[Rot98]  U. Rotics. Polynomial time (o(|v|")) algorithm for the 3-clique-
width problem. Preprint, 1998.

[Spi92] J. Spinrad. Pj-trees and substitution decomposition. Discrete
Appl. Math., 39:263-291, 1992.

[Wan94]  E. Wanke. k-NLC graphs and polynomial algorithms. Discrete
Appl. Math., 54:251-266, 1994.

37



[CMR99]

[COYS]

[Cou93|

[GRT97]

[GV97]

[J089]

[JO92a]

[JO92b]

[JO95a]

[JO95b]

B. Courcelle, J.A. Makowsky, and U. Rotics. Hierarchical de-
compositions of relational structures and applications to efficient

algorithms. in preparartion, 1999.

B. Courcelle and S. Olariu. Upper bounds to the clique-width of
graphs. submitted for publication
(http://dept-info.labri.u-bordeaux.fr/~courcell /ActSci.html),
1998.

B. Courcelle. Graph grammars, monadic second-order logic and
the theory of graph minors. Contemporary Mathematics, 147:565—
590, 1993.

V. Giakoumakis, , F. Roussel, and H. Thuillier. On P;-tidy
graphs. Discrete Mathematics and Theoretical Computer Science,
1:17-41, 1997.

V. Giakoumakis and J. Vanherpe. On extended P;-reducible and
extended Py-sparse graphs. Theoret. Comput. Seci., 180:269-286,
1997.

B. Jamison and S. Olariu. FPs-reducible graphs a class of tree

representable graphs. Studies Appl. Math., 81:79-87, 1989.

B. Jamison and S. Olariu. A linear-time recognition algorithm

for Py-sparse graphs. SIAM J. Comput., 21:381-406, 1992.

B. Jamison and S. Olariu. A unique tree representation for P;-

sparse graphs. Discrete Appl. Math., 35:115-129, 1992.

B. Jamison and S. Olariu. A linear-time algorithm to recognize

Py-reducible graphs. Theoret. Comput. Sci., 145:329-344, 1995.

B. Jamison and S. Olariu. Linear-time optimization algorithms

for Py-sparse graphs. Discrete Appl. Math., 61:155-175, 1995.

36



[Bab98h)]

[BMS3]

[BOYS5]

[BO98a]

[BOYSh]

[CER93]

[CHY4]

[CLSS1]

[CMR98a]

[CMRISH]

L. Babel. Recognition and isomorphism of tree-like Py—connected

graphs. Preprint, 1998.

H. Buer and R.H. Mohring. A fast algorithm for the decomposi-
tion of graphs and posets. Math. Oper. Res., 8:170-184, 1983.

L. Babel and S. Olariu. On the isomorphism of graphs with few
Pys. In M. Nagl, editor, Graph Theoretic Concepts in Computer
Science, 21th International Workshop, W(G95, volume 1017 of
Lecture Notes in Computer Science, pages 24-36. Springer Verlag,
1995.

L. Babel and S. Olariu. Domination and steiner tree problems
on graphs with few P;s. To appear in the proceedings of WG9S,
1998.

L. Babel and S. Olariu. On the p—connectednessof graphs — a
survey. Preprint, 1998.

B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting
hypergraph grammars. J. Comput. System Sci., 46:218-270, 1993.

A. Cournier and M. Habib. A new linear algorithm for modular
decomposition. Lecture Notes in Computer Science, 787:68-84,
1994.

D.G. Corneil, H. Lerchs, and L. Stewart. Complement reducible
graphs. Dise. Appl. Math., 3:163—-174, 1981.

B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solv-
able optimization problems on certain structured graph families,
extended abstract. To appear in the proceedings of WG9S, 1998.

B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed pa-
rameter complexity of graph enumeration problems definable in

monadic second order logic. in preparartion, 1998.

35



the first case there is no other vertex z of L such that w and z occur in the
same equivalence class of R,.q4, or else z and w are adjacent to both u and v,
a contradiction. In the second case there is no vertex z of L. — P, such that
z and a vertex of P, occur in the same equivalence class of R,.4, or else u
must be adjacent to z, a contradiction.

We conclude that for each vertex of 53, or for each pair of vertices of
S3 biue, there is a corresponding vertex of L or a corresponding set of vertices
of L, which occur in an equivalence class of R,.; which is different from all
the equivalence classes in which the other vertices of L occur. It follows the
vertices of L occur in at least |55 p,.|/2 > n/72 different equivalence classes
of R,.q. But this contradicts the assumption that the number of equivalence
classes of R,¢q is less than n/72. O

Theorem 4. There is a class C containing infinitely many split graphs,
such that for every graph G = (V. E) € C cwd(G) > (sqri2|V]| —1)/72.
Proof:

Let (&, denote the clique of n vertices, and let C be the class of split graphs
of cliques defined by: C = {splt(G,) : n € N, n > 20}. From Theorem 5
and Lemma 4 above it follows that for n € N n > 20, cwd(splt(G,)) > n/72.
Since for every clique G, splt((,,) is a split graph, it follows that the class C

satisfies the conditions of the theorem. O
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CASE 1: Suppose that either |Si| < 10n/18 or |53 < 10n/18. We assume
that [S1] < 10n/18, (the case when |S3| < 10n/18 can be handled similarly).
From the definition of 5] it follows that the number of red vertices is at most:
|S1|+ (51| % (]S1]—1))/2. Since |S1| < 10n/18 we get (by substituting 10n/18
instead of |S| in the above formula) that for n > 20 the number of the red
vertices is at most: 0.165n?. However, since the number of red vertices greater
than (n?)/6 there must be at least 0.166n* red vertices, a contradiction.
CASE 2: Suppose that both |51] > 10/18 and |Sz| > 10n/18. Let S5 denote
the intersection of 57 and S3. Since the total number of vertices occuring
either in S or in Sy (or in both of them) is equal to n, we get that at
least n/18 vertices occurs both in 7 and in S3. In other words we get that
|S3| > n/18. Let S5,c4 (S3bie) denote the set of all the red (blue) vertices
occuring in Ss.

CASE 2.1: Suppose that |S3.c4| > n/36. Suppose that there exists three
vertices (say x,y and z) in Ss,.q such x, y and z are in the same equivalence
class of R,.q. Since z 1s in S, there exist a blue vertex w such that w is
adjacent to x, since the degree of w is 2, w is not adjacent to either y or z
(say z). Hence, there is a blue vertex w which distinguishes  and z. But this
contradicts the assumption that x and z are in the same equivalence class of
R,cq.

Hence, every 3 vertices of S3,.4 can not be in the same equivalence class
0f Ryeq, which implies that the vertices of Ss .4 occur in at least S5 ,eq|/2 >
n /72 different equivalence classes of R,..;. But this contradicts the assump-
tion that the number of equivalence classes of R,.q is less than n/72.
CASE 2.2: Suppose that |55 ,.4] < n/36. Since |S3] > n/18 it must be that
|S3.piue| = n/36. Let L be the set of vertices defined by:

L ={v|v € E,visred and v is adjacent to some vertex u € S5 pic |-

For each vertex u in S5 e either there exist another vertex v in Ss . such
that v and v have a common neighbor w in L, or the set P, of all the vertices

of L which are adjacent to u is not adjacent to any other vertex in S ppe. In
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orem. a

6 Some other graph classes of unbounded
clique—width

In this section we show how our technique presented in section 5 above can
be applied to other graph classes. In particular we show that the split graphs

and all the graph classes which contains them are of unbounded clique-width.

Definition 20 (Split graph of a clique splt(G)) Let G = (V,E) be a
clique, the split graph of of G, denoted splt((), is is defined as the graph
(VI,E"), such that: V! =V UFE and

E'=EU{(v,e) | veV,ee€ E and v is one of the endpoints of e}

Lemma 4 Let n € N be such that n > 20, let G = (V. E) be a clique of n
vertices, and let G' = splt(G) be the split graph of G, then 2colw(G') > n/72.

Proof:
Let n € N be such that n > 20, let G = (V| E) be a clique of n vertices, and
let G' = (V', E") be the split graph of ;. Suppose that 2colw(G") < n/72.

