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1 IntroductionAn exciting trend in algorithmic research has been to show how one can e�ciently maintainvarious properties of a collection of geometric objects while updating that structure in adynamic fashion (e.g., see the survey on dynamic algorithms in computational geometrygiven by Chiang and Tamassia [6]). The main objective in this research is to design space-e�cient data structures that can, for a particular collection of geometric objects, quicklyprocess each operation to be performed, be it an insertion or deletion of a geometric objectinto the collection, or a query requesting combinatoric or geometric information about thecollection. Examples of such problems include dynamic convex hull maintenance, dynamicpoint location, and dynamic range searching.Let L be a set of line segments in the plane, and let S be the subdivision of the planede�ned by IR2nL. Suppose further that S is a connected planar subdivision, i.e., whenjoined at overlapping endpoints, the segments of L form a connected planar graph, whichwould occur, for example, if S were a Voronoi diagram or Delaunay triangulation (e.g.,see [8, 21, 22]). Note that S has at least one unbounded region, and, without loss of generalitywe can assume that there is just one such external region, for otherwise we can \clip" allthe unbounded regions by a large-enough bounding box. Moreover, by viewing each linesegment in L as actually being two segments|a left segment and a right segment|then wecan view each face of S as a simple polygon. Indeed, we can view S as being the union ofa set of simple polygons. We assume a standard representation for the subdivision S, suchas doubly-connected edge lists [22], with this double-sided view. This representation allowsus to identify, for any vertex v, the segment incident upon v, it allows us to identify for any(double) segment e, the face(s) on the two sides of e, and it allows us to identify, for anyface f , a counterclockwise listing of the vertices and segments that form f 's boundary.There are several useful queries that one may wish to perform on S, including the fol-lowing:� point-location query: given a point p in the plane, return the region in S containing p(or an O(1) representation of the region containing p),� ray-shooting query: given a ray ~r, determine the �rst segment in L intersected by ~r,� shortest-path query: given two points p and q belonging to the same region in S, �ndthe shortest polygonal chain joining p and q that does not cross any segment of L.In addition to being useful in computer graphics applications (e.g., see [23]), ray-shootingqueries are in some sense generalizations of point-location queries, for point locations caneasily be implemented using ray-shooting queries.The speci�c dynamic computational geometry problem we address in this paper is tomaintain a connected planar subdivision S subject to insertion and deletion of vertices andedges, and to ray shooting and shortest path queries. From now on, we denote with n thecurrent size of S. 1



1.1 Previous workIn the static setting, there are several optimal techniques for e�ciently performing shortest-path and ray-shooting queries [1, 3, 4, 11, 12, 19], even in parallel [10, 15]. In particular, thedata structures of Chazelle and Guibas [3] and of Guibas and Hershberger [11, 14] supportrespectively ray-shooting and shortest path queries in simple polygons in O(logn) time usingO(n) space. More recently, Chazelle et al. [2] give an elegant scheme for building a static rayshooting data structure that uses O(n) space and answers ray shooting queries in O(log2 n)time. Their method is based upon a decomposition of a simple polygon into \geodesictriangles" so as to allow a simple \walk-through" strategy for answering ray-shooting queries.They also show how to apply some more-sophisticated data structuring techniques to achievean O(logn) query time using only a constant factor more space. Hershberger and Suri [16]further show how to achieve an O(logn) query time using nothing more than this walk-through strategy in an O(n)-sized triangulation of the interior P , although they may possiblyintroduce triangulation vertices (called Steiner points) that are not vertices of P (and thisis necessary in some cases).In the dynamic setting, the best result to date for connected subdivisions is the datastructure of Chiang, Preparata, and Tamassia [5], which uses O(n logn) space and supportsray-shooting queries, shortest path queries, and insertion and deletion of vertices and edgesin O(log3 n) time (amortized for vertex updates). We also mention that the hidden-surfaceremoval algorithms by Reif and Sen [23] is based on a polylog-time dynamic ray-shootingtechnique for monotone subdivisions.1.2 Our resultsIn this paper we present a dynamic data structure for connected subdivisions that