size employed for its calculation.
Raw data from experiment one are shown in Figure 8a,
where it must be highlighted that a relatively large sample
size of around 400 checkpoints is needed to reach a mean
estimation error value lower than 20 percent. However, when
the original data set is corrected by means of the 3-sigma
rule, thus removing many outliers, the sample size needed
to try low mean estimation errors diminishes notably

(Figure 8b), reaching values lower than 10 percent even
with less than 100 checkpoints.

Bearing in mind the findings shown in Figure 8, it
seems clear that the problem is not the estimation of the
expected standardized kurtosis, but the uncertainty of the
estimated value. In fact, in Figure 9 the evolution of the
uncertainty (measured as standard deviation) of y,* is
plotted versus the sample size used for its calculation. For
the sake of clarity, only the flat, mountainous, and highly
rugged morphologies are shown. At any rate, it can be
verified how the 3-sigma corrected data set presented very
low values of uncertainty, specifically lower than 1.5, when
sample sizes with more than 128 checkpoints were taken
(Figure 9b). Note that uncertainty is much larger when raw
data are employed (Figure 9a), even if large sample sizes are
utilized. This feature was more pronounced in the case of
highly rugged terrain, where the outliers presented high
extreme values. Thus, we strongly recommend the applica-
tion of the 3-sigma rule for the correction of sample data
and quality control, removing, as well as possible, the
outliers or gross errors. This is necessary, especially in the
case of a residuals distribution with many outliers or high
kurtosis.

Naturally, there are other methods for the detection and
management of outliers, which have not been checked in
this work. For instance, Atkinson et al. (2005) proposed
the use of several estimators, called robust estimators, less
sensitive to extreme observations or outliers than classic
estimators. The approach is based on the weighting of
sample data, i.e., the data that are found further from the
most probable values will have a lower weight in the calcu-
lation of the average value and standard deviation. Atkinson
et al. (2005) proposed the Danish method as the most suitable
if it is applied cutting down the weighting on those data that
exceed 2.5-sigma. It should probably be considered as a good
alternative when the sample size is too small so that any loss
of information will be relevant.

Tables 8 through 11 show a more detailed description
of the effect of the 3-sigma correction on the standardized
kurtosis estimation and subsequent reliability calculation.
Thus, Tables 8 and 9 present the mean value and standard
deviation of the estimated standardized kurtosis, from raw
and corrected data pertaining to Experiments 1 and 2,
respectively, for a sample size of 128 checkpoints. Once
more, we can verify that data from the 3-sigma correction
procedure, both in experiment one and two, perform better
than in the case when raw data are used because they point
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TABLE 8.

EXPECTED VALUE (MEAN VALUE) AND DISPERSION (STANDARD DEVIATION) OF THE ESTIMATED STANDARDIZED KURTOSIS FOR RAw

AND 3-SIGMA RULE CORRECTED DATA ComPUTED FROM 1,000 SAMPLES OF 128 CHECKPOINTS; DATA FROM EXPERIMENT 1 (INTERPOLATOR:
MULTIQUADRIC RADIAL BAsIs FUNCTION)

Raw residuals population

“3-sigma” rule corrected residuals

Mean value Standard Mean value Standard

of estimated deviation Population of estimated deviation Population
Morphology kurtosis y,* of v,* kurtosis v, kurtosis y,* of v,* kurtosis vy,
Flat 16.96 10.81 23.99 4.13 1.28 4.15
Mountainous 9.95 6 12.17 3.19 0.99 3.07
Rolling 1 10.42 5.62 13.20 3.73 1.18 3.79
Steep rugged hillside 12.2 11.13 21.55 3.22 0.95 3.16
Highly rugged 17.66 12.6 31.95 5.79 1.66 6.05
Slightly mountainous 12.52 9.57 21.12 4.42 1.26 4.39
Rolling 2 19.97 11.13 29.66 4.88 1.54 5.10

TABLE 9. EXPECTED VALUE (MEAN VALUE) AND DISPERSION (STANDARD DEVIATION) OF THE ESTIMATED STANDARDIZED KURTOSIS

FOR RAW AND 3-SiGMA RuULE CORRECTED DATA CoMPUTED FROM 1,000 SAMPLES OF 128 CHECKPOINTS; DATA FROM EXPERIMENT 2
(INTERPOLATOR: INVERSE DISTANCE WEIGHTED)

