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the �rst case there is no other vertex z of L such that w and z occur in thesame equivalence class of Rred, or else z and w are adjacent to both u and v,a contradiction. In the second case there is no vertex z of L� Pu such thatz and a vertex of Pu occur in the same equivalence class of Rred, or else umust be adjacent to z, a contradiction.We conclude that for each vertex of S3;blue, or for each pair of vertices ofS3;blue, there is a corresponding vertex of L or a corresponding set of verticesof L, which occur in an equivalence class of Rred which is di�erent from allthe equivalence classes in which the other vertices of L occur. It follows thevertices of L occur in at least jS3;bluej=2 � n=72 di�erent equivalence classesof Rred. But this contradicts the assumption that the number of equivalenceclasses of Rred is less than n=72. 2Theorem 4. There is a class C containing in�nitely many split graphs,such that for every graph G = hV;Ei 2 C cwd(G) � (sqrt2jV j � 1)=72.Proof:Let Gn denote the clique of n vertices, and let C be the class of split graphsof cliques de�ned by: C = fsplt(Gn) : n 2 N; n � 20g. From Theorem 5and Lemma 4 above it follows that for n 2 N n � 20, cwd(splt(Gn)) � n=72.Since for every clique Gn splt(Gn) is a split graph, it follows that the class Csatis�es the conditions of the theorem. 2AcknowledgmentsWe are indebted to Luitpold Babel who made us aware of the (q; q � 3)graphs and the prime graphs associated with their corresponding modulardecompositions.References[Bab98a] L. Babel. On graphs with simple P4{structure. Preprint, 1998.34



CASE 1: Suppose that either jS1j < 10n=18 or jS2j < 10n=18. We assumethat jS1j < 10n=18, (the case when jS2j < 10n=18 can be handled similarly).From the de�nition of S1 it follows that the number of red vertices is at most:jS1j+(jS1j�(jS1j�1))=2. Since jS1j < 10n=18 we get (by substituting 10n=18instead of jS1j in the above formula) that for n � 20 the number of the redvertices is at most: 0:165n2. However, since the number of red vertices greaterthan (n2)=6 there must be at least 0:166n2 red vertices, a contradiction.CASE 2: Suppose that both jS1j � 10=18 and jS2j � 10n=18. Let S3 denotethe intersection of S1 and S2. Since the total number of vertices occuringeither in S1 or in S2 (or in both of them) is equal to n, we get that atleast n=18 vertices occurs both in S1 and in S2. In other words we get thatjS3j � n=18. Let S3;red (S3;blue) denote the set of all the red (blue) verticesoccuring in S3.CASE 2.1: Suppose that jS3;redj � n=36. Suppose that there exists threevertices (say x; y and z) in S3;red such x, y and z are in the same equivalenceclass of Rred. Since x is in S2 there exist a blue vertex w such that w isadjacent to x, since the degree of w is 2, w is not adjacent to either y or z(say z). Hence, there is a blue vertex w which distinguishes x and z. But thiscontradicts the assumption that x and z are in the same equivalence class ofRred.Hence, every 3 vertices of S3;red can not be in the same equivalence classofRred, which implies that the vertices of S3;red occur in at least jS3;redj=2 �n=72 di�erent equivalence classes of Rred. But this contradicts the assump-tion that the number of equivalence classes of Rred is less than n=72.CASE 2.2: Suppose that jS3;redj < n=36. Since jS3j � n=18 it must be thatjS3;bluej � n=36. Let L be the set of vertices de�ned by:L = fvjv 2 E; v is red and v is adjacent to some vertex u 2 S3;blueg:For each vertex u in S3;blue either there exist another vertex v in S3;blue suchthat u and v have a common neighbor w in L, or the set Pu of all the verticesof L which are adjacent to u is not adjacent to any other vertex in S3;blue. In33



orem. 26 Some other graph classes of unboundedclique{widthIn this section we show how our technique presented in section 5 above canbe applied to other graph classes. In particular we show that the split graphsand all the graph classes which contains them are of unbounded clique{width.De�nition 20 (Split graph of a clique splt(G)) Let G = hV;Ei be aclique, the split graph of of G, denoted splt(G), is is de�ned as the graphhV 0; E 0i, such that: V 0 = V [ E andE0 = E [ f(v; e) j v 2 V; e 2 E and v is one of the endpoints of egLemma 4 Let n 2 N be such that n � 20, let G = hV;Ei be a clique of nvertices, and let G0 = splt(G) be the split graph of G, then 2colw(G0) � n=72.Proof:Let n 2 N be such that n � 20, let G = hV;Ei be a clique of n vertices, andlet G0 = hV 0; E 0i be the split graph of G. Suppose that 2colw(G0) < n=72.Then there is a partition of the vertices of G0 into two disjoint sets V 0red andV 0blue of red and blue vertices respectively, such that n(n + 1)=6 � jV 0redj �n(n + 1)=3, and the number of equivalence classes of Rred (see de�nition 17above) is less then n=72.We say that a vertex v of G0 is spanned{by{red{edges (spanned{by{blue{edges) if v 2 V and there is at least one red (blue) vertex e 2 E such that vis adjacent to e in G0. Note that a vertex v can be spanned{by{red{edges andalso spanned{by{blue{edges. Let S1 (S2) denote the set of all the vertices ofG0 which are spanned{by{red{edges (spanned{by{blue{edges). We considerthe following two cases: 32



Since we have considered all possible cases, and got a contradiction ineach case, we conclude that our assumption that 2colw(G) < n=3 was notcorrect. In other words we conclude that 2colw(G) � n=3. 2Theorem 2. There is a class C containing in�nitely many (6; 3) graphs,such that for every graph G = hV;Ei 2 C, cwd(G) � qjV j=27.Proof:Let C be the class of extended square grids de�ned by: C = fHn;1;1 : n 2N; n � 3g. From Theorem 5 and Lemma 2 above it follows that forn 2 N n � 3, cwd(Hn;1;1) � n=3. Since by Fact 2 above every Hn;1;1 isa (6; 3) graph the class C satis�es the conditions of the theorem. 25.3 (q; q) graphs for q � 4In this section we show that the class of (q; q) graphs are not of boundedclique{width. For that we shall consider the extended square grids Hn;q;q(see de�nition 19) above which are (q; q) graphs by Fact 3 above.Lemma 3 For every n 2 N such that n � 3, and for every q � 1,2colw(Hn;q;q) � n=3q.Proof:The proof is similar to the proof of Lemma 2 above. 2Theorem 3. For every q � 4, there is a class C(q) containing in-�nitely many (q; q) graphs, such that for every graph G = hV;Ei 2 Ccwd(G) � qjV j=27q3.Proof:For q � 4 let C(q) be the class of extended square grids de�ned by:C(q) = fHn;q;q : n 2 N; n � 3g. From Theorem 5 and Lemma 3 aboveit follows that for n 2 N n � 3, cwd(Hn;q;q) � n=3q. Since by Fact 3 aboveevery Hn;q;q is a (q; q) graph the class C(q) satis�es the conditions of the the-31