/

Then there is a partition of the vertices of G into two disjoint sets V ; and

Vije of red and blue vertices respectively, such that n(n +1)/6 < |V | <
n(n 4 1)/3, and the number of equivalence classes of R,.q (see definition 17
above) is less then n/72.

We say that a vertex v of G’ is spanned-by—red—edges (spanned—by—blue—
edges) if v € V and there is at least one red (blue) vertex e € E such that v
is adjacent to e in G'. Note that a vertex v can be spanned-by-red—edges and
also spanned-by—blue—edges. Let S; (S2) denote the set of all the vertices of
(" which are spanned-by-red—edges (spanned-by—blue—edges). We consider

the following two cases:
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Since we have considered all possible cases, and got a contradiction in
each case, we conclude that our assumption that 2colw(G) < n/3 was not
correct. In other words we conclude that 2colw(G) > n/3. O

Theorem 2. There is a class C containing infinitely many (6,3) graphs,
such that for every graph G = (V. E) € C, cwd(G) > +/|V|/27.

Proof:

Let C be the class of extended square grids defined by: C = {H,11 : n €
N, n > 3}. From Theorem 5 and Lemma 2 above it follows that for
n € Nn >3, cod(H,11) > n/3. Since by Fact 2 above every H, 1, is
a (6,3) graph the class C satisfies the conditions of the theorem. a

5.3 (q,q) graphs for ¢ > 4

In this section we show that the class of (¢, ¢) graphs are not of bounded
clique-width. For that we shall consider the extended square grids H, ,,
(see definition 19) above which are (¢, ¢) graphs by Fact 3 above.

Lemma 3 For every n € N such that n > 3, and for every q > 1,
2colw(H,,44) > n/3q.

Proof:

The proof is similar to the proof of Lemma 2 above. a

Theorem 3. For every ¢ > 4, there is a class C(q) containing in-
finitely many (q,q) graphs, such that for every graph G = (V,E) € C
cwd(G) > +/|V|/27¢%.

Proof:

For ¢ > 4 let C(¢q) be the class of extended square grids defined by:
Clq) = {Hnyq :n € N, n > 3}. From Theorem 5 and Lemma 3 above
it follows that for n € N n > 3, cwd(H,4,) > n/3q. Since by Fact 3 above
every H, ., is a (¢, q) graph the class C(q) satisfies the conditions of the the-
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of L occurs in different equivalence classes of R,.q, which implies that the
number of these equivalence classes is at least n, a contradiction.

CASE 2: Suppose that for some 7 in {1,3,...,2n — 1} there is there is no
vertex v € S occuring in column ¢ of (. There are two possible cases:
CASE 2.1: Suppose that all the vertices of column ¢ are red. We say that
v is a red (resp. blue) row—alternating vertex if v is a red (resp. blue) vertex
such that there is a blue (resp. red) vertex u adjacent to v such that v and u

are in the same row in G. We construct a set ) by the following procedure:
(i) Set j =1, and set @ = 0.
(ii) If y = 2n + 1 stop.

(iii) If not all the vertices at row j are red then let v be any red row—

alternating vertex occuring in row j. Set ) = Q U {v}.

(iv) If all the vertices at row j are red and not all the vertices at row j — 1
are red then let v by any red vertex occuring in row j such that its
neighbor at row j — 1 is blue. Set @ = Q U {v}.

(v) set j = j + 2 and go to step (ii) above

Suppose that the number of vertices occuring in () is < n/3 it follows that
there more than 2n/3 rows in which we could not choose a vertex to add
to () by the above procedure. In other words there are at least 2n/3 odd
rows J in {3,5, ...2n-1} such that all the vertices at row j and row j — 1
are red. Counting the number of red vertices in these rows, we get that
|Vied| = 2n% — 2n/3 > 2n* — 4n/3, a contradiction.

Hence |Q| > n/3. But since all the vertices of () occur in different equivalence
classes of R,.4 it follows that the number of equivalence classes of R,..q is at
least n/3 a contradiction.

CASE 2.2: Suppose that all the vertices of column 2 are blue. In this case
we can use a similar argument to case 2.1 above to show that this case is not

possible.

30



Definition 19 (Extended square grid H,,;.,) Let G, be an n X n square
grid. The extended square grid H, ., is the graph obtained from G, by
replacing every edge (u,v) occuring in a row (resp. column) of G, by a
simple path of length | + 1 (resp. m + 1) such that the endpoints of the path
are u and v.

Counting the number of possible Pys in every ¢ vertices of an extended square

grid, it can be showed that:

Fact 2 Forn > 2 every extended square grid H,1.1 is a (6,3) graph.

Fact 3 Forn > 2 every extended square grid H,,, is a (q,q) graph.

Hence, to show that the class of (6,3) graphs is not of bounded clique-width
we shall show that:

Lemma 2 For every n € N such that n > 3, 2colw(H,11) > n/3.

Proof:

Let n € N be such that n > 3, and let ¢ = (V E) be the extended square grid
H, 1. First note that |V| = 3n* — 2n. Suppose that 2colw(G) < n/3. Then
there is a partition of the vertices of G into two disjoint sets V,.4 and V. of
red and blue vertices respectively, such that n* —2n/3 < |V,.4| < 2n* —4n/3,
and the number of equivalence classes of R,.q (see definition 17 above) is less
then n/3. Note that G has 2n-1 rows and 2n-1 columns. We number the
rows and columns of GG from 1 to 2n — 1. Note that all the even rows and
columns contains just vertices of degree 2. We say that v is a red (resp. blue)
column-alternating vertex if v is a red (resp. blue) vertex such that there is
a blue (resp. red) vertex u adjacent to v such that v and v are in the same
column in GG. Let S denote the set of all the red column—alternating vertices.
We consider the following two cases:

CASE 1: Suppose that for every ¢ in 1,3, ... ,2n-1 there is one vertex v € S
occuring in column 7 in . Then there is a set L = {v1,v3,...,02,-1} of n
vertices of S such that for every 7,7 in {1,3,...,2n — 1} such that ¢ # j v;

and v; occur in different columns in G. It is easy to see that all the vertices
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at the same distance from column ¢ (in both directions), then chose
arbitrarily either v or v. Set @) = @ U {v}.

(iv) set y = j + 1 and go to step (ii) above

Suppose that the number of vertices occuring in () is < n/3 it follows that
there are more than 2n/3 red rows. Hence, |V,¢4| > 2r*/3, a contradiction.
Therefore we can assume that |Q] > n/3.
Suppose that two vertices occuring in @ (say x and y) are in the same
equivalence class of R,.q. We can assume without loss of generality that =
and y occurs in columns j; and j, respectively, such that either 5 < j; < jq,
or < j5 < g1 < j. Let ¢ denote the row in which y occurs. In both cases
the blue vertex w which occurs in row ¢ and is adjacent to y distinguishes
x and y. But this contradicts the assumption that = and y are in the same
equivalence class of R,.q.
We conclude that all the vertices of () occur in different equivalence classes of
R,cq, which implies that the number of equivalence classes of R,.q is > n/3,
a contradiction.
CASE 2.2: Suppose that all the vertices of column 2 are blue. In this case
we can use a similar argument to case 2.1 above to show that this case is not
possible.

Since we have considered all possible cases, and got a contradiction in
each case, we conclude that our assumption that 2colw(G) < n/3 was not
correct. In other words we conclude that 2colw(G) > n/3. O

Remark 1 Using a more complicated argument it can be shown that for
every n X n square grid G, cwd(G) > n. Since it is not hard to see that
every n X n square grid can be build by an n + 2—expression, it follows that
for every such graph the clique—width is between n and n 4+ 2. We suspect
that for n > 3 the cligue width of an n X n square grid is exactly n 4+ 2, but
we leave it as an open question.
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CASE 1: Suppose that for 1 < 2 < n there is at least one vertex v € S
occuring in column ¢ in GG. Then there is a set L = {vq,...,v,} of n vertices
of S such that for 1 < ¢ < n and for 1 < 5 < n such that ¢z # j v; and v;
occur in different columns in G.

