
www.ietdl.org
Published in IET Control Theory and Applications
Received on 1st August 2010
Revised on 19th February 2011
doi: 10.1049/iet-cta.2010.0441

In Special Section: Implementation of
Feedback Controllers

ISSN 1751-8644

Model predictive control for deeply pipelined
field-programmable gate array implementation:
algorithms and circuitry
J.L. Jerez1 K.-V. Ling2 G.A. Constantinides1 E.C. Kerrigan1,3

1Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
3Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
E-mail: juan.jerez-fullana@imperial.ac.uk

Abstract: Model predictive control (MPC) is an optimisation-based scheme that imposes a real-time constraint on computing
the solution of a quadratic programming (QP) problem. The implementation of MPC in fast embedded systems presents new
technological challenges. In this paper we present a parameterised field-programmable gate array implementation of a
customised QP solver for optimal control of linear processes with constraints, which can achieve substantial acceleration over
a general purpose microprocessor, especially as the size of the optimisation problem grows. The focus is on exploiting the
structure and accelerating the computational bottleneck in a primal-dual interior-point method. We then introduce a new MPC
formulation that can take advantage of the novel computational opportunities, in the form of parallel computational channels,
offered by the proposed pipelined architecture to improve performance even further. This highlights the importance of the
interaction between the control theory and digital system design communities for the success of MPC in fast embedded systems.
1 Introduction

Model predictive control (MPC) is an advanced optimal
control technology that has proven to be very successful
because of its capability of returning an optimal strategy
without violating the physical limitations of the system. The
need to solve a computationally intensive quadratic
programming (QP) problem at every sampling instant has
restricted its applicability to slow plants, such as those
encountered in the chemical process industries [1], where
sampling times can be of the order of seconds or minutes.
As the computational power of new devices continues to
rise, MPC is now being proposed for higher bandwidth
applications, such as aerospace [2], electrical power
generation [3, 4] and automotive [5–7]. There is a growing
demand for ways of accelerating the solution of QP
problems, so that the success of MPC can be extended to
areas where the computational burden has so far been
considered too great.

In terms of online optimisation, most attempts at
accelerating the solution of QP problems have come in the
form of new algorithms or modifications to existing
methods with the objective of reducing the computational
complexity of the task [8–11]. The work presented in this
paper differs in that it focuses on the hardware
implementation issues of a specific existing algorithm,
rather than attempting to modify it.

Recent advances in reconfigurable hardware technology
have made the field-programmable gate array (FPGA) a
IET Control Theory Appl., 2012, Vol. 6, Iss. 8, pp. 1029–1041
doi: 10.1049/iet-cta.2010.0441
suitable platform for scientific computation. FPGAs are a
good alternative to ASICs for embedded MPC applications
since they offer much reduced low-volume cost, greater
flexibility, and a shorter design cycle, reducing the risk
while still maintaining a high-power efficiency. In this
work, FPGAs are used as the vehicle to explore the
possibilities of parallel hardware, and custom hardware
in particular, for the acceleration of QP solvers for
linear MPC.

Section 2 reviews linear MPC. In Section 3, the
characteristics of existing algorithms for solving QP
problems are assessed in terms of their suitability for
mapping into hardware. Previous attempts at implementing
optimisation solvers in custom hardware are reviewed in
Section 4. In Section 5, the MPC problem is formulated as
a QP problem using the approach proposed by Rao et al.
[12] and the infeasible primal-dual interior-point method
[11] is introduced as our chosen method to solve it. The
parallelism opportunities offered by the method, and ways
of exploiting the fine and coarse structure in the problem
are discussed from a hardware implementation point of
view. The FPGA implementation is described in Section
6. Hardware design decisions aiming at exposing all the
computational power of the FPGA are explained. In Section
7, we present a new MPC formulation based on multiplexed
MPC (MMPC) [13] that can take advantage of the new
computational opportunities opened by the proposed
hardware architecture. These results are presented in Section
8 followed by the conclusion in Section 9.
1029
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2 Linear model predictive control

Unlike conventional control techniques, MPC explicitly
considers operation on the constraints (saturation) by
incorporating the physical limitations of the system into the
problem formulation, delivering extra performance gains [1].
However, because of the presence of constraints it is not
possible to obtain an analytic expression for the optimum
solution and we have to solve an optimisation problem at every
sample instant, resulting in very high computational demands.
In linear MPC, we have a linear model of the plant, linear
constraints, and a positive definite quadratic cost function;
hence, the resulting optimisation problem is a convex quadratic
programme [14]. Without loss of generality, the time-invariant
problem can be described by the following equations

min
u,x

1

2
x′T Q̃xT +

∑T−1

k=0

1

2
x′kQxk +

1

2
u′

kRuk + x′kMuk

( )[ ]
(1)

subject to

x0 = x̂ (2a)

xk+1 = Axk + Buk for k = 0, 1, 2, . . . , T − 1 (2b)

Jxk + Euk ≤ d for k = 0, 1, 2, . . . , T − 1 (2c)

JT xT ≤ dT (2d)

where u [ Rm, x [ Rn, u [ RTm and x [ R(T+1)n contain the
input and state variables at every sampling instant for the
whole horizon length T, x̂ is the current estimate of the state of
the plant, Q [ Rn×n is SPSD, R [ Rm×m is the SPD to
guarantee uniqueness of the solution, M [ Rn×m is such that
(1) is convex, Q̃ [ Rn×n is an approximation of the cost from
k ¼ T to infinity and is SPSD, x′ denotes the transposition,
and ≤ denotes the componentwise inequality. A [ Rn×n and
B [ Rn×m are the state transition and control matrices
representing the dynamics of the plant, obtained from discrete-
time system identification or through a suitable discretisation
of a continuous-time model [15]. J [ Rl×n, E [ Rl×m and
d [ Rl describe the physical constraints of the system and l is
the number of inequality constraints. For instance, upper and
lower bounds on the inputs and outputs could be expressed as
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JT :=
C