of L occurs in di�erent equivalence classes of Rred, which implies that thenumber of these equivalence classes is at least n, a contradiction.CASE 2: Suppose that for some i in f1; 3; : : : ; 2n � 1g there is there is novertex v 2 S occuring in column i of G. There are two possible cases:CASE 2.1: Suppose that all the vertices of column i are red. We say thatv is a red (resp. blue) row{alternating vertex if v is a red (resp. blue) vertexsuch that there is a blue (resp. red) vertex u adjacent to v such that v and uare in the same row in G. We construct a set Q by the following procedure:(i) Set j = 1, and set Q = ;.(ii) If j = 2n + 1 stop.(iii) If not all the vertices at row j are red then let v be any red row{alternating vertex occuring in row j. Set Q = Q [ fvg.(iv) If all the vertices at row j are red and not all the vertices at row j � 1are red then let v by any red vertex occuring in row j such that itsneighbor at row j � 1 is blue. Set Q = Q [ fvg.(v) set j = j + 2 and go to step (ii) aboveSuppose that the number of vertices occuring in Q is < n=3 it follows thatthere more than 2n=3 rows in which we could not choose a vertex to addto Q by the above procedure. In other words there are at least 2n=3 oddrows j in f3,5, : : :2n-1g such that all the vertices at row j and row j � 1are red. Counting the number of red vertices in these rows, we get thatjVredj � 2n2 � 2n=3 > 2n2 � 4n=3, a contradiction.Hence jQj � n=3. But since all the vertices of Q occur in di�erent equivalenceclasses of Rred it follows that the number of equivalence classes of Rred is atleast n=3 a contradiction.CASE 2.2: Suppose that all the vertices of column i are blue. In this casewe can use a similar argument to case 2.1 above to show that this case is notpossible. 30



De�nition 19 (Extended square grid Hn;l;m) Let Gn be an n�n squaregrid. The extended square grid Hn;l;m is the graph obtained from Gn byreplacing every edge (u; v) occuring in a row (resp. column) of Gn by asimple path of length l + 1 (resp. m+ 1) such that the endpoints of the pathare u and v.Counting the number of possible P4s in every q vertices of an extended squaregrid, it can be showed that:Fact 2 For n � 2 every extended square grid Hn;1;1 is a (6; 3) graph.Fact 3 For n � 2 every extended square grid Hn;q;q is a (q; q) graph.Hence, to show that the class of (6; 3) graphs is not of bounded clique{widthwe shall show that:Lemma 2 For every n 2 N such that n � 3, 2colw(Hn;1;1) � n=3.Proof:Let n 2 N be such that n � 3, and letG = hV;Ei be the extended square gridHn;1;1. First note that jV j = 3n2 � 2n. Suppose that 2colw(G) < n=3. Thenthere is a partition of the vertices of G into two disjoint sets Vred and Vblue ofred and blue vertices respectively, such that n2�2n=3 � jVredj � 2n2�4n=3,and the number of equivalence classes of Rred (see de�nition 17 above) is lessthen n=3. Note that G has 2n-1 rows and 2n-1 columns. We number therows and columns of G from 1 to 2n � 1. Note that all the even rows andcolumns contains just vertices of degree 2. We say that v is a red (resp. blue)column{alternating vertex if v is a red (resp. blue) vertex such that there isa blue (resp. red) vertex u adjacent to v such that v and u are in the samecolumn in G. Let S denote the set of all the red column{alternating vertices.We consider the following two cases:CASE 1: Suppose that for every i in 1,3, : : : ,2n-1 there is one vertex v 2 Soccuring in column i in G. Then there is a set L = fv1; v3; : : : ; v2n�1g of nvertices of S such that for every i; j in f1; 3; : : : ; 2n � 1g such that i 6= j viand vj occur in di�erent columns in G. It is easy to see that all the vertices29



at the same distance from column i (in both directions), then chosearbitrarily either u or v. Set Q = Q [ fvg.(iv) set j = j + 1 and go to step (ii) aboveSuppose that the number of vertices occuring in Q is < n=3 it follows thatthere are more than 2n=3 red rows. Hence, jVredj > 2n2=3, a contradiction.Therefore we can assume that jQj � n=3.Suppose that two vertices occuring in Q (say x and y) are in the sameequivalence class of Rred. We can assume without loss of generality that xand y occurs in columns j1 and j2 respectively, such that either j � j1 � j2,or � j2 � j1 � j. Let i denote the row in which y occurs. In both casesthe blue vertex w which occurs in row i and is adjacent to y distinguishesx and y. But this contradicts the assumption that x and y are in the sameequivalence class of Rred.We conclude that all the vertices of Q occur in di�erent equivalence classes ofRred, which implies that the number of equivalence classes of Rred is � n=3,a contradiction.CASE 2.2: Suppose that all the vertices of column i are blue. In this casewe can use a similar argument to case 2.1 above to show that this case is notpossible.Since we have considered all possible cases, and got a contradiction ineach case, we conclude that our assumption that 2colw(G) < n=3 was notcorrect. In other words we conclude that 2colw(G) � n=3. 2Remark 1 Using a more complicated argument it can be shown that forevery n � n square grid G, cwd(G) � n. Since it is not hard to see thatevery n � n square grid can be build by an n + 2{expression, it follows thatfor every such graph the clique{width is between n and n + 2. We suspectthat for n � 3 the clique width of an n� n square grid is exactly n + 2, butwe leave it as an open question. 28



CASE 1: Suppose that for 1 � i � n there is at least one vertex v 2 Soccuring in column i in G. Then there is a set L = fv1; : : : ; vng of n verticesof S such that for 1 � i � n and for 1 � j � n such that i 6= j vi and vjoccur in di�erent columns in G.Suppose that there are 3 vertices x; y and z of L which are in the sameequivalence class of Rred. Clearly two of these 3 vertices (say x and y) occurat two non-consecutive columns in G. Let i denote the columns of G whichcontains x. Since x is in S there is a blue vertex w which is adjacent to x andis included in column i. Since the columns of x and y are not consecutiveit follows that w is not adjacent to y. In other words the blue vertex wdistinguishes x and y. But this contradicts the assumption that x and y arein the same equivalence class of Rred.Hence, every 3 vertices of L can not be in the same equivalence class ofRred, which implies that the vertices of L occur in at least n=2 di�erentequivalence classes of Rred. But this contradict the assumption that thenumber of equivalence classes of Rred is less than n=3.CASE 2: Suppose that for some 1 � i � n, there is no vertex v 2 S occuringin column i of G. There are two possible cases:CASE 2.1: Suppose that all the vertices of column i are red. We say thatv is a red (blue) row{alternating vertex if v is a red (blue) vertex such thatthere is a blue (red) vertex u adjacent to v such that v and u are in the samerow in G. Let P denote the set of all the red row{alternating vertices. Weconstruct a set Q � P by the following procedure:(i) Set j = 1, and set Q = ;.(ii) If j = n+ 1 stop.(iii) If not all the vertices at row j are red then let v be the red row{alternating vertex occuring in row j, such that the column in whichv occur is the closest column to column i, which contains a red row{alternating vertex. If there are two such vertices v and u occuring27