Suppose that there are 3 vertices z,y and z of L which are in the same
equivalence class of R,.q. Clearly two of these 3 vertices (say « and y) occur
at two non-consecutive columns in GG. Let ¢ denote the columns of G which
contains x. Since x is in S there is a blue vertex w which is adjacent to x and
is included in column 2. Since the columns of = and y are not consecutive
it follows that w is not adjacent to y. In other words the blue vertex w
distinguishes x and y. But this contradicts the assumption that = and y are
in the same equivalence class of R,..4.

Hence, every 3 vertices of L can not be in the same equivalence class of
R,.q, which implies that the vertices of L occur in at least n/2 different
equivalence classes of R,.;. But this contradict the assumption that the
number of equivalence classes of R,.q is less than n/3.

CASE 2: Suppose that for some 1 < < n, there is no vertex v € S occuring
in column ¢ of G. There are two possible cases:

CASE 2.1: Suppose that all the vertices of column ¢ are red. We say that
v is a red (blue) row-alternating vertex if v is a red (blue) vertex such that
there is a blue (red) vertex u adjacent to v such that v and u are in the same
row in (G. Let P denote the set of all the red row—alternating vertices. We

construct a set () C P by the following procedure:
(i) Set j =1, and set @ = 0.
(ii) If y =n+ 1 stop.

(iii) If not all the vertices at row j are red then let v be the red row—
alternating vertex occuring in row j, such that the column in which
v occur is the closest column to column ¢, which contains a red row—

alternating vertex. If there are two such vertices v and u occuring
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The following fact shows that the other direction of Theorem 5 above
does not hold:

Fact 1 There is a graph G = (V| E) such that the clique—width of G is
> /|V]/6 and the 2—color—width of G is equal to 1.

Proof:

Let G = (V. E) be the graph obtained by taking the disjoint union of
n? isolated vertices with and an n x n square grid. By Lemma 1 below
cwd(G') > n/3 which implies that cwd(G) > \/M/G By coloring all the n?
isolated vertices of ¢ with red and all the n? vertices of the square grid of ¢
with blue, we we obtain that the number of the equivalence classes of R,..q is

one, which implies that the 2—color—width of ¢ is equal to 1. O

5.2 (6,3) graphs

In this section we shall show that the class of (6,3) graphs is of unbounded
clique-width. Before handling the case of the (6,3) graphs we show how our

techniques can be used for the class of square grids:

Lemma 1 Letn € N be such that n > 4, and let G be an n X n square grid,
then 2colw(G) > n/3.

Proof:

Let n € N be such that n > 4, and let G be an n x n square grid, suppose
that 2colw(G) < n/3. Then there is a partition of the vertices of ¢ into two
disjoint sets V.4 and Vi, of red and blue vertices respectively, such that
n?/3 < |Viea|l < 2n*/3, and the number of equivalence classes of R,.q (see
definition 17 above) is less then n/3.

We say that v is a red (blue) column-alternating vertex if v is a red (blue)
vertex such that there is a blue (red) vertex u adjacent to v such that v
and u are in the same column in G. Let S denote the set of all the red

column—alternating vertices. We consider the following two cases:
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finally obtain a sub—tree T, of T such that nl(7)/3 < nl(T,) <2nl(T)/3. O

We say that a class of graphs C is of unbounded clique-width (2—color—
width) if there is no fixed & € N, such that for every graph G € C, the
clique-width (the 2—color-width) of (7 is at most k.

Theorem 5 For every graph G, if the 2—color—width of G is > k then the
cligue—width of G is > k.

Proof:

Let G = (V,FE) be any graph such that 2col(G) > k. Suppose that
cwd(G) < k. Then there is a k—expression ¢ which defines G. By propo-
sition 11 above there is a node a in tree(t) (see definition 7 above) such that
nl(tree(t))/3 < nl(tree(a,t)) < 2nl(tree(t))/3, where tree(a,t) denotes the
sub—tree of tree(t) rooted at a (cf. definition 8 above) and nl(tree(t)) denotes
the number of leaves in tree(t).

Clearly, nl(tree(t)) = |V|. Let V,cq and Vi be the partition of the vertices of
|V | into two disjoint sets such that all the vertices of V.4 are colored with red
and occurs in tree(a,t) and all the vertices of V. are colored with blue and
do not occur in tree(a,t). Since nl(tree(t)) = |V| and nl(tree(a,t)) = |Viel,
it follows that |V|/3 < [Viea| < 2|V|/3. Let R,eq be the relation defined in
definition 17 above. Since 2colw(() > k, there are at least k4 1 equivalence
classes in R,.q. Hence there is a set S = {vy,...,v541} of k+ 1 vertices of G
such that for 1 <7 < k41 and for 1 <5 < k41 such that 7 # j, v; and v;
do not occur in the same equivalence class of R, 4.

Suppose that v; and v; has the same label at a, it follows that there is no
blue vertex w which distinguishes v; and v;, a contradiction to the assump-
tion that v; and v; are in different equivalence classes of R,.4. Hence, all the
vertices occuring at S must have different labels at a. In other words the
vertices of S are labeled with k£ + 1 different labels at a. But this contradicts

the assumption that ¢ is a k—expression. a
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Definition 17 (The equivalence relation R,.;) Let G = (V,E) be a
graph, and let V,.q and Vi be a partition of V into two disjoint sets of
vertices colored by red and blue respectively. We define the relation R,.q such
that a pair of vertices (u,v) is in Ryeq if and only if u and v are both red
and there is no blue vertex x which distinguishes u and v. Clearly R,.q is an
equivalence relation.

Definition 18 (The 2—color-width of a graph G, 2colw(G)) Let G =
(V, E) be any graph, the 2—color—width of ¢, denoted as 2colw(G) is defined
as the smallest number | € N, such that there is a partition of the vertices of
G into two disjoint sets Vieq and Vi such that |V|/3 < |Viea| < 2|V]/3 and
R,cq has | equivalent classes.

Recall that for any tree 7" and an internal node a of T" we denote by T,
the sub—tree of T rooted at a. For every tree T', we denote by nl(T'), the
number of leaves of T'.

In proving Theorem 5 below we shall use the following proposition:

Proposition 11 Let T = (V, E) be any binary tree, then there is an internal
vertex of the tree a, such that nl(T)/3 < nl(T,) < 2nl(T)/3.

Proof:

Let T = (V, E) be any binary tree, let a be the highest node in 7" which
has two sons, and let b and ¢ be the sons of a. If both nl(Ty) > nl(T)/3
and nl(T,) > nl(T)/3 then we are done since both T, and T. satisfies the
conditions of the proposition.

Hence, we can assume without loss of generality that nl(7,) < nl(T)/3 and
nl(T.) > 2nl(T)/3. Let d be the highest node in T. which has two sons (d
may be equal to ¢), and let e and f be the sons of d in T,.. We assume without
loss of generality that nl(T.) < nl(Ty).

If nl(Ty) < 2nl(T)/3 we are done, since Ty satisfies the conditions of the
proposition.

Hence we assume that nl(Ty) > 2nl(T)/3. Noting that nl(Ty) < nl(T.), it

follows that repeating the above argument at most nl(7)/3 times we shall
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at most ¢ vertices have clique-width < ¢, by proposition 3 above it follows

that GG has clique-width < ¢g. A g-expression defining G can be constructed
in time O(|V| + |F|) as follows:

(i)

(i)

(iii)

5.1

Construct the modular decomposition of G, T'(G) in time O(|V| 4+ | F])
by classical methods, as shown in [GV97].

From the modular decomposition T(() construct an expression con-
sisting of a sequence of vertex substitutions which defines (&, as shown
in the proof of proposition 3 (see [CMR98a]). Since the number of ver-
tices in T'(G) is O(|V]) (as proved in [Spi92]), this step can be done in
time O(|V]).