Raw residuals population

“3-sigma” rule corrected residuals

Mean value Standard Mean value Standard

of estimated deviation Population of estimated deviation Population
Morphology kurtosis y,* of v,* kurtosis v, kurtosis y,* of v,* kurtosis vy,
Flat 2.99 1.62 3 1.13 0.51 1.04
Mountainous 1.74 0.8 1.67 0.94 0.47 0.80
Rolling 1 2.58 1.1 2.50 0.95 0.53 0.82
Steep rugged hillside 1.88 1.67 1.81 0.67 0.42 0.53
Highly rugged 4.58 2.2 4.73 2.56 0.69 2.45
Slightly mountainous 2.77 1.15 2.89 1.85 0.62 1.57
Rolling 2 4.50 2.92 4.93 1.52 0.57 1.31

TAaBLE 10. MEAN VALUE AND UPPER AND LOWER LiMITS (95 PERCENT CONFIDENCE INTERVAL) OF THE ESTIMATED RELIABILITY (R*) USING THE PROPOSED

MODEL 1 FOR A SAMPLE SIZE OF 128 CHECKPOINTS AND THE VALUES OF THE ESTIMATED STANDARDIZED KURTOSIS (MEAN AND STANDARD DEVIATION) SHOWN
IN TABLE 8. THE TRUE REALIABILITY (R) HAS BEEN CALCULATED STARTING FROM THE POPULATION STANDARDIZED KURTOSIS. THE TERM “ERROR” MEANS THAT
THE SQUARE ROOT SIGN IN THE MATHEMATICAL EXPRESSION OF MODEL 1 IS NEGATIVE AND SO A REAL SOLUTION DOES NOT EXIST; DATAFROM EXPERIMENT 1

(INTERPOLATOR: MULTIQUADRIC RADIAL BASIS FUNCTION)

Raw residuals population

“3-sigma” rule corrected residuals

Estimated Reliability R*(%)

Estimated Reliability R*(%)

True True
Morphology Mean R*  Upper R*  Lower R*  Reliability R (%) Mean R*  Upper R*  Lower R*  Reliability R (%)
Flat 19.10 27.78 Error 22.36 10.87 12.89 8.36 10.89
Mountainous 15.16 21.35 1.98 16.52 10 11.72 7.92 9.89
Rolling 1 15.46 21.23 5.22 17.10 10.51 12.44 8.12 10.56
Steep rugged hillside 16.53 26.32 Error 21.28 10.03 11.68 8.05 9.97
Highly rugged 19.45 29.20 Error 25.55 12.25 14.58 9.35 12.45
Slightly mountainous 16.71 25.30 Error 21.09 11.12 13.08 8.73 11.10
Rolling 2 20.56 29.02 1.81 24.68 11.51 13.80 8.63 11.70

out more accurate population kurtosis estimation and, at the
same time, produce lower uncertainty.

Note that any uncertainty on the standardized kurtosis
estimation will result in uncertainty in the reliability esti-
mation, although somewhat mitigated, as can be verified
observing Model 1 (Equation 9) or Model 2 (Equation 16).

In fact, Tables 10 and 11 show the mean value (expected
value) and upper and lower limits of a 95 percent confidence
interval for the reliability estimated from the proposed model
one using a sample size of 128 checkpoints. The variability
of estimated reliability is very pronounced, working with
samples coming from clear leptokurtic data (Table 10, raw

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

residuals from experiment one). Thus, we can obtain esti-
mated kurtosis values that are very far removed from the
actual reliability in some cases. However, confidence intervals
tend to be narrower and closer to true reliability when model
one is applied to 3-sigma corrected data (Tables 10 and 11) or
the original leptokurtic scenario is less pronounced (Table 11,
raw data from experiment two).

Finally, it can be interesting to compare the results
offered by model one with the reliability values proposed
by other authors. Ley (1986), based on experience, recom-
mended the use of a sample size of 150 checkpoints in order
to guarantee a reliability of around 10 percent. Li (1991)
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TaBLE 11.