The following fact shows that the other direction of Theorem 5 abovedoes not hold:Fact 1 There is a graph G = hV;Ei such that the clique{width of G is� qjV j=6 and the 2{color{width of G is equal to 1.Proof:Let G = hV;Ei be the graph obtained by taking the disjoint union ofn2 isolated vertices with and an n � n square grid. By Lemma 1 belowcwd(G) � n=3 which implies that cwd(G) � qjV j=6. By coloring all the n2isolated vertices of G with red and all the n2 vertices of the square grid of Gwith blue, we we obtain that the number of the equivalence classes of Rred isone, which implies that the 2{color{width of G is equal to 1. 25.2 (6; 3) graphsIn this section we shall show that the class of (6; 3) graphs is of unboundedclique{width. Before handling the case of the (6; 3) graphs we show how ourtechniques can be used for the class of square grids:Lemma 1 Let n 2 N be such that n � 4, and let G be an n�n square grid,then 2colw(G) � n=3.Proof:Let n 2 N be such that n � 4, and let G be an n � n square grid, supposethat 2colw(G) < n=3. Then there is a partition of the vertices of G into twodisjoint sets Vred and Vblue of red and blue vertices respectively, such thatn2=3 � jVredj � 2n2=3, and the number of equivalence classes of Rred (seede�nition 17 above) is less then n=3.We say that v is a red (blue) column{alternating vertex if v is a red (blue)vertex such that there is a blue (red) vertex u adjacent to v such that vand u are in the same column in G. Let S denote the set of all the redcolumn{alternating vertices. We consider the following two cases:26



�nally obtain a sub{tree Tx of T such that nl(T )=3 � nl(Tx) � 2nl(T )=3. 2We say that a class of graphs C is of unbounded clique{width (2{color{width) if there is no �xed k 2 N , such that for every graph G 2 C, theclique{width (the 2{color{width) of G is at most k.Theorem 5 For every graph G, if the 2{color{width of G is > k then theclique{width of G is > k.Proof:Let G = hV;Ei be any graph such that 2col(G) > k. Suppose thatcwd(G) � k. Then there is a k{expression t which de�nes G. By propo-sition 11 above there is a node a in tree(t) (see de�nition 7 above) such thatnl(tree(t))=3 � nl(tree(a; t)) � 2nl(tree(t))=3, where tree(a; t) denotes thesub{tree of tree(t) rooted at a (cf. de�nition 8 above) and nl(tree(t)) denotesthe number of leaves in tree(t).Clearly, nl(tree(t)) = jV j. Let Vred and Vblue be the partition of the vertices ofjV j into two disjoint sets such that all the vertices of Vred are colored with redand occurs in tree(a; t) and all the vertices of Vblue are colored with blue anddo not occur in tree(a; t). Since nl(tree(t)) = jV j and nl(tree(a; t)) = jVredj,it follows that jV j=3 � jVredj � 2jV j=3. Let Rred be the relation de�ned inde�nition 17 above. Since 2colw(G) > k, there are at least k+1 equivalenceclasses in Rred. Hence there is a set S = fv1; : : : ; vk+1g of k +1 vertices of Gsuch that for 1 � i � k + 1 and for 1 � j � k + 1 such that i 6= j, vi and vjdo not occur in the same equivalence class of Rred.Suppose that vi and vj has the same label at a, it follows that there is noblue vertex w which distinguishes vi and vj, a contradiction to the assump-tion that vi and vj are in di�erent equivalence classes of Rred. Hence, all thevertices occuring at S must have di�erent labels at a. In other words thevertices of S are labeled with k+1 di�erent labels at a. But this contradictsthe assumption that t is a k{expression. 225



De�nition 17 (The equivalence relation Rred) Let G = hV;Ei be agraph, and let Vred and Vblue be a partition of V into two disjoint sets ofvertices colored by red and blue respectively. We de�ne the relation Rred suchthat a pair of vertices (u; v) is in Rred if and only if u and v are both redand there is no blue vertex x which distinguishes u and v. Clearly Rred is anequivalence relation.De�nition 18 (The 2{color{width of a graph G; 2colw(G)) Let G =hV;Ei be any graph, the 2{color{width of G, denoted as 2colw(G) is de�nedas the smallest number l 2 N , such that there is a partition of the vertices ofG into two disjoint sets Vred and Vblue such that jV j=3 � jVredj � 2jV j=3 andRred has l equivalent classes.Recall that for any tree T and an internal node a of T we denote by Tathe sub{tree of T rooted at a. For every tree T , we denote by nl(T ), thenumber of leaves of T .In proving Theorem 5 below we shall use the following proposition:Proposition 11 Let T = hV;Ei be any binary tree, then there is an internalvertex of the tree a, such that nl(T )=3 � nl(Ta) � 2nl(T )=3.Proof:Let T = hV;Ei be any binary tree, let a be the highest node in T whichhas two sons, and let b and c be the sons of a. If both nl(Tb) � nl(T )=3and nl(Tc) � nl(T )=3 then we are done since both Tb and Tc satis�es theconditions of the proposition.Hence, we can assume without loss of generality that nl(Tb) < nl(T )=3 andnl(Tc) > 2nl(T )=3. Let d be the highest node in Tc which has two sons (dmay be equal to c), and let e and f be the sons of d in Tc. We assume withoutloss of generality that nl(Te) � nl(Tf).If nl(Tf) � 2nl(T )=3 we are done, since Tf satis�es the conditions of theproposition.Hence we assume that nl(Tf) > 2nl(T )=3. Noting that nl(Tf) < nl(Tc), itfollows that repeating the above argument at most nl(T )=3 times we shall24



at most q vertices have clique{width � q, by proposition 3 above it followsthat G has clique{width � q. A q-expression de�ning G can be constructedin time O(jV j+ jEj) as follows:(i) Construct the modular decomposition of G, T (G) in time O(jV j+ jEj)by classical methods, as shown in [GV97].(ii) From the modular decomposition T (G) construct an expression con-sisting of a sequence of vertex substitutions which de�nes G, as shownin the proof of proposition 3 (see [CMR98a]). Since the number of ver-tices in T (G) is O(jV j) (as proved in [Spi92]), this step can be done intime O(jV j).(iii) Convert the expression of vertex substitutions obtained at the previousstep, to a q-expression for G as shown in the proof of proposition 2 (see[CMR98a]). This step can be done in time O(jV j), since each graph Hused in the substitutions is either an edgeless graph, a clique, a primespider, a disc, a prime p{tree or a graph with at most q vertices, aq-expression which de�nes H can be constructed in O(jV (H)j) time, ascan be shown easily for the �rst 2 cases and was shown in [CMR98a]for the prime spiders, in Propositions 5 and 6 above for the discs or inpropositions 7, 8, 9 and 10 for the prime p{trees. 25 (6; 3) and (q; q) for q � 4 graphs are of un-bounded clique{width5.1 The 2{color width of graphsWe say that a vertex x distinguishes y and z if x is adjacent to y and is notadjacent to z, or vise versa. 23



Proof:Follows immediately from claim 3 above since the 6{expression tk de�nesthe spiked p{chain Qk. For the complexity, since the 6{expression tk canbe constructed in k steps using claim 3 above and in each step the amountof additional work is bounded by a constant, it follows that tk can be con-structed in O(jV j) time. 2Proposition 10 Every complement of a spiked p{chain Qk has clique{width� 6 and a 6{expression de�ning it can be constructed in time O(jV j).Proof:Similar to the proof of proposition 9 above. 24 (q; q�3) graphs for q � 7 are of clique{width� qIn this section we show that:Theorem 1. For every (q; q�3) graph G such that q � 7, G has clique{width� q, and a q{expression de�ning it can be constructed in time O(jV j+jEj).Proof:Let G be a (q; q� 3) graph for q � 7 and let T (G) be the modular decompo-sition of G. By proposition 3 above in order to show that cwd(G) � q, it isenough to show that for each internal node h of T (G), cwd(G(h)) � q, whereG(h) is the representative graph of h in T (G). If h is a P-node (S-node)then G(h) is an edgeless graph (a clique), and has a clique width equals to1 (2). If h is an N-node then by proposition 4 above G(h) is is isomorphicto either a prime spider, a disc, a prime p{tree or a graph with at most qvertices. Since prime spiders have clique{width � 4 (cf. [CMR98a]), discshave clique width � 4 (by Propositions 5 and 6 above), prime p{trees haveclique{width � 6 (by Propositions 7, 8, 9 and 10 above), and a graph with22