Convert the expression of vertex substitutions obtained at the previous
step, to a g-expression for (G as shown in the proof of proposition 2 (see
[CMR98a]). This step can be done in time O(|V]), since each graph H
used in the substitutions is either an edgeless graph, a clique, a prime
spider, a disc, a prime p-tree or a graph with at most ¢ vertices, a
g-expression which defines H can be constructed in O(|V (H)|) time, as
can be shown easily for the first 2 cases and was shown in [CMR98a]
for the prime spiders, in Propositions 5 and 6 above for the discs or in

propositions 7, 8, 9 and 10 for the prime p—trees.

(6,3) and (q,q) for ¢ > 4 graphs are of un-
bounded clique—width

The 2—color width of graphs

We say that a vertex x distinguishes y and z if x is adjacent to y and is not

adjacent to z, or vise versa.
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Proof:

Follows immediately from claim 3 above since the 6—expression ?; defines
the spiked p—chain ). For the complexity, since the 6—expression ¢; can
be constructed in k steps using claim 3 above and in each step the amount

of additional work is bounded by a constant, it follows that ¢ can be con-
structed in O(|V]) time. O

Proposition 10 Every complement of a spiked p—chain Q, has clique—width
< 6 and a 6—expression defining it can be constructed in time O(|V]).

Proof:

Similar to the proof of proposition 9 above. O

4 (q,q—3) graphs for ¢ > 7 are of clique-width
<q

In this section we show that:

Theorem 1. For every (q,q—3) graph G such that ¢ > 7, G has clique—width
< ¢, and a g—expression defining it can be constructed in time O(|V|+|F]).
Proof:

Let GG be a (q,q — 3) graph for ¢ > 7 and let T'() be the modular decompo-
sition of (G. By proposition 3 above in order to show that cwd(G) < ¢, it is
enough to show that for each internal node h of T((), cwd(G(h)) < ¢, where
G/(h) is the representative graph of h in T(G). If h is a P-node (S-node)
then G/(h) is an edgeless graph (a clique), and has a clique width equals to
1 (2). If & is an N-node then by proposition 4 above G/(h) is is isomorphic
to either a prime spider, a disc, a prime p—tree or a graph with at most ¢
vertices. Since prime spiders have clique-width < 4 (c¢f. [CMR98a]), discs
have clique width < 4 (by Propositions 5 and 6 above), prime p-trees have
clique-width < 6 (by Propositions 7, 8, 9 and 10 above), and a graph with
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Hence, the 6 expression t; defined below satisfies the conditions of the claim:

ti= pe—2m65(ne1(ne2(6(z)®
po—s(ps—3(ne5(n6,1(6(vi) B ti-1))))))))

CASE 2: Suppose ¢ is odd.
In this case from observation 1 above and from the inductive hypothesis on
t;_1 1t follows that a 6—expression #; which defines the graph G, and satisfies

the conditions of the claim can be constructed by the following steps:

(i) Add the vertex v; and label it with 6.

(ii) Connect all the vertices labeled with 6 to all the vertices labeled with

1. This will connect v; to the vertices in Seyen,i—3.

(iii) Rename the label 5 with 1. This will change the label of v,_y from 5
to 1.

(iv) Rename the label 6 with 5. This will change the label of v; from 6 to
5.

(v) Add the vertex z; and label it with 6.

(vi) Connect all the vertices labeled with 6 to all the vertices labeled with

1 or 2. This will connect z; to the vertices in Seyeni—1 U Kepeni1-

(vii) Rename the label 6 with 4. This will change the label of z; from 6 to
4.

Hence, the 6 expression t; defined below satisfies the conditions of the claim:

ti= pe—a(Me1(ne2(6(z)®
pe—s5(p5—1((16.1(6(vi) B ti-1))))))

Proposition 9 Fvery spiked p-chain Q) has cligue-width < 6 and 6-
expression defining it can be constructed in time O(|V]).
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Proof:

We shall prove the claim by induction on . The claim trivially holds for the
case when ¢ = 3. Suppose the claim holds for § < ¢ — 1. Then there is a 6
expression t;_; which satisfies the conditions of the claim. We shall show how
to construct the 6—expression #; which defines the labeled graph G; such that
the conditions of the claim are satisfied. First note that we use #; to build
the graph G; in which we assume that all the vertices {zy,..., 2} exists. If
any of these vertices does not exist then the 6—expression obtained from {;
by omitting all the vertices which does not exist in (; from the expression
is the required 6—expression which defines (¢; and satisfies the conditions of
the claim.

We consider the following two cases:

CASE 1: Suppose ¢ is even.

In this case from observation 1 above and from the inductive hypothesis on
t;_1 1t follows that a 6—expression ¢; which defines graph (; and satisfies the

conditions of the claim can be constructed by the following steps:

(i) Add the vertex v; and label it with 6.

(ii) Connect all the vertices labeled with 6 to all the vertices labeled with

1 or 5. This will connect v; to the vertices in Seyen,i—e U {vi—1}.

(iii) Rename the label 5 with 3. This will change the label of v,_y from 5
to 3.

(iv) Rename the label 6 with 5. This will change the label of v; from 6 to
5.

(v) Add the vertex z; and label it with 6.

(vi) Connect all the vertices labeled with 6 to all the vertices labeled with

1 or 2 or 5. This will connect z; to the vertices in Seyeni U Kepen,i—z-

(vii) Rename the label 6 with 2. This will change the label of z; from 6 to
2.
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denote by Kepen (resp. Koqq) the set of even (resp. odd) vertices of K. We
denote by S; (resp. K;) the set of vertices {v1,...,v;} (resp. {z1,...,2}).
We denote by Sepeni (resp. Spqa;) the set of even (resp. odd) vertices in
S;. Likewise we denote by Kyeni (resp. Koga;) the set of even (resp. odd)
vertices in K;. We denote by (; the subgraph of GG induced by S; U K;. We
assume also for simplicity that for £ — 4 < < k the set K; is equal to the

set Kp_5. The following observation follows from the above definitions.

Observation 1 Let G be a spiked p—chain Qy, then G; can be obtained from
Gi—1 by adding the two vertices v; and z; and adding the following edges:

o [fi is even then connect v; to all the vertices in Seyen,i—o U {vi—1}.
o [fv is odd then connect v; to all the vertices in Seyen,i—3-
o [f is even then connect z; to all the vertices in Sepen;i U Kepeni—2

o [fv is odd then connect z; to all the vertices in Sepeni—1 U Kepenic1

Claim 3 Let G be a spiked p—chain Qy, then for 4 < ¢ < k there is a 6-
expression t; which defines the labeled graph G; such that:

o [f1 is even then

— All the vertices of Seyen,i—a (1€5p. Kepen,i) are labeled with 1 (resp.

— All the vertices of Seqai—1 (resp. Koqqi—1) are labeled with 3 (resp.
4).

— v; is labeled with 5.

If v is odd then

— All the vertices of Sepeni—1 (r€sp. Kepeni—1) are labeled with 1

(resp. 2).
— All the vertices of Sodai—a (resp. Koaai) are labeled with 3 (resp.
4).

— v; is labeled with 5.
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can be constructed in O(|V]) time. O

Proposition 8 Lvery complement of a spiked p—chain P, which is not a
complement of a simple path has clique—width exvactly § and a 4-expression
defining it can be constructed in time O(|V]).

Proof:

Similar to the proof of proposition 7 above. O

3.3 A spiked p—chain (), and its complement

Below we recall from [Bab98b] the definitions of the graphs called p—chain
Q)1 and spiked p—chain Q).

Let GG be a graph and let vy,...,v; be an ordering of the vertices of G.
We denote by N(v;)* (resp. N(v;)*) the set of all neighbors (resp. non-
neighbors) of v; with index larger than 7. Then G is called a p—chain Qy if

GG has k vertices vy, ...,v; and the edges of G are defined as follows:
e N(v)t = {vi41} for 7 odd.
e N(v;))T = {vi,} for  even.

A graph G is called a spiked p—chain Qy if G is a p—chain Q) = (vy,..., ),

k > 6, with additional vertices z,, 23, ..., z5_5 such that
o N(zi) = {v2,v4,...0i_1,0i41} U{2z2,24...,2i_1} for ¢ odd, and
o N(z) = {vi,v3... 011,041} U{23,25...,2_1} for i even.

