
Abstract
Remote sensing techniques have been previously used
in urban analysis, settlement detection, and population
estimation. This research explores the potentials of integra-
tion of Landsat ETM� data with census data for estimation
of population density in City of Indianapolis, Indiana.
Spectral signatures, principal components, vegetation
indices, fraction images, textures, and temperature were
used as predictive indicators. Correlation analysis was
used to explore the relationships between remote sensing
variables and population, and stepwise regression analysis
was then used to develop models for estimating population
quantities. Two sampling schemes (non-stratified versus
stratified sampling) were compared. It was found that
the integration of textures, temperatures, and spectral
responses substantially improved the accuracy of estima-
tion. Stratification of the population into three categories
of low-, medium-, and high-densities and development of
different models for individual population density category
provided better estimation results than a non-stratified
scheme. The total population for City of Indianapolis was
estimated to be 832,792 in 2000 yielding an accuracy of
96.8 percent.

Introduction
World population has experienced a high growth rate since
the Industrial Revolution in the 18th century, especially in
recent decades. The large world population has produced
great pressures on global resources, environment, and
sustainable development (Lo, 1986a; Sutton et al., 1997).
The pressure from population increase often results in
urban expansion at the expense of decreased non-urban
lands, such as agricultural land and forest. Timely and
accurate population estimation, its spatial distribution, and
dynamics become considerably significant for understand-
ing the effect of population increase on the social, eco-
nomic, and environmental problems. Moreover, population
information at different levels, such as national, regional,
and local, are very important for many purposes such as
urban planning, resource management, and service alloca-
tion. Conventional census methods of population estimation
are found to be time-consuming, costly, and difficult to
update. Besides, the census interval is often too long for
many types of application; for example, the census is
conducted every ten years in the United States. Due to large
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migrations, population distributions can change quickly,
thus the census data are frequently found to be obsolete.
Therefore, it is necessary to develop suitable techniques for
estimating population in an accurate and timely manner at
different spatial scales.

Geographic research of population estimation started
early in the 1930s. John K. Wright, a geographer working at
American Geographical Society, pioneered in population
estimation study by producing a map of population distribu-
tion in Cape Cod, Massachusetts (Wright, 1936). Wright
termed his method dasymetric mapping, in which the breaks
in the population distribution map were related to types
of land use. With the maturing of GIS technology, some
applications suggest that Wright’s seminal work could be
applied to areal interpolation (Flowerdew and Green, 1992)
suitable for statistically modeling a wide range of phenom-
ena including population. Following the idea of dasymetric
mapping and implemented by using the pycnophylactic
interpolation method, the National Center for Geographic
Information and Analysis created global raster images of
population distribution from a set of 15,000 administrative
units in the Global Demography project (Tobler et al., 1995).
Remote sensing techniques have been used for population
estimation since the 1950s, when Porter (1956) estimated
population in a settlement of Liberia by counting the number
of huts on aerial photography and by multiplying it by mean
occupants per hut derived from ground sampling survey.
With advances of remote sensing and GIS technology, remotely
sensed data have become an important resource in popula-
tion estimation due to their strengths in data coverage,
reasonable accuracy, and low cost (Lo, 1995; Jensen and
Cowen, 1999). Different methods have been developed
to estimate population based on aerial photography and
satellite imagery (Lo and Welch, 1977; Watkins and Morrow-
Jones, 1985; Lo, 1986a, 1986b, 1995, 2001; Langford et al.,
1991; Sutton, 1997; Sutton et al., 1997, 2001; Weeks et al.,
2000; Harvey, 2002a, 2002b; Qiu et al., 2003). Satellite-based
variables have been recently combined with other geo-
graphic variables to produce a comparatively high-resolution
(30 arc-sec) population database for the entire globe (Dobson
et al., 2000; Dobson, 2003; Dobson et al., 2003).

Lo (1986a) reviewed the strengths and limitations of
remote sensing methods of population estimation and
classified them into four major categories: (a) based on
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counts of dwelling units; (b) based on measurement of built-
up areas; (c) based on measurement of different land use
areas; and (d) based on spectral radiance of individual
pixels. Each of these approaches has different requirements
in terms of the scale and resolution of photography or
imagery (Lo, 1986a).