Hence, the 6 expression ti de�ned below satis�es the conditions of the claim:ti = �6!2(�6;5(�6;1(�6;2(6(zi)��6!5(�5!3(�6;5(�6;1(6(vi) � ti�1))))))))CASE 2: Suppose i is odd.In this case from observation 1 above and from the inductive hypothesis onti�1 it follows that a 6{expression ti which de�nes the graph Gi and satis�esthe conditions of the claim can be constructed by the following steps:(i) Add the vertex vi and label it with 6.(ii) Connect all the vertices labeled with 6 to all the vertices labeled with1. This will connect vi to the vertices in Seven;i�3.(iii) Rename the label 5 with 1. This will change the label of vi�1 from 5to 1.(iv) Rename the label 6 with 5. This will change the label of vi from 6 to5.(v) Add the vertex zi and label it with 6.(vi) Connect all the vertices labeled with 6 to all the vertices labeled with1 or 2. This will connect zi to the vertices in Seven;i�1 [Keven;i�1.(vii) Rename the label 6 with 4. This will change the label of zi from 6 to4.Hence, the 6 expression ti de�ned below satis�es the conditions of the claim:ti = �6!4(�6;1(�6;2(6(zi)��6!5(�5!1((�6;1(6(vi)� ti�1)))))) 2Proposition 9 Every spiked p{chain Qk has clique{width � 6 and 6{expression de�ning it can be constructed in time O(jV j).21



Proof:We shall prove the claim by induction on i. The claim trivially holds for thecase when i = 3. Suppose the claim holds for j � i � 1. Then there is a 6expression ti�1 which satis�es the conditions of the claim. We shall show howto construct the 6{expression ti which de�nes the labeled graph Gi such thatthe conditions of the claim are satis�ed. First note that we use ti to buildthe graph Gi in which we assume that all the vertices fz2; : : : ; zig exists. Ifany of these vertices does not exist then the 6{expression obtained from tiby omitting all the vertices which does not exist in Gi from the expressionis the required 6{expression which de�nes Gi and satis�es the conditions ofthe claim.We consider the following two cases:CASE 1: Suppose i is even.In this case from observation 1 above and from the inductive hypothesis onti�1 it follows that a 6{expression ti which de�nes graph Gi and satis�es theconditions of the claim can be constructed by the following steps:(i) Add the vertex vi and label it with 6.(ii) Connect all the vertices labeled with 6 to all the vertices labeled with1 or 5. This will connect vi to the vertices in Seven;i�2 [ fvi�1g.(iii) Rename the label 5 with 3. This will change the label of vi�1 from 5to 3.(iv) Rename the label 6 with 5. This will change the label of vi from 6 to5.(v) Add the vertex zi and label it with 6.(vi) Connect all the vertices labeled with 6 to all the vertices labeled with1 or 2 or 5. This will connect zi to the vertices in Seven;i [Keven;i�2.(vii) Rename the label 6 with 2. This will change the label of zi from 6 to2. 20



denote by Keven (resp. Kodd) the set of even (resp. odd) vertices of K. Wedenote by Si (resp. Ki) the set of vertices fv1; : : : ; vig (resp. fz1; : : : ; zig).We denote by Seven;i (resp. Sodd;i) the set of even (resp. odd) vertices inSi. Likewise we denote by Keven;i (resp. Kodd;i) the set of even (resp. odd)vertices in Ki. We denote by Gi the subgraph of G induced by Si [Ki. Weassume also for simplicity that for k � 4 � i � k the set Ki is equal to theset Kk�5. The following observation follows from the above de�nitions.Observation 1 Let G be a spiked p{chain Qk, then Gi can be obtained fromGi�1 by adding the two vertices vi and zi and adding the following edges:� If i is even then connect vi to all the vertices in Seven;i�2 [ fvi�1g.� If i is odd then connect vi to all the vertices in Seven;i�3.� If i is even then connect zi to all the vertices in Seven;i [Keven;i�2� If i is odd then connect zi to all the vertices in Seven;i�1 [Keven;i�1Claim 3 Let G be a spiked p{chain Qk, then for 4 � i � k there is a 6{expression ti which de�nes the labeled graph Gi such that:� If i is even then{ All the vertices of Seven;i�2 (resp. Keven;i) are labeled with 1 (resp.2).{ All the vertices of Sodd;i�1 (resp. Kodd;i�1) are labeled with 3 (resp.4).{ vi is labeled with 5.If i is odd then{ All the vertices of Seven;i�1 (resp. Keven;i�1) are labeled with 1(resp. 2).{ All the vertices of Sodd;i�2 (resp. Kodd;i) are labeled with 3 (resp.4).{ vi is labeled with 5. 19



can be constructed in O(jV j) time. 2Proposition 8 Every complement of a spiked p{chain Pk which is not acomplement of a simple path has clique{width exactly 4 and a 4{expressionde�ning it can be constructed in time O(jV j).Proof:Similar to the proof of proposition 7 above. 23.3 A spiked p{chain Qk and its complementBelow we recall from [Bab98b] the de�nitions of the graphs called p{chainQk and spiked p{chain Qk.Let G be a graph and let v1; : : : ; vk be an ordering of the vertices of G.We denote by N(vi)+ (resp. N (vi)+) the set of all neighbors (resp. non-neighbors) of vi with index larger than i. Then G is called a p{chain Qk ifG has k vertices v1; : : : ; vk and the edges of G are de�ned as follows:� N(vi)+ = fvi+1g for i odd.� N(vi)+ = fvi+1g for i even.A graph G is called a spiked p{chain Qk if G is a p{chain Qk = (v1; : : : ; vk),k � 6, with additional vertices z2; z3; : : : ; zk�5 such that� N(zi) = fv2; v4; : : : vi�1; vi+1g [ fz2; z4 : : : ; zi�1g for i odd, and� N(zi) = fv1; v3; : : : vi�1; vi+1g [ fz3; z5 : : : ; zi�1g for i even.Any of the vertices z2; z3; : : : zk�5 may be missing. We say that G is an even(resp. odd) spiked p{chain Qk if k is even (resp. odd).Let G be a spiked p{chain Qk we denote by S the set of vertices v1; : : : ; vkof G and we denote by K the set of vertices z2; : : : ; zk�5 of G. We denoteby Seven (resp. Sodd) the set of even (resp. odd) vertices of S. Likewise we18