Any of the vertices 29, z3, ... zz_5 may be missing. We say that (G is an even
(resp. odd) spiked p—chain @y if k is even (resp. odd).

Let G be a spiked p—chain () we denote by S the set of vertices vy,..., v
of G and we denote by K the set of vertices z3,...,2r_5 of G. We denote
by Seven (resp. Soqq) the set of even (resp. odd) vertices of 5. Likewise we
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spiked p—chain Py (cf. [Bab98b]) if it is a simple path Py = (v1,...,vs)
for £ > 6 with the possibility of adding one or two vertices  and y such
that: N(z) = {vq,vs} and N(y) = {vk—1,vr} and x and y do not belong
to a common Pj. In this section we show that a spiked p-chain P which
is not simple path has clique-width exactly 4, and the same holds for its

complement.

Proposition 7 Every spiked p—chain P, which is not a simple path has
cligue—width exactly | and a 4—expression defining it can be constructed in

time O(|V']).

Proof:
Let G be a spiked p-chain Pj such that G is the simple path {vy,... , vx}
with the addition of the two vertices x and y such that N(a) = {vq,v3} and
N(y) = {vk—1,vr}. The case when either x or y is missing can be handled
similarly. We first note that the clique—width of the subgraph of G induced
by the 6 vertices: vy,...,vs and z is of clique width greater than 3. This
can be proved by considering all the possible ways to define this graph using
3—expression and showing that this is not possible. Hence, the clique width
of G is > 4. We show below that G can be defined by a 4—expression which
implies that the clique—width of G is exactly 4.
By claim 1 above there is a 4-expression t;_g which defines the labeled simple
path P,_g such that the two endpoints of the path are labeled with 1 and 2
and all the other vertices of the path are labeled with 3. Clearly there are 4
expressions t;. s and ¢,;,,; which defines the labeled subgraphs of GG induced
by the vertices {x, vy, ve,v3} and {y, vi_2, vg_1, v} respectively such that the
vertices v3 and vi_o are labeled with 4 and all the other vertices are labeled
with 3. It follows that the following 4—expression, denoted as e defines the
graph Gt

e = Na2(tright B pa—s(Nai1(tiese S tis)))

Since 1;_¢ can be constructed in k — 6 steps and ¢, and #;.5; can be con-

structed in constant time, it follows that the 4—expression e which defines ¢
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at least 3 in the graph defined by si. Also no vertex of S is adjacent to any
vertex in tree(c, sg), since all the vertices of tree(c, s;) other than v and «
have label 3 at a. It follows that the graph defined by sj is disconnected,
since there is no vertex in this graph which is adjacent to any vertex in S.
This contradicts the assumption that the graph defined by s is a C}.
CASE 2.2: Suppose that u is adjacent to just one vertex in tree(c, s;) and
v is adjacent to just one vertex in tree(b, si).

From this assumption it follows that all the vertices of the graph defined by
s, other than v and v must have the same label at ¢ which is different from
1 or 2. Let denote this label by 3. Let 57 and S; denote the sets of vertices
occuring at tree(b, s;) and tree(c, s;) respectively. Since all the vertices of
Sy and S5 other than u and v have label 3 at v, it follows that there is just
one edge e crossing between S; and S; in the graph defined by si. Thus,
the graph defined by s; is not 2—connected, since removing the edge e will
disconnect the graph. Since a cycle ('} is 2—connected, this contradicts the
assumption that the graph defined by s; is a Cf.

Since we have considered all possible cases we conclude that there is no 3—
expression which defines a simple cycle C having at least 7 vertices. Since
we have shown above that every such cycle can be defined by a 4-expression,
it follows that the clique-width of every such cycle is exactly 4. a
Recall that we denote by (), the complement of the simple cycle C,.

Proposition 6 Every complement of a simple cycle C,, having at list 7 ver-
tices, has a clique—width exactly 4 and a 4—expression defining it can be con-

structed in time (O(|V])).
Proof:

Similar to the proof of proposition 5 above. O

3.2 A spiked p—chain P, and its complement

Recall that for n € N we denote by P the simple path of length £—1. Recall
also that N(x) denote the set of all neighbors of x. A graph G is called

16



the same label (say 3), and the two endpoints of the path either have the
same label 2 or have the two labels 1 and 2. Since k —1 > 6, this contradicts
either claim 2 above or corollary 1 above.

CASE 2: Suppose that u is not the only vertex of the cycle occuring in
tree(b, s;) and v is not the only vertex of the cycle occuring in tree(e, si).
CASE 2.1: Suppose that either u is adjacent to two vertices in tree(e, si)
or v is adjacent to two vertices in tree(b, si). We assume without loss of
generality that v is adjacent to two vertices in tree(c,s;). Clearly, one of
these two vertices is v and let @ be the other vertex occuring in tree(c, si)
which is adjacent to u.

CASE 2.1.1: Suppose that = and v have different labels at a. Let 3 denote
the label of © at a. By the above assumption there is another vertex y
occuring in tree(b, sg).

If y is labeled with 1 at a (i.e the same label as u) then the 4 vertices u,v,x
and y induce a Cy in the graph defined by sg, a contradiction since this graph
isa Cp, for k> 7.

If y is labeled with 2 or 3 at a, then u have degree at least 3 in the graph
defined by s, a contradiction since this graph is a C}.

Hence the label of y at @ must be different from 1, 2 or 3, a contradiction to
the assumption that sj is a 3—expression.

CASE 2.1.2: Suppose that x and v have the same label at a. Recall that
we denote this label by 2. By the above assumption there is another vertex
y occuring in tree(b, si).

If y is labeled with 1 at a (i.e the same label as u) then the 4 vertices u,v,x
and y induce a Cy in the graph defined by sg, a contradiction since this graph
isa Cp, for k> 7.

If y is labeled with 2 at a, then u have degree at least 3 in the graph defined
by sk, a contradiction since this graph is a C}.

Hence, y and all the vertices of the graph other than w,v or & must have
label 3 at a. Let S denote the set of all the vertices occuring in tree(b, si)

excluding u. Clearly, no vertex of S is adjacent to u, or else u will have degree
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Proposition 5 FEvery simple cycle C,, having at list 7 vertices, has a clique—
width exactly 4 and a 4—expression defining it can be constructed in time

(V1)

Proof:

We first show that for n > 3, the clique—width of every simple cycle C,, is
< 4. Let n € N, such that n > 3. By claim 1 above there is a 4—expression
t,,_1 which defines the labeled path P,_;, such that the two endpoints of P,_;
are labeled with 1 and 2 and all the internal vertices of the path are labeled
with 3. Then the following 4—expression, denoted by s, defines C,:

$n = Na2(na(4(x) B t1))

From the construction of #,_; in claim 1 above it follows that the 4-expression
s, defining ', can be obtained in time O(|V]).

We shall show below that every simple cycle of at least 7 vertices can not
be defined by any 3—expression. Suppose that there is a 3—expression sj
which defines a cycle C} having at least 7 vertices. Let tree(sy) be the tree
corresponding to s, (see definition 7 above), let a be the highest node in
tree(sy) which corresponds to a & operation, and let b and ¢ be the two
sons of a. Since a is the highest & operation in tree(sy), it follows that all
the vertices of the cycle C} occur in the leaves of tree(a, si) (see definition 8
above).

Since Cy is connected it follows that there are two adjacent vertices u
and v occuring in tree(b, sy) and tree(c,si) respectively. Clearly v and v
must have different label at a. Let 1 and 2 denote the labels of u and v at «
respectively. We consider the following cases:

CASE 1: Suppose that either u is the only vertex of the cycle occuring in
tree(b, s;) or v is the only vertex of the cycle occuring in tree(c, si). We as-
sume without loss of generality that v is the only vertex of the cycle occuring
in tree(b, si).

