
Tfold continues to obtain homogeneous results
whatever type of considered RNA, particularly when
considering sequences of average homology.

An important point to consider here is that Tfold,
unlike the other software, can search for all pairings,
including pseudoknots and pairings with a low degree of
conservation. Therefore, in order to have a better measure
of the ability of Tfold to predict the secondary structure of
a given RNA sequence, we calculated new MCC values
for each software (‘adjusted MCC’) considering all
pairings of the original known structure. Therefore, the
same reference structure is used for all software.

Figure 9 gives the adjusted correlations obtained by the
different software and RNA.

The adjustment concerns mostly RNAse P. Thus, for
this RNA, Tfold now obtains the best results for the
two sets of sequences.

Results obtained by Tfold are very good. Tfold gives the
best average and the best minimum MCC in case of
sequences of average identity, as shown in Table 2.
Pfold gives higher average and minimum MCC on

sequences of average identity before adjustment, but
these results concern only tRNA and RNAse P, when
Tfold gives results for all considered RNAs, as shown in
Figure 8. Tfold results are also very robust: they are
homogeneous whatever the considered RNA.

CONCLUSION

Determining non-coding RNA structures is a very impor-
tant research problem, and biologists need help from
computational tools to perform this task. In this article,
we presented an efficient algorithm and its associated tool
called Tfold for predicting non-coding RNA secondary
structures. It is a complete and interactive system, where
users can carry out Tfold and its components in different
ways, change different parameters values, set some known
stems which are taken into account by the system, choose
to get several possible structures or only one, search for
pseudoknots or not, etc. The software can be used via the
web site http://tfold.ibisc.univ-evry.fr/TFold/.

Figure 9. Adjusted MCC results obtained by Tfold and by software tested in (50) on sets of sequences with high identity (A) and on sets of
sequences with average identity (B).

Figure 8. Correlation (MCC) results obtained by Tfold and by software tested in (50) on sets of sequences with high identity (A) and on sets of
sequences with average identity (B).
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The principal characteristics of Tfold are:

. It searches for most stable to less stable stems, using
criteria of length, stability, conservation and covaria-
tion; this approach models well the process for RNA
folding.

. It has a complexity of O(n2), when other existing
software have complexities at least of O(n3).

. It searches for pseudoknots with the same complexity
(O(n2)). Besides, the quality of its results still remain
good even when pseudoknots are searched for, which
is not the case of the (few) other programs that also
offer this possibility [as stated in (50)].

. It searches for stems, while almost existing algorithms
search for pairings.

. It offers the possibility to search for alternative
structures.

. It can take into account stems already known (set
by the user); these stems are considered as anchoring
points, thus improving the prediction.

. It allows the automatic selection from a given align-
ment of a subset of homologous sequences to use, in
order to avoid bad prediction results because of bad
alignment quality and/or non-adequate sequences.

All these characteristics make Tfold competitive in
terms of result quality and complexity (in time). Tfold
was tested on several RNA (tRNA, 5S RNA, U1 RNA,
srp RNA, tmRNA, RNAse P, 16S RNA and 23S RNA),
with lengths varying from 76 to 2904 nt. The predictions
have an average sensitivity �80% and an average PPV
�90%, which means that Tfold finds 8 pairings among
10 and that when a pairing is predicted, it has 9 chances
on 10 to be a good one.
Tfold was compared with several existing tools

for RNA secondary structure prediction: Mfold,
RNAalifold, Tfold, ILM, caRNAc, LocARNA,
pknotsRG, vsfold, Foldalign and Dynalign, using differ-
ent RNA and different sets of homologous sequences. An
important characteristic and quality of Tfold comparing
to these software is that it is robust in terms of result
quality and time complexity. The results are globally
homogeneous for any kind of considered RNA

sequences: small or long sequences, conserved or very
variable sequences, structures with or without pseudo-
knots, etc. Besides, when the sequences are not highly
conserved, Tfold is the only software which obtains a cor-
relation always greater than 0.80 for any RNA.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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17. Tahi,F., Régnier,M. and Gouy,M. (2002) Automatic RNA
secondary structure prediction with a comparative approach.
Comput. Chem., 26, 521–530.
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