spiked p{chain Pk (cf. [Bab98b]) if it is a simple path Pk = (v1; : : : ; vk)for k � 6 with the possibility of adding one or two vertices x and y suchthat: N(x) = fv2; v3g and N(y) = fvk�1; vkg and x and y do not belongto a common P4. In this section we show that a spiked p{chain Pk whichis not simple path has clique{width exactly 4, and the same holds for itscomplement.Proposition 7 Every spiked p{chain Pk which is not a simple path hasclique{width exactly 4 and a 4{expression de�ning it can be constructed intime O(jV j).Proof:Let G be a spiked p{chain Pk such that G is the simple path fv1; : : : ; vkgwith the addition of the two vertices x and y such that N(x) = fv2; v3g andN(y) = fvk�1; vkg. The case when either x or y is missing can be handledsimilarly. We �rst note that the clique{width of the subgraph of G inducedby the 6 vertices: v1; : : : ; v5 and x is of clique width greater than 3. Thiscan be proved by considering all the possible ways to de�ne this graph using3{expression and showing that this is not possible. Hence, the clique widthof G is � 4. We show below that G can be de�ned by a 4{expression whichimplies that the clique{width of G is exactly 4.By claim 1 above there is a 4{expression tk�6 which de�nes the labeled simplepath Pk�6 such that the two endpoints of the path are labeled with 1 and 2and all the other vertices of the path are labeled with 3. Clearly there are 4expressions tleft and tright which de�nes the labeled subgraphs of G inducedby the vertices fx; v1; v2; v3g and fy; vk�2; vk�1; vkg respectively such that thevertices v3 and vk�2 are labeled with 4 and all the other vertices are labeledwith 3. It follows that the following 4{expression, denoted as e de�nes thegraph G: e = �4;2(tright � �4!3(�4;1(tleft � tk�6)))Since tk�6 can be constructed in k � 6 steps and tright and tleft can be con-structed in constant time, it follows that the 4{expression e which de�nes G17



at least 3 in the graph de�ned by sk. Also no vertex of S is adjacent to anyvertex in tree(c; sk), since all the vertices of tree(c; sk) other than v and xhave label 3 at a. It follows that the graph de�ned by sk is disconnected,since there is no vertex in this graph which is adjacent to any vertex in S.This contradicts the assumption that the graph de�ned by sk is a Ck.CASE 2.2: Suppose that u is adjacent to just one vertex in tree(c; sk) andv is adjacent to just one vertex in tree(b; sk).From this assumption it follows that all the vertices of the graph de�ned bysk other than u and v must have the same label at a which is di�erent from1 or 2. Let denote this label by 3. Let S1 and S2 denote the sets of verticesoccuring at tree(b; sk) and tree(c; sk) respectively. Since all the vertices ofS1 and S2 other than u and v have label 3 at v, it follows that there is justone edge e crossing between S1 and S2 in the graph de�ned by sk. Thus,the graph de�ned by sk is not 2{connected, since removing the edge e willdisconnect the graph. Since a cycle Ck is 2{connected, this contradicts theassumption that the graph de�ned by sk is a Ck.Since we have considered all possible cases we conclude that there is no 3{expression which de�nes a simple cycle Ck having at least 7 vertices. Sincewe have shown above that every such cycle can be de�ned by a 4{expression,it follows that the clique{width of every such cycle is exactly 4. 2Recall that we denote by Cn the complement of the simple cycle Cn.Proposition 6 Every complement of a simple cycle Cn having at list 7 ver-tices, has a clique{width exactly 4 and a 4{expression de�ning it can be con-structed in time (O(jV j)).Proof:Similar to the proof of proposition 5 above. 23.2 A spiked p{chain Pk and its complementRecall that for n 2 N we denote by Pk the simple path of length k�1. Recallalso that N(x) denote the set of all neighbors of x. A graph G is called16



the same label (say 3), and the two endpoints of the path either have thesame label 2 or have the two labels 1 and 2. Since k�1 � 6, this contradictseither claim 2 above or corollary 1 above.CASE 2: Suppose that u is not the only vertex of the cycle occuring intree(b; sk) and v is not the only vertex of the cycle occuring in tree(c; sk).CASE 2.1: Suppose that either u is adjacent to two vertices in tree(c; sk)or v is adjacent to two vertices in tree(b; sk). We assume without loss ofgenerality that u is adjacent to two vertices in tree(c; sk). Clearly, one ofthese two vertices is v and let x be the other vertex occuring in tree(c; sk)which is adjacent to u.CASE 2.1.1: Suppose that x and v have di�erent labels at a. Let 3 denotethe label of x at a. By the above assumption there is another vertex yoccuring in tree(b; sk).If y is labeled with 1 at a (i.e the same label as u) then the 4 vertices u,v,xand y induce a C4 in the graph de�ned by sk, a contradiction since this graphis a Ck, for k � 7.If y is labeled with 2 or 3 at a, then u have degree at least 3 in the graphde�ned by sk, a contradiction since this graph is a Ck.Hence the label of y at a must be di�erent from 1, 2 or 3, a contradiction tothe assumption that sk is a 3{expression.CASE 2.1.2: Suppose that x and v have the same label at a. Recall thatwe denote this label by 2. By the above assumption there is another vertexy occuring in tree(b; sk).If y is labeled with 1 at a (i.e the same label as u) then the 4 vertices u,v,xand y induce a C4 in the graph de�ned by sk, a contradiction since this graphis a Ck, for k � 7.If y is labeled with 2 at a, then u have degree at least 3 in the graph de�nedby sk, a contradiction since this graph is a Ck.Hence, y and all the vertices of the graph other than u,v or x must havelabel 3 at a. Let S denote the set of all the vertices occuring in tree(b; sk)excluding u. Clearly, no vertex of S is adjacent to u, or else u will have degree15



Proposition 5 Every simple cycle Cn having at list 7 vertices, has a clique{width exactly 4 and a 4{expression de�ning it can be constructed in timeO(jV j).Proof:We �rst show that for n � 3, the clique{width of every simple cycle Cn is� 4. Let n 2 N , such that n � 3. By claim 1 above there is a 4{expressiontn�1 which de�nes the labeled path Pn�1, such that the two endpoints of Pn�1are labeled with 1 and 2 and all the internal vertices of the path are labeledwith 3. Then the following 4{expression, denoted by sn de�nes Cn:sn = �4;2(�4;1(4(x)� tn�1))From the construction of tn�1 in claim 1 above it follows that the 4{expressionsn de�ning Cn can be obtained in time O(jV j).We shall show below that every simple cycle of at least 7 vertices can notbe de�ned by any 3{expression. Suppose that there is a 3{expression skwhich de�nes a cycle Ck having at least 7 vertices. Let tree(sk) be the treecorresponding to sk, (see de�nition 7 above), let a be the highest node intree(sk) which corresponds to a � operation, and let b and c be the twosons of a. Since a is the highest � operation in tree(sk), it follows that allthe vertices of the cycle Ck occur in the leaves of tree(a; sk) (see de�nition 8above).Since Ck is connected it follows that there are two adjacent vertices uand v occuring in tree(b; sk) and tree(c; sk) respectively. Clearly u and vmust have di�erent label at a. Let 1 and 2 denote the labels of u and v at arespectively. We consider the following cases:CASE 1: Suppose that either u is the only vertex of the cycle occuring intree(b; sk) or v is the only vertex of the cycle occuring in tree(c; sk). We as-sume without loss of generality that u is the only vertex of the cycle occuringin tree(b; sk).In this case the graph de�ned by the 3{expression corresponding to tree(c; sk)is a labeled path Pk�1, such that all the internal vertices of the path have14