supportsray-shooting and shortest-path queries. The repertory of update operations includes insertionand deletion of vertices and edges. This repertory is complete for connected subdivisions,in that any connected planar subdivision S can be constructed \from scratch" using onlythese operations (with each intermediate subdivision being a connected planar subdivision).The space requirement for our structure is O(n), and the worst-case running time for alloperations (queries and updates) is O(log2 n). Our data structure outperforms the previousbest data structure [5] for this problem by a logn factor in all the complexity measures (space,query times, and update times). It is also conceptually simple, as it is based on dynamicallymaintaining a \balanced" geodesic triangulation of each region in the subdivision so as toanswer ray-shooting queries by a simple walk-through strategy.2 Geodesic TriangulationsA geodesic path (or shortest path) between two points p and q inside a simple polygon P is theshortest path joining p and q that does not go outside P . We denote such a path as �(p; q).Given three vertices u, v, and w of a simple polygon P , which occur in counterclockwise2



order around P , the geodesic triangle ~4uvw they determine is the union of the paths �(u; v),�(v; w), and �(w; u). (See Figure 1.) Let � be such a geodesic triangle ~4uvw. In general, �will consist of a simple polygon made up of three concave chains and three polygonal chainsemanating away from the three vertices where the concave chains are joined (see Figure 1).We refer to the inner polygonal region as the deltoid region of � , due to its resemblance tothe well-known quartic curve [17], and we refer to the three chains emanating out from thedeltoid region as tails. (These de�nitions di�er somewhat from those of Chazelle et al. [2],for their \geodesic triangle" is what we are calling a \deltoid region," and our \geodesictriangle" is something they refer to as a \kite.") Note that a geodesic triangle may actuallybe just a path (e.g., if �(w; u) = �(u; v) [ �(v; w)), in which case it would have an emptydeltoid region and one empty tail. Let P [u; v] denote the counterclockwise-oriented subchainof P from a vertex u to a vertex v. Note that, by the Jordan curve theorem, we also havethe following (see Figure 1):Observation 2.1: Let �u, �v, and �w, respectively denote the tails of geodesic triangle~4uvw incident upon u, v, and w (which occur counterclockwise around polygon P ). Thereare no vertices of P [v; w] in �u, no vertices of P [w; u] in �v, and no vertices of P [u; v] in �w.A geodesic triangulation of a simple polygon P is a decomposition of P 's interior intogeodesic triangles whose boundaries do not cross. (See Figure 2.a.) Two geodesic trian-gles may have a non-empty intersection, however, if portions of their respective boundariesoverlap.A geodesic triangulation is combinatorially and topologically like a triangulation of aconvex polygon. Hence, it immediately induces a degree-3 tree T , where each node in Tcorresponds to a geodesic triangle and we join the node corresponding to ~4uvw with thenode corresponding to ~4xyz if they share two of their vertices (e.g., if x = v and z = w).(See Figure 2.b.) The nodes of T corresponding to the geodesic triangles whose boundariesare intersected by some ray in P will always form a path in T . We say that a geodesictriangulation is balanced if the diameter of T is O(log jT j). As observed by Chazelle etal. [2], one can e�ciently perform a ray-shooting query for a ray ~r by a simple \walk-through" strategy, where one �rst locates the geodesic triangle whose interior contains thestarting point for ~r and one then iteratively traverses geodesic triangles along the direction~r until one hits the boundary of P . The geodesic triangles traversed correspond to nodesthat form a subset of nodes in a path of T ; hence, this strategy crosses at most O(log jT j)geodesic triangles in a balanced geodesic triangulation.Our approach is to maintain a geodesic triangulation of polygon P so that its dual treeT is a balanced binary tree|in particular, a red-black tree [7, 13, 20, 25]. Sleator, Tarjan,and Thurston [24] observe that, given a triangulation of a convex polygon P , then any twoadjacent triangles 4uvw and 4wzu in this triangulation can be replaced by the triangles4vwz and 4zuv, and such a \diagonal swap" corresponds to a rotation in the tree dual tothis triangulation. We extend this result to geodesic triangulations, and observe likewise thata rotation in T will correspond to swapping of diagonals determined by two adjacent geodesictriangles, i.e., it corresponds to replacing adjacent geodesic triangles ~4uvw and ~4wzu by3