−C

[ ]
, dT :=

ymax

−ymin

[ ]
(3)

where C [ Rp×n and p is the number of outputs to the plant.
At every sample instance a measurement of the system’s

output is taken, from which the current state of the plant is
inferred [1]. The optimisation problem (1)–(2) is then
solved but only the first part of the solution (u∗

0(x̂)) is
implemented. Owing to disturbances, model uncertainties
and measurement noise, there will be a mismatch between
the next output measurement and what the controller had
predicted; hence, the whole process has to be repeated
again at every sample instant to provide closed-loop
stability and robustness.
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3 Algorithm choice

Modern methods for solving QPs can be classified into interior-
point or active-set [16] methods, each exhibiting different
properties, making them suitable for different purposes. The
worst-case complexity of active-set methods increases
exponentially with the problem size, and the size of the linear
systems that need to be solved at each iteration changes
depending on which constraints are active at any given time.
In a hardware implementation, this is problematic since all
iterations need to be executed on the same fixed architecture.
Interior-point methods are a better option for our needs, since
they have polynomial complexity and maintain a constant
predictable structure, which is easily exploited.

Logarithmic-barrier [14] and primal-dual [17] are two
competing interior-point methods. From the implementation
point of view, the logarithmic-barrier method requires an
initial feasible point and fails if an intermediate solution
falls outside of the region enclosed by the inequality
constraints. In infinite precision this is not a problem, since
both logarithmic-barrier and primal-dual methods stay
inside the feasible region provided they start inside it. In
practice, finite precision effects may lead to infeasible
iterates, so in that sense the primal-dual method is more
robust. Moreover, in primal-dual there is no need to
implement a Phase I method [14] to initialise the algorithm
with a feasible point. This issue affects both hardware and
software implementations, although it becomes more critical
in hardware since a Phase I method would require explicit
support in the form of extra hardware.

Mehrotra’s primal-dual algorithm [10] has proven very
efficient in software implementations. The algorithm solves
two systems of linear equations with the same coefficient
matrix in each iteration, thereby reducing the overall number
of iterations. However, the benefits can only be attained by
using factorisation-based methods for solving linear systems,
since the factorisation is only computed once for both
systems. Previous work [18, 19] suggests that iterative
methods might be preferable in an FPGA implementation,
because of the small number of division operations, which
are very expensive in hardware, and because they allow one
to trade off accuracy for computation time. In addition, these
methods are easy to parallelise since they mostly consist of
large matrix–vector multiplications. Furthermore, it is
possible to derive pre-conditioners that can help reduce the
number of iterations needed to solve the system to the
required accuracy [20], and control the ill-conditioning of
the matrices towards the later iterations of the interior-point
method. As a consequence, simple primal-dual methods,
where a single system of equations is solved, could be more
suited to the FPGA fabric.

4 Related work

Existing work on hardware implementation of optimisation
solvers can be grouped into those that use interior-point
methods [21–24] and those that use active-set methods [25,
26]. The suitability of each method for FPGA implementation
was studied in [27], highlighting the advantages of interior-
point methods for large problems. Occasional numerical
instability was also reported, having a greater effect on active-
set methods.

An ASIC implementation of explicit MPC [28], based on
parametric programming, was described in [29]. The scheme
works by dividing the state-space into non-overlapping
regions and pre-computing a parametric piecewise linear
IET Control Theory Appl., 2012, Vol. 6, Iss. 8, pp. 1029–1041
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solution for each region. The online implementation is reduced
to identifying the region to which x̂ belongs and implementing
a simple linear control law. Explicit MPC is naturally less
vulnerable to finite precision effects, and can achieve high
performance for small problems, with sampling intervals of
the order of m seconds being reported in [29]. However, the
memory and computational requirements typically grow
exponentially with the problem size, making the scheme
unattractive for handling large problems. In this paper, we
will only consider online numerical optimisation, thereby
addressing relatively large problems.

The challenge of accelerating LPs on FPGAs was
addressed in [22, 26]. Bayliss et al. [26] proposed a heavily
pipelined architecture based on the simplex method. Speed-
ups of around 20× were reported over state-of-the-art LP
software solvers, although the method suffers from active-
set pathologies when operating on large problems.
Acceleration of collision detection in graphics processing
was targeted in [22] with an interior-point implementation
using single-precision floating point arithmetic, which could
operate on relatively small problems.

The feasibility of implementing QP solvers for MPC
applications on FPGAs was demonstrated in [21] with a
Handel-C implementation exploiting modest levels of
parallelism in the interior-point method. The implementation
was shown to be able to respond to disturbances and achieve
sampling periods comparable with stand-alone Matlab
executables for relatively large problems. Koh [24] addressed
the implementation of MPC on very resource-constrained
embedded systems with an FPGA implementation consisting
of a soft-core processor attached to a co-processor used
to accelerate computations that allowed data reuse. Bleris
et al. [23] also proposed a mixed software–hardware
implementation where the core matrix computations are
implemented in parallel custom hardware, whereas the
remaining operations are implemented on a soft-processor
core synthesised into the FPGA. The computational
bottlenecks in implementing a logarithmic-barrier method for
solving an unstructured QP were identified for determining
which computations should be carried out in which unit.
However, we will show that if the structure of the QPs arising
in MPC is taken into account, we can reach different
conclusions as to the location of the computational bottleneck.
The hardware implementation of sequential QP for non-linear
MPC was considered in [25], where the sources of parallelism
in an active-set method were identified. The trade-off between
data wordlength, computational speed and quality of the
applied control was explored in an experimental manner.