The first approach, based on counts of dwelling units,
is regarded as the most accurate remote sensing method
(Forester, 1985; Lindgren, 1985; Lo, 1986a, 1995; Holz, 1988;
Haack et al., 1997; Jensen and Cowen, 1999). Photography or
imagery used should have sufficiently high spatial resolution
in order to identify the type of individual buildings, and
the average number of persons per dwelling unit should be
available. It also assumes all dwellings are occupied. Aerial
photography is more commonly used than satellite imagery
due to its high resolution. Hsu (1971) and Lindgren (1971)
used this method to estimate and map the population distribu-
tion in the Atlanta and Boston metropolitan areas. The main
difficulty with this approach was how to distinguish high-rise
apartment buildings from multistory office buildings.

The second approach, based on measurements of built-
up areas, employs an allometric growth model that describes
the relationship between built–up areas and population size.
Different versions of the following formula are used: r �
aPb, where r is the radius measured from the center of a
settlement, a is a coefficient, P is the population size of
that settlement, and b is an exponent. This method was
employed by Wellar (1969) for a study in Houston and San
Antonio, Texas with Gemini XII photographs. Similarly,
Lo and Welch (1977) studied Chinese cities, and Ogrosky
(1975) studied the Puget Sound Region in Washington using
infrared aerial photography. In addition to aerial photogra-
phy and Landsat imagery, low-resolution nighttime images
(spatial resolution: 2.7 km) from the Defense Meteorological
Satellite Program had also been used to map human settle-
ments (Elvidge et al., 1995, 1997) and urban extent (Imhoff
et al., 1997), and to estimate population nationally and
globally (Welch and Zupko, 1980; Sutton, 1997; Sutton
et al., 1997, 2001; Lo, 2001). Radar images were also used
in population estimation (Henderson and Xia, 1997).

The third method, based on measurement of the area of
different land use types, involves classification of remotely
sensed imagery into discrete land use categories. Langford
et al. (1991) used a TM image to estimate the population of
the 49 wards of Leicestershire, United Kingdom. The TM
image was classified into five land use classes and the pixel
count of each category within each ward was correlated
with population. It was found that ward population had a
relatively high positive correlation with the pixel counts in
industry, commerce, dense residential and ordinary residen-
tial categories, respectively, and had low negative correla-
tions with those areas of no population and agricultural use.
Webster (1996) developed models to estimate dwelling
densities in the 47 suburbs of Harare, Zimbabwe based on
measures of tones (six TM bands), texture (three measures
derived from classification of pixels into urban and non-
urban: urban pixel density, homogeneity, and entropy), and
context (distance from the city center) using SPOT and TM
images, and found that R2 values ranged from 0.69 to 0.81.
Chen (2002) studied the relationship between areal census
dwelling data and residential densities, which were derived
from Landsat TM image covering thirteen census collection
districts of Hornsby Heights, Sydney, Australia.

The fourth method utilizes spectral radiance or trans-
formed remote sensing variables to estimate population. Hsu
(1973) used Landsat MSS multispectral radiance data, cell by
cell (1 � 1 km), to estimate population through implementa-
tion of a multiple regression model. Iisaka and Hegedus
(1982) studied population distribution in residential sections

of suburban Tokyo, Japan using MSS data. Two multiple
linear regression models were developed, in which popula-
tion was the dependent variable and mean reflectance values
of 10 � 10 pixel grid of four MSS bands were independent
variables. Correlation coefficients of 0.77 and 0.899 for 1972
and 1979 were obtained, respectively.

These population estimation approaches have also been
combined for use. Lo (1995) used a mixed approach including
spectral radiance of image pixels and pixel counts in residen-
tial classes to estimate population and dwelling densities in
44 tertiary planning units (TPUs) in Kowloon, Hong Kong
using multispectral SPOT imagery. Four linear regression
models were developed using the following independent
variables: means of SPOT bands 1, 2, and 3; mean of SPOT
band 3 alone; percentages of pixels classified as high and
low density residential use in each TPU; proportion of high
density residential use pixels in each TPU. In addition, an
allometric model was built with the number of pixels in the
high-density residential class as the independent variable.
The models were validated by applying them to 44 TPUs, and
found that the allometric growth model was the best one at a
macro scale. At a micro scale, its estimation accuracy was not
satisfactory due to highly mixed land use and difficulty in
distinguishing residential from non-residential uses. Harvey
(2002a) refined the methods developed by Iisaka and Hegedus
(1982) and Lo (1995), and introduced a variety of standard
spectral transformations of Landsat TM Imagery (squares of
six basic band means, 15 band-mean to band-mean cross-
product, 15 pairwise band-to-band ratios, and 15 pairwise
difference-to-sum ratio of the TM data) into regression models
for population estimation in Ballarat, Sydney, Australia.
The population densities of 132 collect districts (CDs), or its
logarithmic and square root transformation, were regressed
against the transformed remote sensing variables. The results
showed that spectral transformations and application of both
the square root and the logarithmic forms improved correla-
tions. Among the six models validated, three produced a
median proportional error of 17 to 21 percent for the popula-
tion of individual CDs, while the median proportional error
for the total population of Ballarat was within 3 percent.
Similar to other population estimation studies, all the models
overestimated population in low-density rural sections and
underestimated them in high-density urban sections.