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Figure 1: Geodesic triangle ~4uvw. The deltoid region is shaded.the geodesic triangles ~4vwz and ~4zuv. We show that vertex insertion and deletion can beimplemented by inserting and deleting edges and vertices in T , and that edge insertions anddeletions can be performed using operations on T that are analogous to a sequence of splitand splice operations. If we maintain geodesic paths in auxiliary structures, then we canperform each rotation and insertion in T in O(logn) time (using splits and splices on thegeodesic paths involved in the rotation). We therefore achieve a running time for queriesand updates that is O(log2 n) in the worst case.3 Red-Black TreesSince our structure is built using the red-black tree data structure as a schematic, let usbegin by reviewing this structure and showing how simple list updates can be performedusing it. We use the formulation of Tarjan [25]. For any node v in a rooted tree T , let p(v)denote the parent of v in T . Likewise, for any tree T , let r(T ) denote the root node of T . Ared-black tree is a rooted binary search tree T whose nodes are assigned integer ranks thatobey the following constraints: 4



(a)

(b)Figure 2: (a) Geodesic triangulation of a polygon. (b) Dual tree associated with the geodesictriangulation, where the white-�lled nodes denote geodesic triangles with an empty deltoidregion.1. If v has a nil child pointer, then rank(v) = 1 and v's nil child pointer is viewed aspointing to a node with rank 0. 5
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yFigure 3: Illustrating left and right rotations.2. If v is a node with a parent, then rank(v) � rank(p(v)) � rank(v) + 1.3. If v is a node with a grandparent, then rank(v) < rank(p(p(v))).A node v is called black if rank(p(v)) = rank(v) + 1 or v is the root; v is red otherwise(i.e., if rank(p(v)) = rank(v)). Let n be the number of nodes of T . It is easy to seethat rank(v) is proportional to the logarithm of the number of descendents of v, so thatrank(r(T )) = O(logn).3.1 Tree updatesGiven a node v in T , we recall that in a split(v) operation one divides binary tree T intobinary trees T1, and T2, where T1 contains the nodes of T with in-order rank smaller thanv, and T2 contains the nodes with larger in-order rank (we don't actually maintain in-orderlabels, however; we just use this ordering notion to describe the relative positions of nodes inred-black trees). A splice(T1; v; T2) operation is the inverse of a split operation. Tarjan [25]shows that red-black trees support the split and splice operations in O(rot(n) log n) time,where rot(n) denotes the time complexity of performing a rotation in T . Recall the de�nitionof a left rotation at a node x in T , where we let A denote the subtree rooted at x's rightchild, we let y denote x's right child, we let B and C respectively denote the subtrees rootedat y's left and right child, and we transform T so that x has A and B as subtrees rootedat its left and right child, with x now being y's left child (and x's old parent now being y'sparent) so as to have C as the subtree rooted at y's right child. A right rotation at a nodey is de�ned symmetrically (we assume that binary trees are always oriented, so that thenotions of \left child" and \right child" are well de�ned). (See Figure 3.) Tarjan's methodsare based upon using left and right rotations and various pointer manipulations to updatered-black trees subject to split and splice operations. Note that in the standard red-blacktree setting rot(n) is O(1), but this will not be the case in our application, where auxiliarydata structures need to be updated after each rotation.In our use of red-black trees, we must assume that each internal node has degree 3; thus,let us assume that the root of a red-black tree T actually has a parent, which is a degree-one \dummy node." In addition, we desire that our tree-modi�cation operations be basedstrictly on the use of tree rotations, and not use the more general pointer changing as is usedin the standard implementations [7, 13, 20, 25]. Fortunately, such implementations are easyto come by, as we show next. 6



3.2 Non-destructive tree updatesIn this subsection we describe how to perform all red-black tree update operations usingrotations only. We begin with the splice operation. Tarjan's method [25] for performinga splice of trees T1 and T2 depends upon the relative ranks of T1 and T2. If they are thesame rank, then one simply creates a new node z, setting r(T1) and r(T2) as its left andright children, respectively. Otherwise (without loss of generality assume that rank(r(T1)) >rank(r(T2))), one searches down the rightmost path in T1 from r(T1) to �nd a node v whoserank equals rank(r(T2)). Then one creates a new node z replacing v in T1, setting z's leftchild to v and z's right child to r(T2). One then sets rank(z) = rank(v)+1 and proceeds backup T1 to perform any necessary rank increases and rotations needed to keep the tree balanced.The total time required is O(rot(n) + jrank(r(T1))� rank(r(T2))j) = O(rot(n) + log