5 Primal-dual interior-point algorithm

5.1 QP formulation

Following the approach outlined in [12], the optimal control
problem (1)–(2) can be written as a sparse QP of the
following form:

min
u

1

2
u′Hu

subject to Fu = f

Gu ≤ g
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where

u := [x′0u′0x′1u′
1 . . . x
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where ⊗ denotes a Kronecker product, I is the identity matrix
and O denotes a matrix or vector of zeros.

In [12], it was shown that by leaving the plant equations as
equality constraints in the QP formulation, it was possible to
complete the interior-point method in O(T ) operations as
opposed to O(T3) required with the dense formulation. In
our current implementation, the latency is O(T 2) because
the number of iterations of the linear solver depends on T,
and we have not completely exploited a full parallelisation
of the solver. Future work will investigate the
implementation of a pre-conditioner [20] and further use of
parallelisation to further reduce the latency.

In terms of memory requirements, the coefficient matrix
Ak , as shown in Algorithm 5.2, requires storage space for
approximately 1/2(Tm)2 elements when using the
dense formulation and approximately T (2n + m)2 non-zero
elements using the sparse formulation (considering
symmetry in both cases). For problems with large horizon
lengths, a method that only stores non-zero elements would
provide an important memory saving when employing the
sparse formulation. In Section 6, we will introduce a storage
method that exploits the fine grain structure in Ak to allow
us to store significantly fewer elements than T (2n + m)2.

5.2 Algorithm description

The primal-dual algorithm uses Newton’s method [14] for
solving a non-linear system of equations, known as the
KKT optimality conditions. The method solves a sequence
of related linear problems. At each iteration, three tasks
need to be performed: linearisation around the current point,
solving the resulting linear system to obtain a search
direction, and performing a line search to update the
solution to a new point. In this work, we use the infeasible
primal-dual interior-point method introduced in [11]. For
completeness, we include a brief description of the method.

The Lagrangian function for this optimisation problem is
given by

L(u, n, l, s) := 1

2
u′Hu+ n′(Fu− f ) + l′(Gu− g + s)

where n and l are known as the Lagrange multipliers and s is
a vector of slack variables. Minimisation of the Lagrangian
gives rise to the KKT conditions, where the last equation is
1031
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known as the complementary condition

Hu+ F ′n+ G′l = 0 (4a)

Fu− f = 0 (4b)

Gu− g + s = 0 (4c)

LSe = 0, l, s ≥ 0 (4d)

where L and S are diagonal matrices with non-zero elements
taken from l and s, respectively, and e is a vector of ones.
Linearisation of (4) gives rise to the following linear system
(the subscript k refers to the iteration number in the interior-
point method)

H F ′ G′ 0
F 0 0 0
G 0 0 I
0 0 Sk Lk

⎡⎢⎢⎣
⎤⎥⎥⎦

Duk

Dnk

Dlk

Dsk

⎡⎢⎢⎣
⎤⎥⎥⎦ =

rH
k

rF
k

rG
k

rS
k

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ (5)

where

rH
k := −Huk − F ′nk − G′lk (6a)

rF
k := −Fuk + f (6b)

rG
k := −Guk + g − sk (6c)

rS
k := −LkSke + smke (6d)

and

mk := l′ksk

Tl + 2p
(7)

s is a small number between zero and one known as the
centrality parameter, which is included to make sure that
the progress of the method does not stop when it hits the
boundaries of the feasible region [17]. Note that the
solution to this linear system is a modified Newton
direction (modification in (6d)).

Block elimination can be applied twice to (5) to reduce the
size of the system without destroying the structure in the
problem. The resulting linear system is

H + G′WkG F ′

F 0

[ ]
Duk

Dnk

[ ]
= ruk

rnk

[ ]
(8)

where

Wk := LkS−1
k (9)

ruk := rH
k + G′Wk(rG

k + sk − smkL
−1
k e) (10)

rnk := rF
k (11)

and

Dlk = −Wk (rG
k + sk − smkL

−1
k e − GDuk) (12)

Dsk = −sk − W−1
k Dlk + smkL

−1
k e (13)

Fig. 1 summarises this process. The number of iterations
(INW) depends on the required accuracy of the solution
1032
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but not on the size of the MPC problem. The infeasible
primal-dual method can be initialised with any arbitrary
point (u0, n0, l0, s0) satisfying [l′0, s′0]′ . 0. Several
authors have proposed a warm-start method [8] where
the current problem is initialised with a shifted version of
the solution at the previous sampling instant, based on the
observation that in the absence of large disturbances the
solution to adjacent QPs is very similar. In the FPGA
implementation presented in this paper, the method is
initialised with the solution from the previous problem
without shifting. This avoids movement of data between
memory locations.