In this case the graph defined by the 3—expression corresponding to tree(c, si)
is a labeled path P,_y, such that all the internal vertices of the path have

14



CASE 2.1.3: Suppose that u is not adjacent to any vertex occuring in
tree(c,ty), and v is not adjacent to any vertex occuring in tree(b,x). Since
the graph Py is connected there are two vertices x,z occuring in tree(b,t).
and tree(c,ty), respectively such that x is adjacent to z. x and z must have
different labels at a, or else they can not be made adjacent. Moreover, x and
z can not be labeled with 1 or 2 at a, or else the graph defined by #; will
include an internal node which has the same label as the two endpoints of
P, It follows that w,v,x and z have 4 different labels at @, a contradiction
to the assumption that ¢ is a 3—expression.

CASE 2.2: suppose that v and v have the same label at a. This case can
be handled similarly to case 1.2 above.

Since we have considered all possible cases we conclude that there is no
3—expression t;, which defines the labeled path P, such that its two endpoints
have the same label and all the internal vertices has another label, a contra-
diction. O

Corollary 1 for everyn € N, such that n > 6 there is no 3—expression t,,
which defines the labeled path P, such that the two endpoints of the path u
and v are labeled with 1 and 2 respectively, and all the other vertices of the
path are labeled with 3.

Proof:

Suppose there is a 3—expression r,, which defines the labeled path P, such that
the two endpoints of the path u and v are labeled with 1 and 2 respectively,
and all the other vertices of the path are labeled with 3. Let ¢, be the
3—expression defined by:

t, = p3—>2(/)2—>1 (rn))

It is easy to see that the 3—expression t,, defines the labeled path P, such that
the two endpoints of the path are labeled with 1 and all the other vertices of

the path are labeled with 2, a contradiction to claim 2 above. a
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has the same label as the two endpoints of Py. It follows that u,v,2 and z
have 4 different labels at a, a contradiction to the assumption that ¢, is a
J—expression.

CASE 1.2: suppose that u and v have the same label at a. Let 1 denote the
label of v and v at a. Since there is no vertex in P, which is adjacent to its
two endpoints v and v, it follows that there is no vertex x in tree(c, t) which
is adjacent to u or to v. Since the graph Pj defined by the 3—expression #; is
connected there are two vertices x,z occuring in tree(b,ty). and tree(c,ty),
respectively such that x is adjacent to z. As in case 1.1.2 it can be shown
that the 3 vertices u,z and z must have different labels at a. Let 2 and 3
denote the labels of x and z at a respectively.

Let W denote the set of all vertices of P, other than u,» x and z. Clearly,
no vertex in W can be labeled with 1 at a. Suppose that all the vertices in
W are labeled just with 2 and 3 at a. Since there are at least two vertices in
W, it follows that either there is one vertex in P, which is adjacent to more
than two vertices or that there is at least an induced Cy of Py, which is not
possible. Hence, at least one vertex in W must have a label different than 1
2 or 3 at a, in contradiction to the assumption that #; is a 3—expression.
CASE 2: Suppose that v and v the two endpoints of the path Py, occur in
tree(b, ) and tree(c,ty) respectively.

CASE 2.1: Suppose that u and v have different labels at a. Let 1, and 2
be the two labels of v and v at a, respectively.

CASE 2.1.1: Suppose that u is adjacent to some vertex = occuring in
tree(c,t). Then @ must have label different than 1 and 2 at a. Let 3 denote
the label of = at a. Since u is an endpoint vertex, x is the only vertex which
is adjacent to u. Thus, all the other vertices of tree(a,t)) can not have label
3 at a. It follows that there is at least one vertex y which must have a
label other than 1 2 or 3 at a, a contradiction to the assumption that ¢; is a
J—expression.

CASE 2.1.2: Suppose that v is adjacent to some vertex z occuring in

tree(b, ). This case is similar to case 2.1.1 above.

12



Proof:

Assume that the claim does not hold for some n = k. Then there is a 3—
expression t;, which defines the labeled path P, such that the two endpoints
of the path are labeled with 1, and all the other vertices of the path are
labeled with 2. Let tree(t;) be the tree corresponding to tj, (see definition
7 above), let a be the highest node in tree(t;) which corresponds to a &
operation, and let b and ¢ be the two sons of a. Since a is the highest &
operation in tree(ty), it follows that all the vertices of the path Py occur in
the leaves of tree(a,ty) (see definition 8 above). We consider the following
cases:

CASE 1: Suppose that v and v the two endpoints of the path Py, occur
either in tree(b, 1) or in tree(c,ty). We assume without loss of generality
that both u and v occur in tree(b, ).

CASE 1.1: suppose that v and v have different labels at a. Let 1 and 2 be
the two labels of v and v at a, respectively.

CASE 1.1.1: Suppose that one of the vertices u and v (say u) is adjacent to
some vertex @ occuring in tree(e, ). Then x must have label different than
1 and 2 at a. Let 3 denote the label of = at a. Since u is an endpoint vertex,
x 1s the only vertex which is adjacent to u. Hence, all the other vertices
of tree(a,t)) can not have label 3 at a. Moreover, all the other vertices of
tree(a,ty) can not have label 1 or 2 at a, or else the labeled graph defined by
ti, will have an internal vertex which has the same label as the two endpoints.
Since there are at least 6 vertices in Py, we get that there is another vertex
say z, having label at @ which is different from 1,2 or 3. But this contradicts
the assumption that ; is a 3—expression.

CASE 1.1.2: Suppose that u and v are not adjacent to any vertex x occuring
in tree(c,ty). Since the graph Py defined by the 3—expression #; is connected
there are two vertices @,z occuring in tree(b, t;). and tree(c,ty), respectively
such that x is adjacent to z. & and z must have different labels at a, or else
they can not be made adjacent. Moreover, @ and z can not be labeled with

1 or 2, or else the graph defined by #; will include an internal node which
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Proposition 4 (Babel [Bab98a]) Let G be a (¢,q — 3) graph for ¢ > 7
and let h be an internal N-node of T(G), then G(h) is isomorphic to either
a prime p-tree, a disc, a prime spider, or a graph with at most ¢ vertices.

3 Clique—width of prime graphs of (¢,q — 3)
graphs

3.1 A simple cycle C, and its complement C,

Recall that for n € N, such that n > 3, (), denotes a simple cycle of length
n. Clearly, C5 and C4 are cographs and have clique-width exactly 2. For C’
and Cg there is a 3—expression which defines them, and since they are not
cographs they have clique—width exactly 3. In this section we show that for
n > 7, C, has clique-width exactly 4. We shall use the following two claims:
Claim 1 For every n € N, such that n > 2 there is a 4—-expression t,, such
that the labeled graph defined by t, is a path P, such that the two endpoints

of the path are labeled with 1 and 2 and all the other vertices of the path are
labeled with 3.

Proof:

We shall prove the claim by induction on n. The claim trivially holds for
n = 2. Assume that the claim holds for n = & — 1, and let #,_; be a 4-
expression which defines the labeled path P._; such that the two endpoints
of the path are labeled with 1 and 2 and all the other vertices of the path
are labeled with 3. Then the following 4—expression t; defines the path Py

and satisfies the conditions of the claim:

te = pa—1(pi—a(na1(4(z) ® t4-1)))))

Claim 2 for every n € N, such that n > 6 there is no 3—expression i,,
which defines the labeled path P, such that the two endpoints of the path are
labeled with 1 and all the other vertices of the path are labeled with 2.
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2.3 The modular decomposition of (¢,q — 3) graphs

In this section we recall from [Bab98a] the list of possible prime graphs
obtained by the modular decomposition of a (¢,¢q — 3) graph. For that we
shall need the following definitions.

Recall that the neighborhood N(v) of a vertex v of (¢ is defined as the
set of vertices of ¢ adjacent to v, i.e.: N(v) = {ul(u,v) € E}.

Definition 16 (Prime spider) A graph G is a prime spider if the vertex
set of G' can be partitioned into sets S, K and R such that:

(i) S is a stable set (i.e. no vertex in S is adjacent to the other), K is a
clique and |S| = |K| > 2.

(ii) R contains at most one vertex, i.e. |R| < 1, and if R contains one
verter say r, then r is adjacent to all the vertices in K and is not
adjacent to any of the vertices in S.