n), andit results in a tree of rank at most maxfrank(r(T1)); rank(r(T2))g+ 1.In our implementation we assume the node z is already created and that T1 and T2are initially the children of z. If rank(T1) = rank(T2), then we are done before we start.Otherwise (again suppose rank(T1) > rank(T2)), we perform a sequence of right rotates atthe parent of r(T2) until we reach a point where r(T1) and its sibling have the same rank.We then complete the procedure as in Tarjan's implementation [25]. Clearly, the total timeneeded is O(rot(n)(jrank(T1)� rank(T2)j+ 1)) = O(rot(n) log n).Likewise, let us describe a non-destructive version of a split of tree T at a node v 2 T ,which returns a tree whose left subtree is a red-black tree for the elements left of v in T , andwhose right subtree is rooted at a node s, where s's left child is v and s's right subtree is ared-black tree for the elements right of v in T (see Figure 4). Recall that a left (resp., right)fringe node for a leaf-to-root path � is a node that is a left (resp., right) child of a node on� but is itself not on �. We perform a nondestructive split on T by performing a series ofrotations to move v up to its �nal position in T . Any time a pair of nodes on the left fringe(resp., right fringe) of the path from the root of T to v become siblings during this series ofrotations, we perform a non-destructive splice of their respective subtrees (see Figure 4.b),as described above. This allows us to replace each splice in Tarjan's implementation [25] ofsplit with a non-destructive splice.The analysis for our implementation of this operation follows by a simple adaptation ofTarjan's analysis. By the properties of rank in a red-black tree, the sum of the running timesfor performing the splices of subtrees to the left (resp., right) of v telescope so as to sum toO(rot(n) logn). Thus, the total time for performing a non-destructive split is O(rot(n) log n).Finally, we must contend with the fact that the root of our red-black tree implementationshas a \dummy node" parent and the leaf nodes represent objects that belong to a circularorder (not a strict linear order). For any leaf node v, we de�ne an operation evert(v) ona red-black tree T that creates v as the new dummy node parent of r(T ). In particular,evert(v) is implemented as follows (see Figure 5):1. Perform a split at v, letting T1 (resp., T2) be the red-black tree storing the leaves of Twith in-order rank smaller (resp., larger) than the in-order rank of v in T .7
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2. Let z be the current dummy node parent of r = r(T ), and let s denote the parent ofv (so s is the right child of r). Reorient T so that T now has v as its dummy noderoot-parent, with s = r(T ) being the child of v, so that s has r(T2) as its left child andr as its right child, with r having z as its left child and r(T1) as its right child.3. Perform a splice of z and T1, resulting in a red-black tree, T 01 rooted at r.4. Perform a splice of T2 and T 01.This clearly can be implemented in O(rot(n) logn) time.We are now ready to describe our data structure.4 The Ray-Shooting Data StructureLet S be a connected subdivision, represented using some dynamically-updatable representa-tion of an embedded planar graph. This can be done, for example, by a simple modi�cationof the doubly-connected edge lists structure [22], where we store the edges of each face f ina red-black tree B(f) ordered around f . This representation allows us to split a face f inO(logn) time or, alternatively, to splice two faces f1 and f2 along a removed common edgein O(logn) time. In this section we describe our data structure for performing ray shootingqueries in S.4.1 The primary structureAs mentioned in the introduction, the main component of our data structure for S is ageodesic triangulation of each region of S (see Fig. 2.a). With each region P of S, we alsostore the dual tree T of the geodesic triangulation (see Fig. 2.b). Each internal node � inT corresponds to a geodesic triangle and we join the node corresponding to ~4uvw with thenode corresponding to ~4xyz if they share two of their vertices (e.g., if x = v and z = w). Ateach such � we store pointers to the vertices u, v, and w of �'s associated geodesic triangle.Each leaf corresponds to an edge of P and is joined to the (parent) geodesic triangle that hasthis edge on its boundary. In particular, if one of the edges of a geodesic triangle � is also anedge of P , then we say that � is a border triangle, and, for each such border triangle � , weadd an adjacency in T from the node associated with � to a (leaf) node associated with theedge of P on � . Thus, the counterclockwise orientation of the edges around P determinesthe left-to-right (in-order) orientation of the leaves of T . In addition, we distinguish someborder triangle � in P as the root triangle, so as to root T at the node associated with �. Weassociate with this \dummy parent" node a pointer to the record in the doubly-connectededge list structure repsenting P in S. The main idea of our primary structure, then, is tomaintain this rooted tree T as a red-black tree [7, 13, 20, 25], ignoring the (dummy) leafnode associated with �. 9