5.3 Algorithm analysis

When calculating the Hessian Ak , only the diagonal matrix
Wk is changing from iteration to iteration, so only

G′WkG = IT ⊗ J ′WiJ J ′WiE
E′WiJ E′WiE

[ ]
O

O JT ′WT JT

⎡⎣ ⎤⎦
needs to be computed, where Wi are diagonal l × l
submatrices of Wk. If the constraints are separable in state
and input constraints, J ′WiE and E′WiJ are zero. In
addition, J and E are usually sparse. A common situation is
having upper and lower bounds on the inputs and outputs

Fig. 1 QP algorithm
IET Control Theory Appl., 2012, Vol. 6, Iss. 8, pp. 1029–1041
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of the system (as described by (3)). In this case, computing
the matrix triple product E′WiE consists of 2m
additions instead of V(ml2 + m2l ) operations. Similarly,
J ′WiJ consists of two small matrix row updates plus two
small matrix-matrix multiplications. The coarser structure of
H, F and G can also be used when calculating ruk , rnk , Dlk

and Dsk. This results in having to compute many
small matrix–vector multiplications in standard and
transposed form.

Exploiting the finer structure in a software implementation
would be inefficient as it would involve complex array index
arithmetic resulting in non-coherent memory reads. In a
CPU, this will lead to an increased number of cache
misses. Moreover, having to perform many small matrix–
vector multiplications means that there will be many
movements of small blocks of data from main memory to
the processor cache resulting in significant time penalties.
However, in custom hardware there is a flexible memory
subsystem that can be designed such that data are always
available when and where is it needed, improving data
locality and fully avoiding cache misses. Furthermore, if
appropriate support is provided, there is no difference
whether we access matrix data by row or by column;
hence, standard and transposed multiplications are equally
efficient.

When solving Akzk = bk using an iterative method, most
of the computations are associated with computing a large
matrix–vector product. This kind of computation can be
carried out efficiently in a microprocessor, especially if the
whole matrix can be accommodated inside the processor
cache, as there will be next to no main memory accesses. In
addition, some microprocessors include explicit support for
carrying out a multiply accumulate instruction in one cycle.
However, sequential software cannot take advantage of the
easy parallelisation opportunities available for this
computation. A GPU instruction set is a good match for
SIMD computations, although the lack of independence
between additions in a dot-product calculation limits the
speed-up achievable with a GPU architecture. The FPGA’s
flexibility allows us to create a custom datapath to best
exploit the dataflow in a computation, allowing wider
parallelisation and deep pipelining. An example of a
customised architecture for computing dot-products is
shown in Fig. 2.
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6 Implementation

6.1 Linear solver

Most of the computational complexity in each iteration of the
interior-point method is associated with solving the system
of linear equations Akzk = bk , hence it makes sense to
concentrate our efforts in accelerating this task. After
appropriate row re-ordering (interleaving elements of u and
n), the indefinite symmetric matrix Ak becomes banded
(refer to Fig. 5 for more details). The order (number of
rows or columns) and half-bandwidth of Ak in terms of the
control problem parameters are given, respectively, by

N := T (2n + m) + 2n (14a)

M := 2n + m (14b)

Notice that the number of outputs p and the number of
constraints l does not affect the order or bandwidth of Ak .
As a consequence, these parameters have no effect on the
complexity of the linear solver, which we will show to
determine the overall computation time.

The MINRES method is a suitable iterative algorithm for
solving linear systems with indefinite symmetric matrices
[30]. At each MINRES iteration, a matrix–vector
multiplication accounts for the majority of the
computations. This kind of operation is easy to parallelise
and consists of multiply accumulate instructions, which are
known to map efficiently into hardware in terms of resources.

In [19], the authors propose an FPGA implementation of
the MINRES method, reporting speed-ups of around one
order of magnitude over software implementations. Most of
the acceleration is achieved through a deeply pipelined
dedicated hardware block (shown in Fig. 2) that parallelises
dot-product operations for computing the matrix–vector
multiplication in a row-by-row fashion. Note that the size of
the dot-products that are computed in parallel is
independent of the control horizon length T (refer to (14b)),
thus we do not expect the computational resource usage to
scale with T. However, the number of elements in Ak that
need to be stored does scale as O(T ) and the compute time
is O(T 2) when taking N MINRES iterations.
Fig. 2 Hardware architecture for computing dot-products

It consists of an array of 2M 2 1 parallel multipliers followed by an adder reduction tree of depth ⌈log2(2M 2 1)⌉. The rest of the operations in a MINRES iteration
use dedicated components. Independent memories are used to hold columns of the stored matrix Ak (refer to Section 6.6 for more details). z2M describes a delay of
M cycles
1033
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Since the dot-product unit is deeply pipelined it can accept
new data at every clock cycle, thus a whole matrix–vector
multiplication will take N cycles to be introduced into the
dot-product block, and it should be possible to complete a
MINRES iteration every N cycles if the remaining
operations are computed using other units. However, the
latency of one iteration is greater than this because of
the depth of the adder tree and the other operations in the
MINRES iteration. This throughput-latency mismatch can
be used to our advantage processing several independent
problems simultaneously to make sure the dot-product
hardware is active at all times. The number of problems that
can be processed simultaneously in the linear solver in
terms of the matrix dimensions is given by

P := 2N + M + k1⌈log2 (2M − 1)⌉ + k2

N

⌈ ⌉
(15)

where k1 ¼ 120 and k2 ¼ 230 in the current implementation.
The linear terms result from the row by row processing
for the matrix–vector multiplication and serial-to-parallel
conversions, whereas the log term comes from the depth of
the adder reduction tree in the dot-product block. The
constant term comes from the other operations in the
MINRES iteration. The total latency for one MINRES
iteration is given by PN.