CASE 2.1.3: Suppose that u is not adjacent to any vertex occuring intree(c; tk), and v is not adjacent to any vertex occuring in tree(b; tk). Sincethe graph Pk is connected there are two vertices x,z occuring in tree(b; tk).and tree(c; tk), respectively such that x is adjacent to z. x and z must havedi�erent labels at a, or else they can not be made adjacent. Moreover, x andz can not be labeled with 1 or 2 at a, or else the graph de�ned by tk willinclude an internal node which has the same label as the two endpoints ofPk. It follows that u,v,x and z have 4 di�erent labels at a, a contradictionto the assumption that tk is a 3{expression.CASE 2.2: suppose that u and v have the same label at a. This case canbe handled similarly to case 1.2 above.Since we have considered all possible cases we conclude that there is no3{expression tk which de�nes the labeled path Pk such that its two endpointshave the same label and all the internal vertices has another label, a contra-diction. 2Corollary 1 for every n 2 N , such that n � 6 there is no 3{expression tn,which de�nes the labeled path Pn such that the two endpoints of the path uand v are labeled with 1 and 2 respectively, and all the other vertices of thepath are labeled with 3.Proof:Suppose there is a 3{expression rn which de�nes the labeled path Pn such thatthe two endpoints of the path u and v are labeled with 1 and 2 respectively,and all the other vertices of the path are labeled with 3. Let tn be the3{expression de�ned by: tn = �3!2(�2!1(rn))It is easy to see that the 3{expression tn de�nes the labeled path Pn such thatthe two endpoints of the path are labeled with 1 and all the other vertices ofthe path are labeled with 2, a contradiction to claim 2 above. 213



has the same label as the two endpoints of Pk. It follows that u,v,x and zhave 4 di�erent labels at a, a contradiction to the assumption that tk is a3{expression.CASE 1.2: suppose that u and v have the same label at a. Let 1 denote thelabel of u and v at a. Since there is no vertex in Pk which is adjacent to itstwo endpoints u and v, it follows that there is no vertex x in tree(c; tk) whichis adjacent to u or to v. Since the graph Pk de�ned by the 3{expression tk isconnected there are two vertices x,z occuring in tree(b; tk). and tree(c; tk),respectively such that x is adjacent to z. As in case 1.1.2 it can be shownthat the 3 vertices u,x and z must have di�erent labels at a. Let 2 and 3denote the labels of x and z at a respectively.Let W denote the set of all vertices of Pk other than u,v x and z. Clearly,no vertex in W can be labeled with 1 at a. Suppose that all the vertices inW are labeled just with 2 and 3 at a. Since there are at least two vertices inW , it follows that either there is one vertex in Pk which is adjacent to morethan two vertices or that there is at least an induced C4 of Pk, which is notpossible. Hence, at least one vertex in W must have a label di�erent than 12 or 3 at a, in contradiction to the assumption that tk is a 3{expression.CASE 2: Suppose that u and v the two endpoints of the path Pk, occur intree(b; tk) and tree(c; tk) respectively.CASE 2.1: Suppose that u and v have di�erent labels at a. Let 1, and 2be the two labels of u and v at a, respectively.CASE 2.1.1: Suppose that u is adjacent to some vertex x occuring intree(c; tk). Then x must have label di�erent than 1 and 2 at a. Let 3 denotethe label of x at a. Since u is an endpoint vertex, x is the only vertex whichis adjacent to u. Thus, all the other vertices of tree(a; tk) can not have label3 at a. It follows that there is at least one vertex y which must have alabel other than 1 2 or 3 at a, a contradiction to the assumption that tk is a3{expression.CASE 2.1.2: Suppose that v is adjacent to some vertex x occuring intree(b; tk). This case is similar to case 2.1.1 above.12



Proof:Assume that the claim does not hold for some n = k. Then there is a 3{expression tk which de�nes the labeled path Pk such that the two endpointsof the path are labeled with 1, and all the other vertices of the path arelabeled with 2. Let tree(tk) be the tree corresponding to tk, (see de�nition7 above), let a be the highest node in tree(tk) which corresponds to a �operation, and let b and c be the two sons of a. Since a is the highest �operation in tree(tk), it follows that all the vertices of the path Pk occur inthe leaves of tree(a; tk) (see de�nition 8 above). We consider the followingcases:CASE 1: Suppose that u and v the two endpoints of the path Pk, occureither in tree(b; tk) or in tree(c; tk). We assume without loss of generalitythat both u and v occur in tree(b; tk).CASE 1.1: suppose that u and v have di�erent labels at a. Let 1 and 2 bethe two labels of u and v at a, respectively.CASE 1.1.1: Suppose that one of the vertices u and v (say u) is adjacent tosome vertex x occuring in tree(c; tk). Then x must have label di�erent than1 and 2 at a. Let 3 denote the label of x at a. Since u is an endpoint vertex,x is the only vertex which is adjacent to u. Hence, all the other verticesof tree(a; tk) can not have label 3 at a. Moreover, all the other vertices oftree(a; tk) can not have label 1 or 2 at a, or else the labeled graph de�ned bytk will have an internal vertex which has the same label as the two endpoints.Since there are at least 6 vertices in Pk, we get that there is another vertexsay z, having label at a which is di�erent from 1,2 or 3. But this contradictsthe assumption that tk is a 3{expression.CASE 1.1.2: Suppose that u and v are not adjacent to any vertex x occuringin tree(c; tk). Since the graph Pk de�ned by the 3{expression tk is connectedthere are two vertices x,z occuring in tree(b; tk). and tree(c; tk), respectivelysuch that x is adjacent to z. x and z must have di�erent labels at a, or elsethey can not be made adjacent. Moreover, x and z can not be labeled with1 or 2, or else the graph de�ned by tk will include an internal node which11



Proposition 4 (Babel [Bab98a]) Let G be a (q; q � 3) graph for q � 7and let h be an internal N-node of T (G), then G(h) is isomorphic to eithera prime p{tree, a disc, a prime spider, or a graph with at most q vertices.3 Clique{width of prime graphs of (q; q � 3)graphs3.1 A simple cycle Cn and its complement CnRecall that for n 2 N , such that n � 3 , Cn denotes a simple cycle of lengthn. Clearly, C3 and C4 are cographs and have clique{width exactly 2. For C5and C6 there is a 3{expression which de�nes them, and since they are notcographs they have clique{width exactly 3. In this section we show that forn � 7, Cn has clique{width exactly 4. We shall use the following two claims:Claim 1 For every n 2 N , such that n � 2 there is a 4{expression tn, suchthat the labeled graph de�ned by tn is a path Pn such that the two endpointsof the path are labeled with 1 and 2 and all the other vertices of the path arelabeled with 3.Proof:We shall prove the claim by induction on n. The claim trivially holds forn = 2. Assume that the claim holds for n = k � 1, and let tk�1 be a 4{expression which de�nes the labeled path Pk�1 such that the two endpointsof the path are labeled with 1 and 2 and all the other vertices of the pathare labeled with 3. Then the following 4{expression tk de�nes the path Pkand satis�es the conditions of the claim:tk = �4!1(�1!3(�4;1(4(x)� tk�1))))) 2Claim 2 for every n 2 N , such that n � 6 there is no 3{expression tn,which de�nes the labeled path Pn such that the two endpoints of the path arelabeled with 1 and all the other vertices of the path are labeled with 2.10