4.2 The secondary point location structureAs a secondary data structure we maintain a dynamic point location data structure on thedeltoid regions determined by the geodesic triangulations of all the faces in S. In particular,we use the structure of Goodrich and Tamassia [9], which uses O(n) space, supports pointlocation queries in O(log2 n) time, edge insertion and deletion in O(logn) time, and vertexinsertion and deletion in O(logn) time as well. The only caveat to using this structure isthat it requires each face in the subdivision to be monotone (say, with respect to the x-axis).That is, it requires the underlying subdivision to be monotone. Of course, a deltoid regionneed not be monotone. Nevertheless, we haveLemma 4.1: The geodesic triangulation of a connected subdivision can be re�ned to amonotone subdivision by inserting at most one edge in each deltoid region.Proof: The deltoid region consists of three concave chains. If two of these chains werenot monotone, then (since these two chains must be incident on the same vertex) the thirdchain could not be concave and still de�ne a closed region with the other two chains. Sincethis third chain is concave, it can be divided into two monotone chains by splitting at somevertex v. Therefore, by connecting v to one of the other two chains we decompose thisdeltoid region into two monotone polygons. Doing this for each deltoid region, then, re�nesS into a monotone subdivision S 0. 2Thus, our secondary structure consists of the dynamic point location of Goodrich andTamassia [9] built upon the union of the deltoid regions in all the geodesic triangles in S,together with at most one edge per deltoid region so as to make each face in the resultingsubdivision S 0 monotone with respect to the x-axis.4.3 The tertiary deltoid structuresThe �nal component of our data structure is a tertiary structure built for the deltoid regions.In particular, for each deltoid region �, we maintain each of the three concave chains for � ina balanced tree structure (e.g., a red-black tree [7, 13, 20, 25]). Each internal node in sucha tree corresponds to a subchain of a concave chain and stores the length of the associatedsubchain. In fact, let us assume for the remainder of this paper that an augmented balancedbinary tree, called chain tree, will be used to represent any polygonal chain, where the leavesare associated with the edges, and the internal nodes with the vertices of the chain. Eachnode also corresponds to a subchain and stores its length. It should be clear that thisinformation can be updated in O(1) time per rotation, so that splitting or splicing two chaintrees takes logarithmic time. With this representation, it is possible to �nd the two tangentsfrom a point to a convex chain and the four common tangents between two convex chains inlogarithmic time [22].We store a double-link between the root of each tertiary tree t and the node � in Tassociated with the geodesic triangle with deltoid region � that has the edges of t as oneof its concave chains. In addition, for any edge e stored in a chain tree t representing a10



chain on deltoid region �, if e is not an edge of S (i.e., it was added to form the geodesictriangulation), then we store a pointer from e's record in t to e's record in the tertiary chaintree representing the deltoid region on the other side of e (i.e., the side not in the interior of�). Our entire data structure, D, then, consists of the primary geodesic triangulation struc-tures, the secondary point location structure, and the tertiary deltoid structures.Lemma 4.2: The data structure D requires O(n) space.Proof: The primary structure requires only O(n) space, since it stores O(1) amount ofinformation for each geodesic triangle, and a geodesic triangulation is topologically equivalentto a triangulation of a convex polygon. The secondary structure requires O(n) space, sincethe total number of edges in the subdivision S is O(n) and we are building the data structureof Goodrich and Tamassia [9] on a subdivision that is a subgraph of a triangulation of S.This also implies that the total number of edges de�ned by all the deltoid regions is O(n),implying that the total space used by all our tertiary structures is also O(n). 