Using this approach, u(M ) resources are being used to
reduce the latency of one iteration from O(MN ) to O(N ).
As device density increases, it will become possible to fully
parallelise matrix–vector multiplications by having N dot-
product modules operating in parallel to reduce the latency
even further. The new expression for P would be

P := k1⌈log2(2M − 1)⌉ + k2

1

⌈ ⌉
(16)

where the value of k1 and k2 would depend on the
implementation. In a MINRES FPGA implementation,
where the matrix data have to be fed from outside the chip,
the increase in input/output (I/O) bandwidth requirements
1034
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imposed by the increase in parallelism will quickly exceed
the capabilities of standard interfaces, such as PCI Express.
However, in our QP solver implementation, matrix data is
generated on-chip; hence the I/O requirements are very low
(refer to Part E), and the increase in average I/O
requirements will still be within the capabilities of PCI
Express. Note that the latency of the MINRES
implementation will stop depending on the horizon length
T. However, for the same control parameters, more
independent problems would be needed to fill the pipeline,
as a consequence of the architecture being able to compute
one matrix–vector multiplication every cycle.

6.2 Pipelining

The remaining operations in the interior-point iteration are
undertaken by a separate hardware block, which we call
Stage 1. The resulting two-stage architecture is shown in
Fig. 3.

As the linear solver will provide most of the acceleration
and consume most resources, it is vital that it remains busy
at all times. The whole design can be seen as a high-level
pipeline with two stages where the computational times
have to be matched to achieve the highest hardware
efficiency.

Note that if both blocks are to be doing useful work at all
times, while the linear system for a specific problem is being
solved, Stage 1 has to be updating the solution and linearising
for another independent problem. In addition, the architecture
described in [19] can process P-independent problems
simultaneously, so our design can process 2P-independent
QP problems simultaneously (as a result of the high-level
pipeline) at no extra hardware cost. Fig. 4 shows the
number of available parallel computation channels for
problems with different parameters. It is important to note
that P converges to a small number (P ¼ 3) as the size of
Ak increases, thus even for relatively large problems there
are six independent threads available for further exploitation
in our proposed hardware.

Another approach could have been to reuse the linear
solver hardware to perform the operations in Stage 1;
Fig. 3 Proposed two-stage hardware architecture

Solid lines represent data flow and dashed lines represent control signals. Stage 1 performs all computations apart from solving the linear system. The input is the
current state measurement x̂ and the output is the optimal control move u∗0(x̂)
IET Control Theory Appl., 2012, Vol. 6, Iss. 8, pp. 1029–1041
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however, the hardware would be used inefficiently and the
reduction in latency would likely be small if any. We
believe our approach to be appropriate, as it allows us to
expose all the computational power of the device and open
up new possibilities for algorithm development. In Section
7, we present a new method that can take advantage of the
independent parallel computational channels offered by our
proposed architecture.

6.3 Architecture for sequential block

When computing the coefficient matrix Ak , only the diagonal
matrix Wk changes from one iteration to the next, and the
constraint matrices J and E are generally sparse, thus
the complexity of this calculation is relatively small. If the
structure of the problem is taken into account, we find that
the remaining calculations in an interior-point iteration are
all sparse and very simple compared with the linear solver.
Comparing the computational count of all the operations to
be carried out in Stage 1 with the latency of the linear
solver implementation given by

PN (IMR + 1) (17)

we come to the conclusion that for most control problems, the
optimum implementation of Stage 1 is sequential, as this will
be enough to keep the linear solver busy at all times (IMR is
the number of iterations the MINRES method takes to solve
the linear system to the required accuracy and one extra
iteration is required to initialise the method). This is a
consequence of the latency of the linear solver being O(T2)
[19], whereas the complexity of Stage 1 is only O(T ). If this
is not the case, it is possible to have several instances of
Stage 1 running in parallel for the different independent
problems that are being processed simultaneously. This will
result in a small increase in computational resources (refer to
Table 1) and a negligible increase in memory requirements
as the control block will be shared by all parallel instances.
However, we have observed that this situation only occurs
for very small problems and usually two parallel blocks are
enough to solve the problem when it arises.

6.3.1 Datapath: The computational block performs any
of the main arithmetic operations: addition/subtraction,
multiplication and division. Xilinx Core Generator [31] was
used to generate highly optimised single-precision floating

Fig. 4 Number of parallel computational channels available for
problems with T ¼ 10 and different number of inputs and states
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point units with maximum latency to keep pipeline stages
short and achieve a high clock frequency. Extra registers
were added after the multiplier to match the latency of the
adder for synchronisation, as these are the most common
operations. The latency of the divider was much larger (27
cycles) than the adder (12 cycles); therefore it was decided
not to match the delay of the divider path, as it would
reduce our flexibility for ordering computations. A small
number of NOPs were inserted (to account for the latency
mismatch) whenever division operations were needed,
namely only when calculating Wk and s−1

k .
Comparison operations are also required for the line search

method (Line 6 of Fig. 1); however, this is implemented by
repeated comparison with zero, so only the sign bit needs to
be checked and a full floating-point comparator is not
required.

Table 1 shows the total number of floating point units in
the circuit, which account for most of the computational
resources required by the design. We can see that the
resources consumed by Stage 1 are a very small fraction of
the total, so the impact of having several copies of Stage 1
running in parallel is also small.

6.3.2 Control block: Since the same computational units
are being reused to perform many different operations, the
necessary control is rather complex. The control block
needs to provide the correct sequence of read and write
addresses for the data RAMs, as well as other control
signals, such as computation selection. An option would be
to store the values for all control signals at every cycle in a
program memory and have a counter iterating through
them. However, this would take a large amount of memory.
For this reason, it was decided to trade a small increase in
computational resources for a much larger decrease in
memory requirements.