2.3 The modular decomposition of (q; q � 3) graphsIn this section we recall from [Bab98a] the list of possible prime graphsobtained by the modular decomposition of a (q; q � 3) graph. For that weshall need the following de�nitions.Recall that the neighborhood N(v) of a vertex v of G is de�ned as theset of vertices of G adjacent to v, i.e.: N(v) = fuj(u; v) 2 Eg.De�nition 16 (Prime spider) A graph G is a prime spider if the vertexset of G can be partitioned into sets S;K and R such that:(i) S is a stable set (i.e. no vertex in S is adjacent to the other), K is aclique and jSj = jKj � 2.(ii) R contains at most one vertex, i.e. jRj � 1, and if R contains onevertex say r, then r is adjacent to all the vertices in K and is notadjacent to any of the vertices in S.(iii) There exist a bijection f between S and K such that either N(x) =ff(x)g for all vertices x in S or else N(x) = K�ff(x)g for all verticesx in S.The triple (S;K;R) is called the spider partition of G.A disc (cf. [Bab98a]) is a simple cycle Cn or its complement for n � 5.The graph R5 is obtained by adding the edge (v1; v3) to the path of length4 consisting of the vertices v1; : : : ; v5. The graph R6 is obtained from R5 byadding one vertex v6 and connecting it just to v2. The graph R7 is obtainedfrom R6 by adding one vertex v7 and connecting it to v3 and v4.The de�nitions of a spiked p{chain Pk and a spiked p{chain Qk are givenin sections 3.2 and 3.3 respectively.We say that a graph G is a prime p{tree if it is either a P4, R5, R5, R6,R6, R7, R7, a spiked p{chain Pk, a complement of a spiked p{chain Pk, aspiked p{chain Qk or a complement of a spiked p{chain Pk.The following proposition follows from [Bab98a]:9



De�nition 14 (The module M(h) and the representative graph G(h))Let h be an internal node of T (G), we denote byM(h) the module correspond-ing to h which consists of the set of vertices of G appearing in the leaves ofthe subtree of T (G) rooted at h. Let fh1; : : : ; hrg be the set of sons of h inT (G), we denote by G(h) = hV (h); E(h)i the representative graph of themodule M(h) de�ned by: V (h) = fh1; : : : ; hrg andE(h) = f(hi; hj) j 9u; v(u 2M(hi) ^ v 2 M(hj) ^ (u; v) 2 E)gNote that by the de�nition of a module, if a vertex of M(hi) is adjacent to avertex of M(hj) then every vertex of M(hi) will be adjacent to every vertexof M(hj). From the construction of T (G) it follows that:Proposition 1 Let G be any graph and let h be an internal node of T (G):(i) if h is an S{node then G(h) is a complete graph.(ii) if h is a P{node then G(h) is edge-less.(iii) if h is an N{node then G(h) is a prime graph.De�nition 15 (G[H=v]) Let G and H be two disjoint graphs and let v be avertex of G. We denote by G[H=v] the graph K obtained by the substitutionin G of H for v. Formally, V (K) = V (G) [ V (H)� fvg, andE(K) = E(H) [ fe : e 2 E(G) and e is not incident with vg [f(u;w) : u 2 V (H); w 2 V (G) and w is adjacent to v in GgProposition 2 (Courcelle and Makowsky and Rotics [CMR98a])For every disjoint graphs G,H, and for every vertex v of G, cwd(G[H=v]) =Maxfcwd(G); cwd(H)g.Recall that for any graph G, we denote by T (G) the modular decompositionof G (which is a tree), and for each internal node h of T (G) we denote byG(h) the representative graph of h de�ned in de�nition 14 above.Proposition 3 (Courcelle and Makowsky and Rotics [CMR98a])For every graph G, cwd(G) = Maxfcwd(H) : H is a representative graphof an internal node h in the modular decomposition of Gg.8



2.2 Clique{width and the modular decomposition ofgraphsIn this section we recall the connection established in [CMR98a] betweenthe well known concept of the modular decomposition of graphs and theclique{width property of graphs.The modular decomposition of a graph G, is tree denoted as T (G), to-gether with a set of prime graphs associated with the internal nodes of thetree labeled by N . We start by presenting the basic de�nitions and prop-erties of the modular decomposition of graphs. It is well known (for exam-ple see [CH94]) that for each graph G, the modular decomposition of thegraph T (G) is unique up to isomorphism, and can be obtained in linear(O(jEj) time. In our presentation of the modular decomposition below weshall mainly be concerned with its properties, rather than in the way in whichit can be constructed. More details on the exact algorithms which can beused for constructing the modular decomposition of graphs can be found in[GV97, BM83, CH94].De�nition 12 (Module, strong module, prime graph) A subset M ofvertices of a graph G is called a module of G if every vertex outside M iseither adjacent to all vertices in M or to none of them. A module M is calledstrong, if for any module M1 either M \M1 = ;, or one module contains theother. For every graph G = hV;Ei, the trivial modules of G are the set V ofall the vertices of G, and all the sets of single vertices of G of the form fvg,where v is any vertex of G. A graph G is called prime if it does not have anynon-trivial module.De�nition 13 (T (G) { the modular decomposition of G) The modu-lar decomposition of a graph G, is a tree denoted as T (G). The leaves ofT (G) are the vertices of G, and the set of leaves associated with the subtreerooted at an internal node, induce a strong module of G. An internal node islabeled by either P; S or N standing for Parallel, Series and Neighborhood,respectively, and it can be shown that for every graph G the tree T (G) isunique up to isomorphism. More details on how the tree T (G) is constructedcan be found in [GV97, BM83, CH94].7



A polynomial time algorithm for recognizing the class C(3) is presented in[Rot98].In the following sections when considering a k{expression t which de�nesa graph G, it will often be useful to consider the tree structure, denotedas tree(t), corresponding to the k{expression t. For that we shall need thefollowing de�nitions.De�nition 7 (tree(t)) Let t be any k{expression, and let G be the graphdenoted by t. We denote by tree(t) the parse tree constructed from t in theusual way. The leaves of this tree are the vertices of G, and the internal nodescorresponds to the operations of t, and can be either binary corresponding to� or unary corresponding to � or �.De�nition 8 (tree(a; t), sub{expression(a; t)) Let t beany k{expression, a be any node in t, we denote by tree(a; t) the subtreeof tree(t) rooted at a. We denote by sub{expression(a; t) the k{expressioncorresponding to tree(a; t).De�nition 9 (t1 is a sub{expression of t2) Let t1 be a k{expression andlet t2 be an l{expression, k � l. We say that t1 is a sub{expression of t2 ifthere exists a node a such that tree(t1) is the sub{tree of tree(t2) rooted ata. In other words tree(t1) is equal to tree(a; t2).De�nition 10 (num{vertices(t)) Let t be any k{expression, we denote bynum{vertices(t) the number of vertices of the graph de�ned by t. In otherwords num{vertices(t) is the number of leaves in tree(t).De�nition 11 (The label of a vertex v at an internal node a) Let tbe any k{expression, and let G be the graph de�ned by t. Let a be any inter-nal node of tree(t) and let v be any vertex of G occuring in tree(a; t), i.e. vis a leaf of tree(a; t). The labels of v may change by the � operations in t.However, whenever an operation is applied on a sub{expression t1 of t whichcontains v, the label of v (like the labels of all the other vertices occuring int1) is well de�ned. The label of v at a is de�ned as the label that v has whenthe operation a is applied on the subtree of tree(t) rooted at a.6