24.4 Ray shootingSuppose we have data structure D for our connected subdivision S, and let ~r be a query rayfor which we wish to perform a ray shooting query. See Figure 6. We begin by performing apoint location for the origin p of ~r using the secondary point location structure. This takestime O(log2 n) [9] and identi�es a deltoid region � containing p. By then following parentpointers up in a tertiary chain tree from any edge in � we can identify the node � in T thatis associated with a geodesic triangle having � as its deltoid region.This sets up a generic local ray shoot, where we are given a pointer to a node � in Trepresenting a geodesic triangle with deltoid region � and a ray ~r whose endpoint is inside� (possibly even on the boundary of �), and we wish to locate the edge e of � that ~r hits�rst. We can identify this edge by using the tertiary structures for the convex chains of �to determine, in O(logn) time, the �rst edge e on the boundary of � where ~r exits (for itamounts to a simple binary search). If e is an edge of S, then we are done, for we havelocated the edge of S that ~r hits. If e is not an edge of S, on the other hand, then we followthe pointer from the current record for e to the record for e in the adjacent deltoid region,�0. By then following parent pointers up this chain tree we can identify the node in T thathas this face as its deltoid region. This, of course, sets up another instance of a local rayshoot; hence, we can now recurse on �0.Each local ray shoot test requires O(logn) time, as does the extra computation neededto set up the next ray shoot test, if needed. Since this query traverses a subset of nodesalong a path in T (e.g., see Figure 6), the total time to perform such a ray shooting queryis at most O(log2 n). Therefore, we haveLemma 4.3: A ray-shooting query in D takes O(log2 n) time.11



(a)

(b)Figure 6: Illustration of a ray shooting query: (a) geodesic triangulation; (b) path in thedual tree visited during the execution of the query algorithm5 Dynamic Balanced Geodesic TriangulationsIn this section we show how to maintain the data structure D while performing edge insertionand deletion as well as vertex insertion and deletion. In particular, we de�ne the followingupdate operations on a connected subdivision S:12



InsertEdge(e; v; w;R;R1; R2): Insert edge e = (v; w) into region R such that R is partitionedinto two regions R1 and R2.RemoveEdge(e; v; w;R1; R2;R): Remove edge e = (v; w) and merge the regions R1 and R2formerly on the two sides of e into a new region R.InsertVertex(v; e; e1; e2): Split the edge e = (u; w) into two edges e1 = (u; v) and e2 = (v; w)by inserting vertex v along e.RemoveVertex(v; e1; e2; e): Let v be a vertex with degree two such that its incident edgese1 = (u; v) and e2 = (v; w), are on the same straight line. Remove v and merge e1 ande2 into a single edge e = (u; w).AttachVertex(v; e;w): Insert edge e = (v; w) and degree-one vertex w inside some region R,where v is a vertex of R.DetachVertex(v; e): Remove a degree-one vertex v and edge e incident on v.The above repertory of operations is complete for connected subdivisions. Also,AttachVertex and DetachVertex can be simulated by a ray shooting query followed by asequence of O(1) InsertVertex, RemoveVertex, InsertEdge, and RemoveEdge operations [5].For example, to perform AttachVertex at a vertex v in S to attach a node w along edgee = (v; w), we could perform a ray shooting query to identify the point p on the edge f ofS �rst hit by the ray emanating from v in the direction towards w. We could then performan InsertVertex of p on f , an InsertEdge for (v; p), an InsertVertex for w on (v; p), and aRemoveEdge for the edge (w; p). Thus, we will not discuss further the implementation ofoperations AttachVertex and DetachVertex.The only restrictions we place on these operations is that they should be applied ina way that does not violate the planarity or connectivity of S. In the subsections thatfollow we describe how we can implement each of the above update operations (other thanAttachVertex and DetachVertex).5.1 RotationsBefore we describe our implementations for these operations, however, we must describe howwe implement rotations in our primary data structure, the red-black tree T , since the red-black tree update operations of (non-destructive) splice, split, and evert are all built uponrotations.The important observation is that a rotation in T corresponds to a swap of diagonals intwo adjacent geodesic triangles (see Figures 7 and 8). We can determine the edges involvedin such a diagonal swap by querying the tertiary structures associated with the deltoidregions of the associated geodesic triangles. If these deltoid regions share an edge, thenwe must compute O(1) common supporting or cross tangents so as to determine the newdiagonal edge (see Figure 8). This can easily be done in O(logn) time using a well-known13



(a)