Rarely has research explored the integration of spectral,
textural, temperature data, and advanced transformed remote
sensing variables to estimate population. Such incorporation
may provide new insights for population density estimation.
Although previous research has indicated that population
with high density were often underestimated and those with
low density were often overestimated (Harvey, 2000a), no
suitable solution has been proposed to correct these errors.
The main objective of this research is to develop techniques
for population estimation using Landsat ETM� data for city of
Indianapolis, Indiana. Spectral bands, principal components,
vegetation indices, fraction images, textures, and land surface
temperature derived from Landsat imagery were examined as
explanatory variables. Moreover, two sampling schemes (i.e.,
stratifying population density into low-, medium-, and high-,
and then developing estimation model separately, and non-
stratified) were compared. This paper is organized into five
sections. The following section introduces the study area; then,
the methodology used is described including data processing,
and model development; finally the results are presented,
followed by a section of discussion and conclusions.

Study Area
The City of Indianapolis, Indiana, (Figure 1) has been
chosen to implement this study. According to the 2000
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Figure 1. Study area: City of Indianapolis, Indiana.

census results, the city has 860,454 people, increasing by
7.9 percent over 1990. With this population, Indianapolis
ranks as the twelfth largest city in the nation. It has the
highest concentration of major empoyers and manufactur-
ing, professional, technical, and educational services in the
state. With its moderate climate, rich history, excellent
education, social services, arts, leisure, and recreation,
Indianapolis was named one of “America’s Best Places to
Live & Work” (Employment Reviews, August 1996). Its
flatness and relatively symmetrical allocation provide the
possibilities for expansion in all directions. Like most
American cities, Indianapolis has been experiencing areal
expansion through encroachment on agricultural land
and other non-urban land as population increases and
economic growth. The timely and accurate population
information is significant for urban planning and civic
applications.

Data and Methods
Data
Landsat 7 Enhanced Thematic Mapper Plus (ETM�) image
(Row/Path: 32/21) dated on 22 June 2000 was used in this
research. Atmospheric conditions were clear at the time
of image acquisition, and the image was acquired through
the USGS Earth Resource Observation Systems Data Center,

which had corrected the radiometric and geometrical
distortions of the image to a quality level of 1G before
delivery.

Population data at block group level were obtained from
an ESRI Data and Maps CD, which was provided by ESRI,
based on the combination of TIGER files and 2000 population
census data. Because of different coordinate systems used
for the census data and the ETM� image, the geographic
coordinates of census data were converted to the UTM to
match with those of the ETM� image (Figure 2).

Image Processing
Principal Component Analysis
Remotely sensed data, such as visible bands in Landsat
TM/ETM� images, are highly correlated between the adjacent
spectral bands (Barnsley, 1999). Several techniques have
been developed to transform highly correlated bands into an
orthogonal subset. The principal component analysis (PCA) is
the most commonly used one. After performing PCA, the
original correlated bands are transformed into independent
principal components (PC), of which the first PC contains the
largest portion of data variance and the second PC contains
the second largest data variance, and so on. The higher
numbered PCs often appear noisy, since they contain very
little variance of information (Richards, 1994). In this study,
six ETM� multispectral bands (i.e., 1, 2, 3, 4, 5, and 7)
were used to perform PCA. The first three PCs were used in
population estimation analysis because they accounted for
99 percent of total variance.