Frequently occurring memory access patterns have been
identified and a dedicated address generator hardware block
has been built to generate them from minimum storage. Each
pattern is associated with a control instruction. Examples of
these patterns are: simple increments a, a + 1, . . . , a + b and
the more complicated read patterns needed for matrix vector
multiplication (standard and transposed). This approach
allows storing only one instruction for a whole matrix–
vector multiplication or for an arbitrary long sequence of
additions. Control instructions to perform line search and
linearisation for one problem were stored. When the last
instruction is reached, the counter goes back to instruction 0
and iterates again for the next problem with the necessary
offsets being added to the control signals.

Table 1 Total number of floating point units in the circuit in

terms of the bandwidth of Ak and the parameters of the control

problem

Floating point units

Matrix

parameters

Control

parameters

stage 1 3i 3i

dot-product (linear solver) 4M 2 3 8n + 4m 2 3

other (linear solver) 27 27

total 4M + 24 + 3i 8n + 4m + 24 + 3i

This is independent of the horizon length T. i is the number of

parallel instances of Stage 1, which is 1 for most problems
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6.3.3 Memory subsystem: Separate memory blocks were
used for data and control instructions, allowing simultaneous
access and different word-lengths in a similar way to a
Harvard microprocessor architecture. However, in our
circuit there are no cache misses and a useful result can be
produced almost every cycle. The data memories are
divided in two blocks, each one feeding one input of the
computational block. The intermediate results can be stored
in any of these simple dual-port RAMs for flexibility in
ordering computations. The memory to store the control
instructions is divided into four single port ROMs
corresponding to read and write addresses of each of the
data RAMs. The responsibility for generating the remaining
control signals is spread out over the four blocks.

Another approach for implementing Stage 1 could have
been using an off-chip microprocessor; however, the data
for matrix Ak would need to be transmitted from the CPU
to the FPGA, and as a result I/O will determine how
much parallelism can be employed in the linear solver. A
further alternative would be using an on-chip soft-core
processor. In this case, the lesser amount of customisation
compared to our implementation would result in increased
storage requirements for instructions [24]. In addition, a
soft-core processor could lower the operating frequency of
the design.

6.4 Latency and throughput

Since the FPGA has deterministic timing, we can calculate the
exact latency and throughput of our system. The overall
latency of the circuit will be given by

Latency = 2INWPN (IMR + 1)

FPGAfreq

s (18)

where INW is the number of outer iterations in the interior-
point method (Fig. 1), FPGAfreq is the FPGA’s clock
frequency, and P is given by (15). In that time, the
controller will be able to output the result to 2P problems.

6.5 Input/output

Stage 1 is responsible for handling the chip I/O. It reads the
current state measurement x̂ as n 32-bit floating point values
sequentially through a 32-bit parallel input data port.
Outputting the m 32-bit values for the optimal control move
u∗0(x̂) is handled in a similar fashion. When processing 2P
problems, the average I/O requirements are given by

2P(32(n + m))

Latency given by (18)
(bits/s)

For the example problems that we have considered in Section 7,
the I/O requirements range from 0.2 to 0.005 Mbits/s, which
is well within any standard FPGA platform interface, such as
PCI Express. The combination of a very computationally
intensive task with very low I/O requirements, highlight the
affinity of the FPGA for MPC computation.

6.6 Coefficient matrix storage

When implementing an algorithm in software, a large amount
of memory is available for storing intermediate results. In
FPGAs, there is a very limited amount of fast on-chip
memory, around 4.5 Mbytes for high-end memory-dense
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Xilinx Virtex-6 devices [32]. If a particular design requires
more memory than available on the chip, there are two
negative consequences. Firstly, if the size of the problems
we can process is limited by memory, it means that the
computational capabilities of the device are not being fully
exploited, since there will be unutilised slices and DSP
blocks. Secondly, if we were to try to overcome this
problem by using off-chip memory, the performance of our
circuit is likely to suffer since off-chip memory accesses are
slow compared with the on-chip clock frequency. By taking
into account the special structure of the matrices that are fed
to the linear solver in the context of MPC, we can
substantially reduce memory requirements so that this issue
affects a smaller group of problems.

The matrix Ak is banded and symmetric (after re-ordering).
On-chip buffering of this type of matrix using CDS can achieve
substantial memory savings with minimum control overhead in
an FPGA implementation of the MINRES method [33]. The
memory reductions are achieved by only storing the non-zero
diagonals of the original matrix as columns of the new
compressed matrix. Since the matrix is also symmetric, only
half of the CDS matrix needs to be stored. In order to
achieve the same result when multiplying by a vector, the
vector has to be aligned with its corresponding matrix
components. It turns out that this is simply achieved by
shifting the vector by one position at every clock cycle.

The method described in [33] assumes a dense band;
however, it is possible to achieve further memory savings
by exploiting the structure of the MPC problem even
further. The structures of the original matrix and
corresponding CDS matrix for a small MPC problem are
shown in Fig. 5, and show variables (elements that can vary
from iteration to iteration of the interior-point method) and
constants. The following observations can be exploited to
store much fewer elements than with standard CDS:

† Non-zero blocks are separated by layers of zeros in the
CDS matrix. It is possible to store only one of these
zeros per column and add common circuitry to generate
appropriate sequences of read addresses.
† Only a few diagonals adjacent to the main diagonal in Ak
have varying elements. This means that only few columns in
the CDS matrix contain varying elements. This has important
implications, since in the original linear solver implementation
[19], matrices for the P problems that are being processed
simultaneously have to be buffered on-chip. The memory
blocks holding columns of the matrix (refer to Fig. 2) have
to be double in size to allow writing the data for the next
P problems while reading the data for solving the current P
problems. Constant columns in the CDS matrix are common
for all problems, hence the memories used to store them can
be much smaller.
† Constant columns consist of repeated blocks of size
2n + m (where n values are zeros or ones), hence further
memory savings can be attained by only storing one of
these blocks per column.