(b)Figure 7: A swap of diagonals in a triangulation of a convex polygon and the correspondingrotation in the dual tree: (a) before the swap; (b) after the swap.binary search approach (e.g., see Preparata and Shamos [22]). If these deltoid regions donot share an edge, then the diagonal swap simply involves identifying the deltoid regionswith their new geodesic triangles. In any case the geodesic triangulation is modi�ed withO(1) InsertEdge/RemoveEdge operations, and the boundaries of the geodesic triangles aremodi�ed by O(1) split/splice operations (see Figure 8). Thus, a rotation in T requiresO(logn) total time, i.e., rot(n) is O(logn).5.2 Vertex insertion and deletionOperations InsertVertex(v; e; e1; e2) and RemoveVertex(v; e1; e2; e) correspond to the inser-tion/deletion of a node in the dual trees associated with the regions that share edge e.The geodesic triangulation is modi�ed by two InsertVertex/RemoveVertex operations. Theboundaries of the geodesic triangles are modi�ed by two insertions/deletions, and, if the edgee is the dual to the dummy parent of the root of the dual tree, a split/splice operation.Speci�cally, let us examine the computations required to implement the operationInsertVertex(v; e; e1; e2), for the implementation of RemoveVertex(v; e1; e2; e) is symmetric.In order to maintain a geodesic triangulation we let the adding of vertex v on edge e = (u; w)14
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Figure 8: Update of a geodesic triangulation after a rotation in the dual tree: (a) before therotation; (b) after the rotation.create geodesic triangles ~4uvw and ~wvu, respectively, in the two polygonal regions incidenton edge e. Since these geodesic triangle insertions are similar, let us concentrate on theinsertion of ~4uvw. Its insertion in polygonal region P is equivalent to a leaf-node insertionin the dual tree T for P . If e is not dual to the dummy parent of the root of T , then wecan then peform the rotations (and occompanying diagonal swaps) needed to keep T as abalanced red-black tree. If, on the other hand, e is the dual edge for the dummy parentof the root of T , then we let (v; w) become the new dual to the dummy node parent of T ,and we perform the rotations (and diagonal swaps) needed to perform a splice of the singlenode tree dual the edge (u; v) and the tree T . In either case, we can rebalance the dual treefor the geodesic triangulation of P using O(logn) rotations/diagonal swaps, each of whichrequires at most O(logn) time.Lemma 5.1: Operations InsertVertex and RemoveVertex each take O(log2 n) time.15
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splitFigure 9: Schematic illustration of operation InsertEdge(e; v; w;R;R1; R2): (a) initialgeodesic triangulation and dual tree; (b) eversion; (c) split; (d) splice.5.3 Edge insertion and deletionLet us next consider edge insertion and deletion, and begin our discussion with the insertioncase. We begin by noting that the insertion of an edge e in polygonal region R of S couldintersect O(logn) edges of our geodesic triangulation of R. Nevertheless, the operationInsertEdge(e; v; w;R;R1; R2) can be implemented in O(log2 n) time as follows (see Figure 9).Let d and f be edges of R such that d is incident to v and f is incident to w, with d and fbeing on opposite sides of e (i.e., d and f will be separated after e is inserted).We begin our implementation of the insertion of e by everting the tree T at the leaf ford, resulting in a geodesic triangulation of R corresponding to a red-black tree T 0 rooted atd. We then perform a non-destructive split on the dual tree T 0 at f so that the edge e is thediagonal between the geodesic triangles corresponding to the parent and grandparent of f ,respectively, which gives us a new dual tree T 00.We may then insert the edge e, cutting T 00 at the edge dual to e. This results in twonew regions R1 and R2 with corresponding dual trees T1 and T2. Notice that the root of T1(resp., T2) has as one of its children the root of a red-black tree and as its other child thenode d (resp., f). We complete the construction, then, by performing a splice on the twochildren of the root of T1 and the root of T2, respectively.16
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R. Notice that the implementation of this operation required O(1) evert, split, and spliceoperations. Thus, it too can be implemented in O(log2 n) time.Lemma 5.2: Operations InsertEdge and RemoveEdge each take O(log2 n) time.6 Shortest Path QueriesIn this section we show how to extend our approach so as to e�ciently answer shortest pathqueries in S. In this case we are given two query point p and q and we wish to determine theshortest path between p and q that does not cross any edges of S. We may assume, withoutloss of generality, that p and q belong to the same region in S, since we can test if this is notthe case in O(log2 n) time by point location [9]. So, suppose we are given two query pointsp and q in a region P of S, and we wish to perform a shortest path query for the pair (p; q).We consider two variations of this query: reporting the length of the path, and reporting allthe edges