Vegetation Indices
Many vegetation indices have been developed based on the
fact that plants reflect less in visible red light, but more in
near infrared radiation compared with non-vegetated surface
(Bannari et al., 1995; Jensen, 2000). Thus, vegetation indices
can enhance or extract some specific features that single
spectral bands cannot. In this research, six vegetation indices,
namely, normalized difference vegetation index (NDVI), soil
adjusted vegetation index (SAVI), renormalized difference
vegetation index (RDVI), transformed NDVI (TNDVI), simple
vegetation index (SVI), and simple ratio (RVI), were examined
to use for population estimation (Table 1).

Fraction Images
Spectral mixture analysis (SMA) is regarded as a physically-
based image processing tool that supports repeatable and
accurate extraction of quantitative sub-pixel information
(Smith et al., 1990; Roberts et al., 1998; Mustard and
Sunshine, 1999). It assumes that the spectrum measured by
a sensor is a linear combination of the spectra of all compo-
nents within the pixel (Adams et al., 1995; Roberts et al.,
1998). Because of its effectiveness in handling spectral
mixture problems, SMA has been widely used in estimation
of vegetation cover (Smith et al., 1990; Asner and Lobell,
2000; McGwire et al., 2000; Small, 2001), in vegetation or
land cover classification and change detection (Adams et al.,
1995; Roberts et al., 1998; Cochrane and Souza, 1998; Aguiar
et al., 1999; Lu et al., 2003), and in urban studies (Rashed
et al., 2001; Small, 2001; Phinn et al., 2002; Wu and Murray,
2003). In this study, SMA was used to develop green vegeta-
tion and impervious surface fraction images. Endmembers
were initially identified from the ETM� image based on
high-resolution aerial photographs. The shade endmember
was identified from the areas of clear and deep water, while
green vegetation was selected from the areas of dense grass
and cover crops. Different types of impervious surfaces were
selected from building roofs and highway intersections. An
unconstrained least-squares solution was used to decompose
the six ETM� bands (1, 2, 3, 4, 5, and 7) into three fraction
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Figure 2. Some images used as remote sensing variables for population estimation. (a) NDVI, (b)
Principal Component 2, (c) Temperature, and (d) Texture image derived from Landsat ETM� band 3 with
7 � 7 window size.

images (vegetation, impervious surface, and shade). The
fractions represent the areal proportions of the endmembers
within a pixel. The shade fraction was not used due to
its irrelevance to the population distribution. A detailed
description of the above procedure can be found in Lu and
Weng (2004).

Texture
Texture often refers to the pattern of intensity of variations
in an image. Many texture measures have been developed
(Haralick et al., 1973; Haralick, 1979; He and Wang, 1990),
and used for land cover classification (Marceau et al.,
1990; Gong and Howarth, 1992; Shaban and Dikshit, 2001;

Narasimha Rao et al., 2002). A common texture measure,
variance, has shown to be useful in improving land cover
classification (Shaban and Dikshit, 2001). In this study,
variance was developed and used to examine its relationship
with population. The ETM� bands 3 and 7, which correlate
strongly with the urban features, were used for deriving
texture images with window sizes of 3 � 3, 5 � 5 and 7 � 7.

Temperature
The surface temperature image was extracted from the ETM�
thermal infrared band (band 6). The procedure to develop
the surface temperature involves three steps: (a) converting
the digital number of Landsat ETM� band 6 into spectral
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TABLE 1. DEFINITION OF VEGETATION INDICES USED IN THIS STUDY

Vegetation Index Abbr. Formula Reference

Normalized difference NDVI Rouse et al. 
vegetation index (1974)

Soil adjusted SAVI Huete (1988)
vegetation index

L = 0.5

Renormalized difference RDVI Roujean and
vegetation index Breon (1995)

Transformed NDVI TNDVI Deering et al.
(1975)

Simple vegetation index SVI NIR-RED
Simple ratio RVI NIR/RED Birth and 

McVey (1968)

Note: NIR – Near infrared wavelength, ETM� band 4;
RED – Red wavelength, ETM� band 3.

1(NDVI � 0.5)

NIR � RED1NIR � RED

(1 � L)(NIR � RED)
NIR � RED � L

,

NIR � RED
NIR � RED

Figure 3. Population density distribution by block
groups, Indianapolis, Indiana.

radiance; (b) converting the spectral radiance to at-satellite
brightness temperature, which is also called blackbody
temperature; and (c) converting the blackbody temperature
to land surface temperature. A detailed description for
developing the temperature image can be found in Weng
et al. (2004).