A memory controller for the variable columns and
another memory controller for the constant columns were
created in order to be able to generate the necessary memory
access patterns to implement this reduced storage scheme. The
impact upon the overall performance is negligible since these
controllers consume few resources compared with floating
point units and they do not slow down the circuit. Using this
storage technique in a software implementation would require
IET Control Theory Appl., 2012, Vol. 6, Iss. 8, pp. 1029–1041
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Fig. 5 Structure of original N × N matrix and corresponding N × M half-CDS matrix showing variables (black), constants (dark grey), zeros
(white) and ones (light grey) for m ¼ 2, n ¼ 4 and T ¼ 8
cumbersome array index arithmetic, which will likely lead to
performance degradation.

If we consider a dense band, storing the coefficient matrix
using CDS would require 2P (T (2n + m) + 2n)(2n + m)
elements. By taking into account the sparsity of matrices
arising in MPC, it is possible to only store
2P (1 + T (m + n) + n)n + (1 + m + n)(m + n) elements.
Fig. 6 compares the memory requirements for storing the
coefficient matrices on-chip when considering: a dense
matrix, a banded symmetric matrix and an MPC matrix (all
in single-precision floating-point). Memory savings of
approximately 75% can be achieved by considering the
in-band structure of the MPC problem compared with the
standard CDS implementation. In practice, columns are
stored in BlockRAMs of discrete sizes, therefore actual
savings will differ slightly in an FPGA implementation.

Fig. 6 Memory requirements for storing the coefficient matrices
under different schemes

Problem parameters are m ¼ 3 and T ¼ 20. p and l do not affect the memory
requirements of Ak . The horizontal line represents the memory available in a
memory-dense Virtex 6 device [32]
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7 Parallel MMPC

MMPC has been proposed elsewhere [13, 34]. This section
extends the MMPC algorithm in a way such that the
architecture proposed in Section 6, which is capable of
solving 2P QP problems in parallel can be exploited. We
called this version of MMPC, Parallel MMPC.

The original formulation of MMPC was for implementation
on a single core processor, solving one QP problem per
sampling interval. The key idea in MMPC is that, for an m-
input plant, instead of optimising over all the m input channels
in one large QP, the inputs are optimised one channel at a time,
in a pre-planned periodic sequence, and the control moves
updated as soon as the solution becomes available. This results
in a smaller QP at each sampling instant, hence reduced online
computational load which in turn enables faster sampling,
leading to faster response to disturbances, despite finding a
sub-optimal solution to the original optimisation problem [35].

MMPC is closer to industrial practice in cases where there is
a complex plant with network constraints, meaning that all
control inputs cannot be updated simultaneously because
of limitations in the communication channels between the
actuators and the controller. Parallel MMPC helps to choose
which inputs are best to update at any given sampling interval.

A detailed derivation of the Parallel MMPC is beyond
the scope of this paper. Instead, we set out the following
algorithm which outlines the key steps in Parallel MMPC:

As can be seen from Fig. 7, Parallel MMPC uses MMPC as
an elementary building block. In Parallel MMPC, for a plant
with m inputs, at a given time, there can be up to m copies of
MMPC. Each of these operates independently and in parallel,
and when given the current plant state x̂, optimised with
respect to different subsets of control moves. The set of
control moves, which produces the smallest cost is selected
and applied to the plant. The process is repeated at the next
updating instant. The resulting updating sequence does not
follow a pre-planned sequence and is not necessarily periodic.

Note that Step 1 of Fig. 7 involves solving for inputs across all
input channels. This type of initialisation requirement is common
in distributed MPC. Subsequent optimisations use this initial
solution, but optimise with respect to a subset of control
1037
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Fig. 7 Parallel MMPC
moves. The stability property of MMPC does not depend on the
optimality of this initial solution, only its feasibility [36].

Proposition 1: Parallel MMPC, obtained by implementing
Fig. 7, gives closed-loop stability.

A detailed proof is beyond the scope of this paper and only
an outline is provided. The proof follows standard argument
used by most MPC stability proofs. It depends on the
constrained optimisation being feasible at each step. In the
proposed Parallel MMPC algorithm, the default MMPC is
always evaluated at every iteration, among the m parallel
copies of MMPC. It then follows that closed-loop stability
can be achieved by applying the default MMPC, which is
stabilising. This gives the worst case since the Parallel
MMPC algorithm ensures that switching to a different
MMPC will further reduce the cost.

8 Results

Part 8.1 is valid for both conventional and MMPC, whereas
parts 8.2 and 8.3 are based on conventional MPC results
and part 8.4 presents the improvement of parallel MMPC.

8.1 Resource usage

An FPGA consists of a 2D array of CLBs, which contain
LUTs and registers to implement logic functions, embedded
configurable multiplier blocks and embedded configurable
memories. Table 2 summarises the dependence of the
different resources on the control parameters.

The proposed design was synthesised using Xilinx XST
inside Xilinx ISE 12 targeting a Virtex 6 VSX 475T [32].
Fig. 8 illustrates how the different resources scale with the
number of states confirming the dependencies stablished in
Table 2. The jumps in the memory requirements curve
originate when the number of elements to be stored in the

Table 2 Resource dependence on different control parameters

Computational resources Memory resources

number of inputs Q(m) QO(m2)

number of states Q(n) QO(n2)

horizon length Q(1) QO(T )

Computational resources represent LUTs, registers and

embedded multipliers. We assume that the problems are big

enough for P ¼ 3; hence, the expression for P does not affect the

memory requirements
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RAMs holding variable columns exceeds the size of Xilinx
BlockRAMs, which come in discrete sizes.