of the path.In order to support shortest path queries, we extend our data structure so as to storetails of geodesic triangles. Speci�cally, we modify our data structure, so that for each node �of tree T , in addition to information already stored at �, we also store at � a (possibly null)chain tree representing the tail of �'s geodesic triangle not shared by the geodesic trianglestored at �'s parent. By Observation 2.1, this amounts to a simple application of a space-saving technique pioneered by Lee and Preparata [18], where one stores shared edges at thehighest node in a tree where they appear. This remains an O(n)-sized data structure, as canbe established by a simple modi�cation of the proof of Lemma 4.2. In addition,Lemma 6.1: Rotations in T can be performed in O(logn) time.Proof: The method for now performing rotations in T is identical to our earlier implemen-tation, except that now we must maintain for each � in T , a chain tree representing the tailof �'s geodesic triangle not shared by the geodesic triangle stored at �'s parent. In order tomaintain this invariant during a rotation we may need to perform a few additional splits andsplices, but they still take just O(logn) time. This is due to the fact that in the diagonalswap of two geodesic triangles t and t0 whose dual nodes are involved in a rotation, the tailsof the resulting geodesic triangles can be decomposed into O(1) portions of tails and deltoidchains from t and t0. 2Having established that rotations in T can still be implemented in O(logn) time evenin this augmented structure, we immediately have that all the update operations describedabove run in the same time bounds as before. So, we have only to describe how we performa shortest path query for two given points p and q.If p and q are vertices of R, the geodesic path algorithm is as follows: First, we evert Tso that the dummy node of T is associated with an edge incident on p. This takes O(log2 n)time. Next, perform a non-destructive split at a leaf �q of T incident upon q to bring �qto be the grandchild of the root of T so that the geodesic path from p to q is the diagonal18



separating the geodesic triangle for �q from the geodesic triangle for p(�q) (see Figure 9, asthis is very similar to our operation for edge insertion with v = p and w = q). Now, theshortest path between p and q is a diagonal in the geodesic triangulation for R. In fact, it isa diagonal de�ning the boundary of the root geodesic triangle in T ; hence, the length of theentire geodesic path and its k edges can be retrieved in time O(1) and O(k), respectively,from the chain trees for this geodesic triangle and its one non-trivial tail. Finally, after wehave answered the query, we undo the above rotations to reset the data structure to itsoriginal state. The overall time complexity is O(log2 n), plus O(k) if the path is reported inaddition to its length.If p and q are not vertices of R, we \attach" them to the boundary of R by means oftwo horizontal ray-shootings followed by two AttachVertex operations, which takes O(log2 n)time, and we apply the previous method.Lemma 6.2: A shortest-path query takes O(log2 n) time to report the length of the path,plus O(k) time to report the k edges of the path.By combining Lemmas 4.2, 4.3, 5.1, 5.2, 6.1, and 6.2, we summarize our results in thefollowing theorem:Theorem 6.3: Let S be a planar connected subdivision with n vertices. There is anO(n)-space fully dynamic data structure for S that supports point-location, ray-shooting,and shortest-path queries in O(log2 n) time, and operations InsertVertex, RemoveVertex,InsertEdge, RemoveEdge, AttachVertex, and DetachVertex in O(log2 n) time, all bounds be-ing worst-case.7 ConclusionWe have given a simple and e�cient scheme for dynamically maintaining a connected sub-division S subject to ray shooting and shortest path queries. Our method is based onmaintaining geodesic triangulations of each polygonal region in S through the use of anelegant duality between diagonal swaps between adjacent geodesic triangles and rotations inred-black trees. Since we implement each rotation in O(logn) time, this results in worst-caserunning times of O(log2 n) for queries and updates.Hershberger and Suri [16] have recently showed that one can triangulate the interior of asimple polygon using additional interior points so that any ray intersects O(logn) triangles.Applying our approach to this method would not improve the running time of updates,however, since an edge insertion would still require changing O(logn) edges, and we wouldstill require a dynamic point location structure. Thus, this would still require O(log2 n) time.Therefore, this still leaves the important open question of whether one can achieve o(log2 n)time for both updates and ray shooting queries in a dynamic connected subdivision.
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