(tii) There exist a bijection [ between S and K such that either N(x) =
{f(x)} for all vertices x in S or else N(x) = K—{f(x)} for all vertices

zin S.

The triple (S, K, R) is called the spider partition of G.

A disc (cf. [Bab98a]) is a simple cycle C,, or its complement for n > 5.

The graph R; is obtained by adding the edge (v, vs) to the path of length
4 consisting of the vertices vy,...,vs. The graph Rg is obtained from Rj; by
adding one vertex vg and connecting it just to vy. The graph R; is obtained
from Rg by adding one vertex v; and connecting it to vs and vy.

The definitions of a spiked p—chain Py and a spiked p—chain )y are given
in sections 3.2 and 3.3 respectively.

We say that a graph G is a prime p—tree if it is either a Py, Rs, Rs, R,
Rs, R7, R;, a spiked p—chain Py, a complement of a spiked p—chain P4, a
spiked p—chain )y or a complement of a spiked p—chain Pj.

The following proposition follows from [Bab98a]:



Definition 14 (The module M (%) and the representative graph G(h))
Let h be an internal node of T(G), we denote by M(h) the module correspond-
ing to h which consists of the set of vertices of G appearing in the leaves of
the subtree of T(G) rooted at h. Let {hy,..., h,} be the set of sons of h in
T(G), we denote by G(h) = (V(h),E(h)) the representative graph of the
module M(h) defined by: V(h) = {hy,..., h,} and

E(h) ={(hi, h;) | Ju,v(u € M(h;) ANv e M(hj) A (u,v) € E)}

Note that by the definition of a module, if a vertex of M(h;) is adjacent to a
vertex of M(h;) then every vertex of M(h;) will be adjacent to every vertex
of M(h;). From the construction of T(G) it follows that:

Proposition 1 Let G be any graph and let h be an internal node of T(G):
(i) if b is an S—node then G(h) is a complete graph.
(it) if h is @ P—node then G(h) is edge-less.

(tii) if h is an N-node then G(h) is a prime graph.

Definition 15 (G[H/v]) Let G and H be two disjoint graphs and let v be a
vertex of G. We denote by G[H/v] the graph K obtained by the substitution
in G of H forv. Formally, V(K)=V(G)UV(H)—{v}, and

E(K)= FH)U{e:e € E(G) and e is not incident with v} U
{(u,w) :u € V(H), w € V(G) and w is adjacent to v in G}

Proposition 2 (Courcelle and Makowsky and Rotics [CMR98a])
For every disjoint graphs G,H, and for every vertex v of G, cwd(G[H/v]) =
Max{cwd(G),cwd(H)}.

Recall that for any graph G, we denote by T'((Z) the modular decomposition
of GG (which is a tree), and for each internal node h of T'((G) we denote by
G/(h) the representative graph of h defined in definition 14 above.

Proposition 3 (Courcelle and Makowsky and Rotics [CMR98a])
For every graph G, cwd(G) = Max{cwd(H) : H is a representative graph
of an internal node h in the modular decomposition of G'}.



2.2 Clique—width and the modular decomposition of
graphs

In this section we recall the connection established in [CMR98a] between
the well known concept of the modular decomposition of graphs and the
clique—width property of graphs.

The modular decomposition of a graph G, is tree denoted as T'((), to-
gether with a set of prime graphs associated with the internal nodes of the
tree labeled by N. We start by presenting the basic definitions and prop-
erties of the modular decomposition of graphs. It is well known (for exam-
ple see [CH94]) that for each graph G, the modular decomposition of the
graph T'((G) is unique up to isomorphism, and can be obtained in linear
(O(|E|) time. In our presentation of the modular decomposition below we
shall mainly be concerned with its properties, rather than in the way in which
it can be constructed. More details on the exact algorithms which can be

used for constructing the modular decomposition of graphs can be found in

[GV97, BMS3, CH94).

Definition 12 (Module, strong module, prime graph) A subset M of
vertices of a graph G is called a module of G if every vertex outside M is
either adjacent to all vertices in M or to none of them. A module M is called
strong, if for any module My either M N My = (), or one module contains the
other. For every graph G = (V, E), the trivial modules of G are the set V of
all the vertices of G, and all the sets of single vertices of G of the form {v},
where v s any vertex of G. A graph G is called prime if it does not have any
non-trivial module.

Definition 13 (7'((/) — the modular decomposition of ) The modu-
lar decomposition of a graph G, is a tree denoted as T(G). The leaves of
T(G) are the vertices of G, and the set of leaves associated with the subtree
rooted at an internal node, induce a strong module of G. An internal node is
labeled by either P,S or N standing for Parallel, Series and Neighborhood,
respectively, and it can be shown that for every graph G the tree T(G) is
unique up to isomorphism. More details on how the tree T(G) is constructed

can be found in [GVIT, BM83, CH94J.



A polynomial time algorithm for recognizing the class C(3) is presented in
[Rot98].

In the following sections when considering a k—expression ¢ which defines
a graph G, it will often be useful to consider the tree structure, denoted
as tree(t), corresponding to the k—expression ¢. For that we shall need the

following definitions.

Definition 7 (tree(t)) Let t be any k—expression, and let G be the graph
denoted by t. We denote by tree(t) the parse tree constructed from t in the
usual way. The leaves of this tree are the vertices of GG, and the internal nodes
corresponds to the operations of t, and can be either binary corresponding to
@ or unary corresponding to n or p.

Definition 8 (tree(a,t), sub—expression(a,t)) Let t be
any k—expression, a be any node in t, we denote by tree(a,t) the subtree
of tree(t) rooted at a. We denote by sub—expression(a,t) the k—expression
corresponding to tree(a,t).

Definition 9 (¢; is a sub—expression of ¢;) Let t; be a k—expression and
let 1y be an l—expression, k < [. We say that t; is a sub—expression of ty if
there exists a node a such that tree(ty) is the sub—tree of tree(ty) rooted at
a. In other words tree(ty) is equal to tree(a,ts).

Definition 10 (num—vertices(t)) Lett be any k—expression, we denote by
num-vertices(t) the number of vertices of the graph defined by t. In other
words num—vertices(t) is the number of leaves in tree(t).

Definition 11 (The label of a vertex v at an internal node a) Let
be any k—expression, and let G be the graph defined by t. Let a be any inter-
nal node of tree(t) and let v be any vertex of G occuring in tree(a,t), i.e. v
is a leaf of tree(a,t). The labels of v may change by the p operations in t.
However, whenever an operation is applied on a sub—expression t1 of t which
contains v, the label of v (like the labels of all the other vertices occuring in
t1) is well defined. The label of v at a is defined as the label that v has when

the operation a is applied on the subtree of tree(t) rooted at a.



Definition 4 (p,—;(G)) For a k-graph G as above we denote by p,—;(G) the
renaming of ¢ into j in G such that:

pimi(G) = (V. E, V] ...V}, where

V/I=0,V/=V,UV, and V] =V, forp#1i,j.

? J

These graph operations have been introduced in [CER93] for characterizing
graph grammars. For every vertex v of a graph G and ¢ € {1,...k}, we
denote by i(v) the k-graph consisting of one vertex v labeled by 1.

Example 1 A cliqgue with four vertices u,v,w,x can be expressed as:

p2—1(112(2(u) B p2—1 (11 2(2(v) B pa—i(m2(1(w) & 2(x)))))))

Definition 5 (k—expression) With every graph G one can associate an al-
gebraic expression built using the 3 type of operations mentioned above which
defines . We call such an expression a k—expression defining G, if all the
labels in the expression are in {1,... k}. Clearly, for every graph G, there
is an n—expression which defines GG, where n is the number of vertices of G

Definition 6 (The clique-width of a graph G, cwd(G)) Let C(k) be
the class of graphs which can be defined by k—expressions. The clique-width
of a graph G, denoted cwd((), is defined by: cwd(G) = Min{k : G € C(k)}.