Model Development
Since census data and ETM� data have different formats
and spatial resolutions, they need to be integrated. With
the use of ERDAS Imagine® software, remotely sensed data
were aggregated to block group level. The mean values
of selected remote sensing variables at the block group
level were computed. The variables include radiances of
ETM� bands, principal components, vegetation indices,
green vegetation and impervious surface fractions, tempera-
tures, and texture indicators. All these data were then
exported into SPSS software for correlation and regression
analysis.

Twenty-five percent of the total block groups (658) in
the city were randomly selected, and a 2.5 standard devia-
tion was used to identify the outliers. A total of 162 samples
were used for developing models with a non-stratified
sampling scheme. The population density in Indianapolis
was calculated to range from 0 to 7253 persons per km2,
while most BGs had a population density ranged from 400 to
3000 persons per km2 (Figure 3).

Previous research has indicated that extremely high or
low population density is difficult to estimate using
remotely sensed data (Lo, 1995; Harvey, 2002a, 2000b),
hence, the population densities of the city were divided into
three categories: low (less than 400 person/km2), medium
(401 to 3000), and high (greater than 3000) according to the
data distribution. All block groups in the low- and high-
density categories were used for sampling owing to their
limited number. For the medium density category, samples
were chosen using a random sampling technique. Table 2
summarizes the statistical characteristics of selected samples
for different categories.

Pearson’s correlation coefficients were computed
between population densities and the remote sensing
variables. Stepwise regression analysis was further applied
to identify suitable variables for developing population
estimation models. The coefficient of determination (R2) was
used as an indicator to determine the robustness of a
regression model. To improve model performance, various
combinations of the remote sensing variables were explored,
as well as the transformation of population densities into
natural logarithm (LPD) and square root (SPD) forms.

Accuracy Assessment
Whenever a model developed is applied for prediction, there
are always discrepancies between true and estimated values,
which are called residuals. It is necessary to validate the model
whether it fits training set data, which is called internal valida-
tion, or to test its fitness with other data sets that are not used
as training sets, which is called external validation (Harvey,
2002a). Relative and absolute error can be computed. For an
individual case, the relative error (RE) can be expressed as:

(1)

where Pg and Pe are the reference and estimated values
respectively. The residual (Pg � Pe) for individual cases may
be negative or positive, so absolute values of the residuals
were used to assess the overall performance of a developed
model, i.e.,

(2)

(3)

where n is the number of block groups used for accuracy
assessment. The smaller the RE and AE, the better the models

Overall absolute error (AE) �
a
n

k�1
0Pg � Pe 0

n

Overall relative error (RE) �
a
n

k�1
0REn 0

n

RE � (Pg � Pe)/Pg � 100

TABLE 2. STATISTICAL DESCRIPTIONS OF SAMPLES OF POPULATION DENSITIES

(PERSONS/KM2)

Categories Samples Min. Max. Mean Std. Dev.

Non-stratified 162a (175b) (658c) 8 4479 1470.71 948.62
Low 77a (82c) 1 393 208.94 123.11
Medium 114a (125b) (499c) 402 2824 1417.31 676.97
High 70a (77c) 3015 5189 3707.66 579.08

Note: ais the samples that removed outliers and finally used for data
analysis;
bis the samples selected based on a random sampling technique;
cis the total number of block groups corresponding population.

04-015.qxd  6/30/05  10:28 AM  Page 951



952 Augu s t 2005 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

would be. A total of 483 un-sampled BGs were used to
assess the performance of models in the non-stratified
sampling scheme. For the stratified sampling scheme, a total
of 521 samples were used for accuracy assessment. A
residual map was created based on the best estimation
model for geographical analysis of predicted errors.

Results
Population Estimation Based on Non-stratified Sampling Scheme
Six groups of remote sensing variables were used to explore
their relationships with population parameters, and their
correlation coefficients are presented in Table 3. Table 3
indicates that among the ETM� spectral bands, band 4 was
the most strongly correlated with population density, the
transforms of population density into natural logarithm or
square-root forms did not improve correlation coefficients of
single ETM� bands except for band 5. The principle compo-
nents, especially PC2, improved the correlation with popula-
tion parameters when compared with single ETM� bands.
All selected vegetation indices had a significant correlation
with population density. The GV fraction had a better
correlation with population density than impervious surface
fraction. Selected textures, especially band 7 associated with
a window size of 7 by 7, were strongly correlated with
population density. Among all selected remote sensing
variables, temperature was the most correlated variable with

population density. Moreover, it is found that vegetation
related variables such as band 4, PC2, vegetation indices and
green vegetation fraction all had a negative correlation with
population parameters. This is because for a given area,
more vegetation is often related to less built-up area, and
thus to less population.