MEAN VALUE AND UPPER AND LOWER LIMITS (95 PERCENT CONFIDENCE INTERVAL) OF THE ESTIMATED RELIABILITY (R*) USING THE PROPOSED

MODEL 1 FOR A SAMPLE SIiZE OF 128 CHECKPOINTS AND THE VALUES OF THE ESTIMATED STANDARDIZED KURTOSIS (MEAN AND STANDARD DEVIATION) SHOWN
IN TABLE 9. THE TRUE REALIABILITY (R) HAS BEEN CALCULATED STARTING FROM THE POPULATION STANDARDIZED KURTOSIS; DATA FROM EXPERIMENT 2
(INTERPOLATOR: INVERSE DISTANCE WEIGHTED)

Raw residuals population

“3-sigma” rule corrected residuals

Estimated Reliability R*(%)

Estimated Reliability R*(%)

True True
Morphology Mean R*  Upper R*  Lower R*  Reliability R (%) Mean R*  Upper R*  Lower R*  Reliability R (%)
Flat 9.81 12.54 5.93 9.82 7.77 8.92 6.42 7.67
Mountainous 8.49 10.11 6.48 8.42 7.53 8.63 6.25 7.36
Rolling 1 9.40 11.39 6.84 9.32 7.55 8.77 6.08 7.38
Steep rugged hillside 8.65 11.74 3.45 8.58 7.18 8.21 5.98 7
Highly rugged 11.26 14.48 6.62 11.39 9.37 10.67 7.87 9.26
Slightly mountainous 9.59 11.63 6.97 9.72 8.62 9.88 7.13 8.31
Rolling 2 11.19 15.34 3.90 11.55 8.24 9.45 6.81 8

developed a more thorough theoretical analysis obtaining
previously discussed Equation 12. Applying the said equa-
tion to a sample size of 128 checkpoints, a reliability value
of 6.3 percent is obtained. These values are similar to the
estimation performed by the proposed model one when

the residuals populations presented low kurtosis, and were,
therefore, closer to a normal distribution (Tables 10 and 11,
corrected data).

Conclusions

The results obtained in this work allow us to conclude that
the two theoretical models developed for estimating the
reliability of the DEM accuracy figures provided a good fit for
the simulated data offered by the Monte Carlo method. In fact,
the two models performed well for the seven morphologies
tested when raw data observed were fitted, both in Experi-
ment 1 (r* = 95.85% as mean value) and in Experiment 2

(r* = 97.64% as mean value).

Bearing in mind the variability of the morphologies
tested, from flat terrain to highly rugged terrain of marble
quarries, and the two different methods employed to generate
the residuals data populations, the results can be considered
as highly applicable in the practice of DEM production. Thus,
we must point out that the residuals data sets were not
subordinated to the “strong assumption” of distribution
normality commonly accepted in the majority of standards
for spatial data accuracy. Nowadays, it is known that the
non-gaussian distribution of errors at the checkpoints is very
common in geographically distributed data.

The removal of outliers from simulated data sets applying
the 3-sigma rule increased the regression coefficients r* to a
value of over 0.98 for all the cases, i.e., not significantly better
than when raw data were modeled. The key was, without
doubt, the introduction of standardized kurtosis in the model,
which rightly described the leptokurtosis scenario produced
by the presence of anomalous values in the residuals data set.

Thus, the standardized kurtosis from a finite sample
of checkpoints, estimated using the expression shown
in Equation 17, could be considered as a good indicator
of the sample quality or goodness. Therefore, it should
be included in the calculation of the reliability of the
accuracy test, as it is done precisely by the two models
developed.

Finally, because of the great uncertainty observed in
standardized kurtosis estimation working with high lep-
tokurtic residuals distributions and low sample sizes, the
application of the 3-sigma rule is strongly recommended for
the removal of outliers only within a definite land-cover
category. For example, let us suppose that land-cover such
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as bare earth terrain and fully forest terrain are grouped in
the quality control of a lidar DEM. Because lidar pulses
often do not penetrate the vegetation but map the top
surfaces, it would be very important to recognize that
checkpoints from forest terrain will yield larger elevation
errors than those situated on bare terrain. So, it would

be a big error to remove as outliers all checkpoints located
at forest terrain because we are throwing out the informa-
tion necessary to identify that we have a problem in such
vegetation category, i.e., the DEM is not representing the
bare terrain as it should. So we can conclude that an
adequate and careful removal of outliers within a definite
land-cover category will lead to narrower confidence
intervals for the estimation of reliability.
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