De�nition 4 (�i!j(G)) For a k-graph G as above we denote by �i!j(G) therenaming of i into j in G such that:�i!j(G) = hV;E; V 01 ; : : : V 0ki; whereV 0i = ;, V 0j = Vj [ Vi, and V 0p = Vp for p 6= i; j.These graph operations have been introduced in [CER93] for characterizinggraph grammars. For every vertex v of a graph G and i 2 f1; : : : kg, wedenote by i(v) the k-graph consisting of one vertex v labeled by i.Example 1 A clique with four vertices u; v; w; x can be expressed as:�2!1(�1;2(2(u)� �2!1(�1;2(2(v)� �2!1(�1;2(1(w) � 2(x)))))))De�nition 5 (k{expression) With every graph G one can associate an al-gebraic expression built using the 3 type of operations mentioned above whichde�nes G. We call such an expression a k{expression de�ning G, if all thelabels in the expression are in f1; : : : ; kg. Clearly, for every graph G, thereis an n{expression which de�nes G, where n is the number of vertices of G.De�nition 6 (The clique{width of a graph G, cwd(G)) Let C(k) bethe class of graphs which can be de�ned by k{expressions. The clique-widthof a graph G, denoted cwd(G), is de�ned by: cwd(G) =Minfk : G 2 C(k)g.The clique{width is a complexity measure on graphs somewhat similar totree width, which yields e�cient graph algorithms provides the graph is givenwith its k{expression (for �xed k). A related notion has been introduced byWanke [Wan94] in connection with graph grammars. C(1) is the class ofedge-less graphs.Cographs are exactly the graphs of clique width at most 2, and trees haveclique width at most 3 (cf. [CO98]).Problem 2 Find characterization of graphs of clique width at most k; k � 3.Does there exist a polynomial time algorithms for recognizing the classesC(k); k � 4 ? 5



theory of square grids. As a by product of Theorems 2 and 4 above weobtain another proof of these results, but with an explicit lower bound onthe clique{width. Our proof is direct and does not relay on the notions ofgraph grammars and the undecidability of the MSOL theory of square grids.2 Background2.1 Graph operations and clique-widthIn this section we de�ne the notions of graph operations and clique-width,as presented in [CO98].De�nition 1 (k{graph) A k-graph is a labeled graph with (vertex) labelsin f1; 2; : : : ; kg. A k-graph G, is represented as a structure hV;E; V1; : : : Vki,where V and E are the sets of vertices and edges respectively, and V1; : : : ; Vkform a partition of V , such that Vi is the set of vertices labeled i in G.Note that some Vi's may be empty. A non-labeled graph G = hV;Ei, will beconsidered as a 1-graph such that all the vertices of G are labeled by 1.De�nition 2 (G �H) For k-graphs G;H such that G = hV;E; V1; : : : ; Vkiand H = hV 0; E 0; V 01 ; : : : ; V 0ki and V \ V 0 = ; (if this is not the case thenreplace H with a disjoint copy of H), we denote by G�H, the disjoint unionof G and H such that:G �H = hV [ V 0; E [ E 0; V1 [ V 01 ; : : : ; Vk [ V 0kiNote that G�G 6= G.De�nition 3 (�i;j(G)) For a k-graph G as above we denote by �i;j(G), wherei 6= j, the k-graph obtained by connecting all the vertices labeled i to all thevertices labeled j in G. Formally:�i;j(G) = hV;E 0; V1; : : : Vki ; whereE 0 = E [ f(u; v) : u 2 Vi; v 2 Vjg4



above can not be proved on these graph classes. In particular we show that:Theorem 2 There is a class C containing in�nitely many (6; 3) graphs, suchthat for every graph G = hV;Ei 2 C, cwd(G) � qjV j=27.Theorem 3 For every q � 4, there is a class C(q) containing in�nitelymany (q; q) graphs, such that for every graph G = hV;Ei 2 C, cwd(G) �qjV j=27q3.Clearly, a (q; t) graph is also a (q0; t0) graph for q � q0 and for t0 � t.Hence, by Theorems 1 - 3 we have settled the clique{width question on the(q; t) graph classes for all the possible combinations of q and t, except for thefollowing which is still open:Problem 1 Are the classes of (q; q�1) graphs and (q; q�2) graphs for q � 7of bounded clique{width?For proving Theorems 2 and 3 above we de�ne (cf. de�nition 18 below)the 2{color{width property of a graph. We shall show (cf. Theorem 5 below)that for every graph G, if G has 2{color{width � k then G has clique{width� k. However, the other direction (cf. Fact 1 below) does not hold: thereis a graph G which has clique{width � k but has 2{color{width 1. Webelieve that this new concept of unbounded 2{colored{width is signi�cant,since it characterizes a big subclass of the class of graphs of unboundedclique{width without using the notions of graph operations, k{expressionsand clique width.Using the same technique for other graph classes, we show that the classof split graphs is not of bounded clique{width. In particular, we show that:Theorem 4 There is a class C containing in�nitely many split graphs, suchthat for every graph G = hV;Ei 2 C, cwd(G) � (q2jV j � 1)=72.Courcelle showed in [Cou93] that the classes of square grids and chordalgraphs are not of bounded clique{width, using the notion of graph grammarsand based on the the undecidability of the Monadic Second Order Logic3



1 IntroductionThe study of graph classes having few P4s have been very active in recentyears. Example for such graph classes are the classes of cographs, (extended)P4{sparse graphs, (extended) P4{reducible graphs and P4{tidy, studied in[CLS81, JO89, JO92b, JO92a, JO95a, JO95b, GRT97, GV97]. Babel andOlariu introduced in [BO95] the class of (q; t) graphs which for t = q � 3extends all the graph classes mentioned above. In such a graph no set withat most q vertices is allowed to induced more than t distinct P4s. Clearly,we assume that q � 4. In a series of papers (cf. [BO95, BO98a, BO98b,Bab98a, Bab98b]) Babel and Olariu studied the classes of (q; q � 4) and(q; q � 3) graphs.The notion of clique-width of graphs was �rst introduced by Courcelle,Engelfriet and Rozenberg in [CER93], as graphs which can be de�ned byk-expressions based graph operation which use k vertex labels. A detailedstudy of clique{width is [CO98]. Clique{width has analogous properties astreewidth: If the clique{width of a class of graphs C is bounded by k (andthe k{expression can be computed from its corresponding graph in timeT (jV j)) then every decision, optimization, enumeration or evaluation problemon C which can be de�ned by a Monadic Second Order formula  can besolved in time ck �O(jV j)+T (jV j) where ck is a constant which depends onlyon  and k and v is the number of vertices of the input. For details, cf.[CMR98a, CMR98b, CMR99].In this paper we study the clique{width of the (q; t) graphs for almost allcombinations of q and t. We �rst show that:Theorem 1 For every (q; q�3) graph G such that q � 7, G has clique{width� q, and a q{expression de�ning it can be constructed in time O(jV j+ jEj).The proof of Theorem 1 above is based on the the results of Babel (cf.[Bab98a]) which studied the prime graphs of the class of (q; q � 3) graphs.We continue by showing that the class of (6; 3) graphs and the classes of(q; q) graphs for q � 4 are not of bounded clique{width. Hence Theorem 12
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