The strong correlation between population parameters
and several remote sensing variables imply that a combina-
tion of temperature, textures, and spectral responses could
be used to improve the models of population estimation. A
series of estimation models were developed by performing
stepwise regression analysis, based on different combina-
tions of remote sensing variables. The predictors and R2 of
regression models developed are presented in Table 4.

Table 4 indicates that any single group of remote
sensing variables did not produce a satisfactory R2 except
for vegetation indices. Incorporation of vegetation-related
variables or use of all variables provided better modeling
results. The square root form of population density
improved the regression models, while the natural logarithm
form degraded the regression performance, with an excep-
tion in the textures. Table 5 summarizes the best performing
regression models and associated estimation errors.

Overall, larger R2 values resulted in less estimation
errors. The regression models using a combination of spec-
tral, textures, and temperature provided the best estimation
results. The R2 value for the best model reached 0.83, but
the estimation errors were still high. The overall relative
errors were larger than 123 percent, and the overall absolute
errors were greater than 439 persons/km2 (the mean popula-
tion density is 1,470 persons/km2). The extreme low and
high population density BGs were the main sources of error.
Low population density BGs had more severe impacts on
relative errors, while high population density BGs had more
impacts on absolute errors. These impacts can be clearly
illustrated in the scatter plot of the residuals. Figure 4 shows
the residual distributions of the best model (Model 4).
It indicates that population in very low-density BGs was
overestimated, while population in high-density area was
greatly underestimated. The high estimation errors imply
that no single model worked well for all levels of population
density. In order to improve population estimation results,
separating the population density into sub-categories such as
low, medium, and high densities, and developing models for
each category becomes necessary.

Population Estimation Based on Stratified Sampling Scheme
Table 6 shows correlation coefficients between population
parameters and remote sensing variables in the low,
medium, and high population density categories. It is clear
that in the low-density category, correlations were not as
strong as those in medium and high density. Similarly, as
with the non-stratified scheme, in the medium and high-
density categories, temperature had the strongest positive
correlation with population, while vegetation related
variables had negative correlations with population. The low
correlation between remote sensing variables and population
in the low-density category imply that population estimation
for these areas were more complicated, and the issue
warrants further studies.

The R2 values for individual regression models are
summarized in Table 7. In the low- density and high-density
categories, the highest R2 were only 0.13 and 0.180, respec-
tively. This indicates that Landsat ETM� data may not be
suitable for population estimation in these categories. In the
medium density category, the combination of vegetation
indices or vegetation related variables, and the incorporation
of spectral response, textures and temperature can provide
good estimations, especially the later when R2 reached as

TABLE 3. RELATIONSHIPS BETWEEN POPULATION PARAMETERS AND REMOTE

SENSING VARIABLES BASED ON NON-STRATIFIED SAMPLES

Variables PD SPD LPD

Bands B1 0.226a 0.160b 0.019
B2 0.163b 0.096 �0.039
B3 0.164b 0.096 �0.039
B4 �0.255a �0.209a �0.108
B5 �0.155b �0.196b �0.251a

B7 0.068 0.003 �0.115
PCs PC1 0.123 0.056 �0.073

PC2 �0.319a �0.283a �0.190b

PC3 �0.248a �0.239a �0.178b

VIs NDVI �0.244a �0.182b �0.052
RDVI �0.242a �0.178b �0.040
SAVI �0.245a �0.182b �0.053
SVI �0.221a �0.156b �0.023
RVI �0.385a �0.337a �0.206a

TNDVI �0.164b �0.098 0.026
Frac. GV �0.231a �0.171b �0.045

IMP 0.109 0.043 �0.082
Text. B3_3 � 3 �0.196b �0.223a �0.267a

B7_3 � 3 �0.295a �0.326a �0.347a

B3_5 � 5 �0.280a �0.317a �0.360a

B7_5 � 5 �0.368a �0.406a �0.427a

B3_7 � 7 �0.322a �0.364a �0.407a

B7_7 � 7 �0.402a �0.444a �0.463a

Temp. TEMP 0.519a 0.513a 0.411a

Notes: aCorrelation at 99 percent confidence level (2-tailed);
bCorrelation at 95 percent confidence level (2-tailed);
Bn—band n;
PD—population density;
SPD—square root of population density;
LPD—natural logarithm of population;
PCs—principal components;
VIs—vegetation indices;
Frac.—fraction images;
GV—green vegetation fraction;
IMP—impervious surface fraction;
Text.—texture;
Temp.—temperature.
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TABLE 4. COMPARISON OF REGRESSION RESULTS FOR POPULATION DENSITY ESTIMATION BASED ON NON-STRATIFIED SAMPLES