The clique-width is a complexity measure on graphs somewhat similar to
tree width, which yields efficient graph algorithms provides the graph is given
with its k—expression (for fixed k). A related notion has been introduced by
Wanke [Wan94] in connection with graph grammars. C(1) is the class of
edge-less graphs.

Cographs are exactly the graphs of clique width at most 2, and trees have
clique width at most 3 (cf. [CO98]).

Problem 2 Find characterization of graphs of clique width at most k. k > 3.
Does there exist a polynomial time algorithms for recognizing the classes

Ck), k>4 2



theory of square grids. As a by product of Theorems 2 and 4 above we
obtain another proof of these results, but with an explicit lower bound on
the clique—width. Our proof is direct and does not relay on the notions of

graph grammars and the undecidability of the MSOL theory of square grids.

2 Background

2.1 Graph operations and clique-width

In this section we define the notions of graph operations and clique-width,
as presented in [CO98].

Definition 1 (k—graph) A k-graph is a labeled graph with (vertex) labels
in{1,2,...,k}. A k-graph G, is represented as a structure (V, E, Vi, ... V}),
where V' and E are the sets of vertices and edges respectively, and V..., V;
form a partition of V', such that V; is the set of vertices labeled @ in G.
Note that some V;’s may be empty. A non-labeled graph G = (V, E), will be
considered as a 1-graph such that all the vertices of G are labeled by 1.

Definition 2 (G & H) For k-graphs G, H such that G = (V,E, V..., Vi)
and H = (V' E"V],....V]) and VN V' = 0 (if this is not the case then
replace H with a disjoint copy of H ), we denote by G& H, the disjoint union
of G and H such that:

GoH=(VUV EUE VLUV .. VUV
Note that G & G # G.

Definition 3 (7, ;(G)) For a k-graph G as above we denote by n; ;(G), where
t % j, the k-graph obtained by connecting all the vertices labeled i to all the
vertices labeled 7 in G. Formally:

ni;(G) = (V,E',Vi,... Vi) , where

E'=FEU{(u,v):ueV, veV,}



above can not be proved on these graph classes. In particular we show that:

Theorem 2 There is a class C containing infinitely many (6,3) graphs, such
that for every graph G = (V. E) € C, cwd(G) > /|V|/27.

Theorem 3 For every ¢ > 4, there is a class C(q) containing infinitely
many (q,q) graphs, such that for every graph G = (V,E) € C, cwd(G) >

VIVI/27g.

Clearly, a (¢q,t) graph is also a (¢’,t') graph for ¢ > ¢’ and for ¢’ < ¢.
Hence, by Theorems 1 - 3 we have settled the clique-width question on the
(¢,1) graph classes for all the possible combinations of ¢ and t, except for the

following which is still open:

Problem 1 Are the classes of (¢,q—1) graphs and (q,q—2) graphs for g > 7
of bounded clique—width?

For proving Theorems 2 and 3 above we define (cf. definition 18 below)
the 2—color—width property of a graph. We shall show (cf. Theorem 5 below)
that for every graph G, if G has 2—color-width > & then G has clique—width
> k. However, the other direction (cf. Fact 1 below) does not hold: there
is a graph G which has clique-width > & but has 2-color-width 1. We
believe that this new concept of unbounded 2-colored—width is significant,
since it characterizes a big subclass of the class of graphs of unbounded
clique—width without using the notions of graph operations, k—expressions
and clique width.

Using the same technique for other graph classes, we show that the class

of split graphs is not of bounded clique-width. In particular, we show that:

Theorem 4 There is a class C containing infinitely many split graphs, such

that for every graph G = (V. E) € C, cwd(G) > (1/2|V ] —1)/72.

Courcelle showed in [Cou93] that the classes of square grids and chordal
graphs are not of bounded clique—width, using the notion of graph grammars
and based on the the undecidability of the Monadic Second Order Logic

3



1 Introduction

The study of graph classes having few FP;s have been very active in recent
years. Example for such graph classes are the classes of cographs, (extended)
Py—sparse graphs, (extended) Pj—reducible graphs and Py—tidy, studied in
[CLS81, JO89, JO92b, JO92a, JO95a, JOI5h, GRTI7, GVI7]. Babel and
Olariu introduced in [BO95] the class of (¢,t) graphs which for t = ¢ — 3
extends all the graph classes mentioned above. In such a graph no set with
at most ¢ vertices is allowed to induced more than ¢ distinct Pys. Clearly,
we assume that ¢ > 4. In a series of papers (cf. [BO95, BO98a, BO9SD,
Bab98a, Bab98b]) Babel and Olariu studied the classes of (¢,¢ — 4) and
(¢,9 —3) graphs.

The notion of clique-width of graphs was first introduced by Courcelle,
Engelfriet and Rozenberg in [CER93], as graphs which can be defined by
k-expressions based graph operation which use k vertex labels. A detailed
study of clique-width is [CO98]. Clique-width has analogous properties as
treewidth: If the clique-width of a class of graphs C is bounded by k (and
the k—expression can be computed from its corresponding graph in time
T(|V])) then every decision, optimization, enumeration or evaluation problem
on C which can be defined by a Monadic Second Order formula ¢ can be
solved in time ¢ - O(|V|)+T'(|V]) where ¢ is a constant which depends only
on ¥ and k and v is the number of vertices of the input. For details, cf.
[CMR98a, CMR9I8h, CMR99].

In this paper we study the clique-width of the (¢, 1) graphs for almost all
combinations of ¢ and ¢. We first show that:

Theorem 1 For every (q,q—3) graph G such that ¢ > 7, G has clique—width
< ¢, and a g—expression defining it can be constructed in time O(|V |+ |E]).

The proof of Theorem 1 above is based on the the results of Babel (cf.

[Bab98a]) which studied the prime graphs of the class of (¢,¢ — 3) graphs.
We continue by showing that the class of (6,3) graphs and the classes of

(¢,q) graphs for ¢ > 4 are not of bounded clique-width. Hence Theorem 1

2



Contents

1 Introduction 2
2 Background 4
2.1 Graph operations and clique-width . . .. .. ... ... ... 4
2.2 Clique-width and the modular decomposition of graphs . . . . 7
2.3 The modular decomposition of (¢,¢ — 3) graphs . . . . .. .. 9
3 Clique—width of prime graphs of (¢,¢ — 3) graphs 10
3.1 A simple cycle C,, and its complement C,, . . ... .. .. .. 10
3.2 A spiked p—chain P, and its complement . . . . . . .. .. .. 16
3.3 A spiked p—chain (J; and its complement . . . . . . .. .. .. 18
4 (q,q—3) graphs for ¢ > 7 are of clique—width <g¢ 22

5 (6,3) and (¢, q) for ¢ > 4 graphs are of unbounded clique—width 23

5.1 The 2—color width of graphs . . . . .. .. .. ... ... .. 23
5.2 (6,3) graphs . . . . ... 26
5.3 (q,q)graphs for¢ >4 . . ... oo oL 31
6 Some other graph classes of unbounded clique—width 32



On the Clique-Width of Graphs with Few Py’s

J.A. Makowsky*and U. Rotics
October 13, 1998

Department of Computer Science
Technion—Israel Institute of Technology
32000 Haifa, Israel

{janos,rotics}@@cs.technion.ac.il

Abstract

Babel and Olariu (1995) introduced the class of (¢,t) graphs in
which every set of ¢ vertices has at most ¢ distinct induced P;s.
Graphs of clique-width at most & were introduced by Courcelle, En-
gelfriet and Rozenberg (1993) as graphs which can be defined by k-
expressions based on graph operations which use k vertex labels.

In this paper we study the clique-width of the (q,t) graphs, for almost
all possible combinations of ¢ and t.

On one hand we show that every (¢, ¢ —3) graph for ¢ > 7, has clique-
width < ¢ and a g—expression defining it can be obtained in linear
time.

On the other hand we show that this result does not hold for the class
of (¢,q) graphs for any ¢, and for the class of (¢,¢ — 3) graphs for
g < 6. More precisely, we show that for every ¢, for every n € N
there is a graph H, which is a (¢, q) graph having n vertices and the

clique-width of H,, is at least (/n/3q)/3q.
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