8.2 Latency against absolute horizon length

For a fixed continuous-time horizon length in seconds Tc,
sampling faster means that the optimisation problem will
become larger (as the horizon length in terms of steps T
will be larger), resulting in longer computational times.
Fig. 9 explores this relationship. The critical sampling line
represents the point where the sampling interval equals the
computational time. For conventional MPC, the operating
point has to be in the right-half side of the graph. Operation
on the left-half part where the sampling frequency is greater
than the computational delay will be investigated in the
future in the context of a pipelined computing architecture.

The computational time given by (18) is O(T2) when
IMR ¼ N, whereas the sampling interval is given by

Ts :=
Tc

T
(19)

hence at the point of critical sampling T is O(
���
Tc

3
√

).
This means that the computational time will be O(T 2/3

c ) that is
what we observe in Fig. 10. The plot is generated by taking
the operating point immediately to the right of the critical
sampling line for many different curves. This was repeated for
systems with different number of states.

Fig. 8 Resource utilisation on a Virtex 6 VSX 475T (m ¼ 3,
T ¼ 20, P given by (15))
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8.3 Performance of classical MPC

Post place-and-route results showed that a clock frequency
above 250 MHz is achievable with very small variations for
different problem sizes, since the critical path is inside the
control block in Stage 1. Fig. 11 shows the latency and
throughput performance of the FPGA and latency results
for a microprocessor implementation. For the software
benchmark, we have used a direct C sequential
implementation, compiled using GCC -O4 optimisations
running on a Intel Core2 Q8300 with 3 GB of RAM, 4 MB
L2 cache, and a clock frequency of 2.5 GHz running Linux.
Note that for matrix operations of this size, this approach
produces better performance software than using libraries
such as Intel MKL.

The FPGA implementation starts to outperform the
microprocessor as soon as there is enough parallelism to
overcome the clock frequency disadvantage (this happens
when n . 3 for the example problem). The performance
gap widens as the size of the optimisation problem

Fig. 9 Relationship between computational time and sampling
interval for different horizon lengths

Problem parameters are m ¼ 5, n ¼ 15, IMR ¼ N, INW ¼ 15 and FPGAfreq ¼
250 MHz. The non-monotonicity is caused by the ceil function in the
expression for P

Fig. 10 Effective sampling interval against horizon length for
systems with m ¼ 5, IMR ¼ N, INW ¼ 15, FPGAfreq ¼ 250 MHz
and different number of states
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Fig. 11 Performance comparison showing measured performance
of the CPU, normalised CPU performance with respect to clock
frequency, and FPGA performance when solving one problem and
2P problems given by (15)

Problem parameters are m ¼ 3, T ¼ 20, and FPGAfreq ¼ 250 MHz

Fig. 12 Computational time reduction when employing MMPC on
different plants

Results are normalised with respect to the case when m ¼ 1
a Six parallel channels for all m
b 14 parallel channels for m ¼ 1, 12 for m [ (2, 5], 10 for m [ (6, 13] and 8
for m [ (14, 25]. For parallel MMPC the time required to implement the
switching decision process was ignored; however, this would be negligible
compared to the time taken to solve the QP problem
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increases as a result of increased parallelism in the linear
solver. The FPGA throughput curve represents the
number of interior-point iterations per second when
multiplexing 2P independent problems into the device to
fill the pipeline.

The normalised CPU curve in Fig. 11 illustrates the
performance of a sequential implementation running at the
same frequency as the FPGA, hence can be used to compare
the number of cycles needed in both implementations. Since
the power consumption depends to a large extent on the
clock frequency, the comparison between this curve and the
FPGA curves can be used as a rough estimate of the power
efficiency of both implementations.

For largest problem consired, comparing against an efficient
microprocesor implementation of the same algorithm, the
current FPGA implementation can provide approximately
15× reduction in latency and 85× improvement in
throughput if there are enough problems to fill the pipeline.
In terms of clock cycles, there will be an extra order of
magnitude performance improvement.

8.4 Performance of parallel MMPC

Fig. 12 compares the computational times for standard MPC
and parallel MMPC when taking advantage of the parallel
computational channels provided by the architecture
proposed in Section 6.

Systems with a larger number of inputs will benefit most
from employing the MMPC formulation, as the reduction in
size of the QP problem will be larger. Expression (18)
consists of quadratic, linear and constant terms with respect
to the number of inputs. If m is small compared with n and
T, the constant term dominates and the improvement from
using MMPC diminishes as a consequence. When m is large
relative to n and T, the quadratic and linear terms gain more
weight; hence the improvement becomes very significant.

9 Conclusion

This paper has described a parameterisable FPGA
architecture for solving QP optimisation problems in linear
MPC. Various design decisions have been justified based
on the significant exploitable structure in the problem. The
main source of acceleration is a parallel linear solver block,
which reduces the latency of the main computational
bottleneck in the optimisation method. Results show that a
significant reduction in latency is possible compared with a
sequential software implementation, which translates to high
sampling frequencies and better quality control. We have
presented a new MPC formulation that breaks the original
problem into smaller subproblems in order to exploit the
high throughput of the proposed FPGA architecture.

We are currently working on completely automating the
design flow with the objective of making efficient use of all
resources available in any given target FPGA platform,
avoiding the situation observed in Fig. 8, where a large
proportion of the logic resources remain unutilised. The
potential for industrial take-up of this technology is
currently being explored with our partners.
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