Potential
PD SPD LPD

Variables Selected Var. R2 Selected Var. R2 Selected Var. R2

Bands B4 0.065 B5, B1, B2 0.212 B1, B2, B5 0.160
PCs PC2, PC3 0.159 PC2, PC3 0.134 PC2, PC3, PC1 0.107
VIs RVI, TNDVI, SAVI, RDVI 0.622 TNDVI, SAVI, RDVI, RVI 0.645 TNDVI, SAVI, RDVI 0.548
Frac. GV, IMP 0.079 GV, IMP 0.065 non*
Text. B7_7 � 7, B7_3 � 3, B3_3 � 3 0.369 B7_7 � 7, B3_3 � 3, B3_5 � 5 0.465 B7_3 � 3, B7_5 � 5 0.448
Temp. TEMP 0.269 TEMP 0.263 TEMP 0.169
VRV RVI, TNDVI, SAVI, PC2, B4 0.768 RVI, TNDVI, SAVI, PC2, B4 0.797 RVI, TNDVI, SAVI, PC2, B4 0.678
B-temp Temp, B5 0.351 Temp, B7 0.376 Temp, B7 0.338
Mixture B7_7 � 7, RVI, B2, TNDVI, SAVI, B5 0.785 TEMP, RVI, TNDVI, SAVI, B5, RDVI, SVI 0.828 TNDVI, SAVI, B5, TEMP, RVI 0.698

Notes: VRV—vegetation related variables, including band 4, PC2, VIs, and GV;
B-temp—combination bands and temperature;
Mixture—combination of all variables.

high as 0.87, 0.86, and 0.83 for different forms of dependent
variables. Overall, the transforms of population density did
not significantly improve the estimation in these categories.

Table 8 displays the four best models, selected based
on R2 and estimation errors. It shows that the results of
population estimation for the low-density category using
remote sensing variables were not satisfactory due to its
high estimation errors. In the medium density category, both

models provided very good estimations, using vegetation
related independent variables, or using a combination of
spectral, texture, and temperature variables. The R2 values
reached 0.83 and 0.86, respectively with a relative error of
less than 29 percent, and an absolute error of less than 384
in both models (compared with the mean values of 1,417).
For the high-density category, the model using temperature
as the only independent variable yielded the best estimation
result. The relative error was only 11.4 percent, but absolute
error reached 429 (compared with mean value of 3,707).
Overall, the performance of estimation models was much
improved after stratification of population density into three
categories. This finding implies that stratification based on
population density is necessary for developing population
estimation models using remotely sensed data.

Figure 5 shows the distribution of residuals when
combination of Model 5, 7, and 8 was applied to predict the
population of Indianapolis in 2000. Most underestimations
and overestimations were located in the central part of the
city. For example, BGs 1, 2, 3, 4, and 5 (marked on Figure 5)
with very high population densities, were greatly underesti-
mated. These BGs usually had several multi-story apartments
for residential use (Figure 6). On the other hand, most
overestimated BGs were found in the downtown area, where
commercial or service uses dominated. For example, the
most overestimated BG, BG3 had a population density of
678/ km2 according to the census data, but the estimated
population density reached up to 1,884/ km2. The second-
most overestimated area was observed in BG7 (Figure 7),
where university and residential uses shared the land.

Based on the models developed for estimating popula-
tion densities, the population of individual block groups
can be calculated, and the total population of the whole
city can be summed up. The total population estimates
were 832,792 with relative error of 3.2 percent using
stratified scheme (i.e., combination of models 5, 7, and 8)

TABLE 5. SUMMARY OF SELECTED ESTIMATION MODELS FOR POPULATION DENSITY ESTIMATION BASED ON NON-STRATIFIED SAMPLES

Model Var. Regression Equation R2 RE AE

PD 1 Mixture �83613.428 � 58.830*B7_7 � 7 � 5914.817*RVI � 117300.115*TNDVI 0.785 204.3 505
� 65068.691*SAVI � 65.723*B5 � 64.369*B2

2 VRV �95394.477 � 6378.881*RVI � 132709.023*TNDVI � 73728.142*SAVI 0.768 204.4 523
� 137.526*PC2 � 129.704*B4

SPD 3 Mixture �1293.678 � 1.318*TEMP � 57.79*RVI � 1347.089*TNDVI 0.828 123.1 439
� 789.683*SAVI � 1.124*B5 � 11.674*RDVI � 1.325*SVI

4 VRV �1226.463 � 72.752*RVI � 1754.789*TNDVI � 0.797 142.1 452
1.915*PC2 � 945.565*SAVI� 1.742*B4

Figure 4. Residual distribution from model 4, negative
indicates overestimated and positive indicates under-
estimated.
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and 789,756 with relative error of 8.2 percent using the
non-stratified model 3 (in Table 5). Remote sensing tech-
niques can provide reasonably accurate estimation results

for the total population, and dividing population density
into different categories was more effective than conven-
tional, non-stratified methods.

TABLE 6. RELATIONSHIPS BETWEEN POPULATION PARAMETERS AND REMOTE SENSING VARIABLES BASED ON STRATIFIED SAMPLES

Low Density Medium Density High Density

Remote Sensing Variables PD SPD LPD PD SPD LPD PD SPD LPD

ETM B1 �0.231b �0.237b �0.232b 0.398a 0.398a 0.391a 0.274b 0.269b 0.264b

B2 �0.232b �0.234b �0.230b 0.340a 0.342a 0.338a 0.248b 0.243b 0.237b

B3 �0.244b �0.245b �0.237b 0.349a 0.351a 0.346a 0.267b 0.263b 0.259b

B4 0.223 0.231b 0.207 �0.354a �0.335a �0.304a �0.371a �0.371a �0.371a

B5 �0.164 �0.141 �0.132 �0.060 �0.047 �0.029 �0.085 �0.087 �0.089
B7 �0.256b �0.248b �0.234b 0.243a 0.247a 0.246a 0.194 0.191 0.188

PCs PC1 �0.249b �0.247b �0.237b 0.302a 0.304a 0.302a 0.231 0.227 0.223
PC2 0.164 0.181 0.168 �0.391a �0.373a �0.347a �0.379a �0.378a �0.377a

PC3 �0.001 0.027 0.068 �0.269a �0.291a �0.316a �0.019 �0.009 0.001
VIs NDVI 0.253b 0.257b 0.237b �0.388a �0.376a �0.354a �0.346a �0.344a �0.342a

RDVI 0.255b 0.257b 0.242b �0.411a �0.409a �0.398a �0.318a �0.315a �0.312a

SAVI 0.253b 0.257b 0.237b �0.388a �0.377a �0.354a �0.347a �0.345a �0.342a

SVI 0.252b 0.256b 0.241b �0.392a �0.384a �0.365a �0.340a �0.337a �0.335a

RVI 0.211 0.210 0.191 �0.514a �0.506a �0.485a �0.354a �0.353a �0.351a

TNDVI 0.260b 0.266b 0.246b �0.320a �0.308a �0.286a �0.335a �0.333a �0.330a

Frac. GV 0.254b 0.258b 0.238b �0.388a �0.376a �0.353a �0.357a �0.356a �0.355a

IMP �0.273b �0.266b �0.249b 0.291a 0.290a 0.283a 0.264b 0.262b 0.260b

Text. B3_3 � 3 �0.119 �0.124 �0.129 �0.047 �0.025 0.001 �0.123 �0.125 �0.127
B7_3 � 3 �0.149 �0.143 �0.133 �0.150 �0.138 �0.123 �0.130 �0.132 �0.133
B3_5 � 5 �0.104 �0.111 �0.125 �0.133 �0.114 �0.090 �0.103 �0.105 �0.107
B7_5 � 5 �0.142 �0.137 �0.132 �0.218b �0.210b �0.198b �0.106 �0.108 �0.109
B3_7 � 7 �0.093 �0.102 �0.122 �0.177 �0.159 �0.136 �0.080 �0.083 �0.085
B7_7 � 7 �0.136 �0.132 �0.130 �0.251a �0.244a �0.234b �0.076 �0.078 �0.080

Temp TEMP �0.234b �0.231b �0.212 0.622a 0.635a 0.637a 0.425a 0.423a 0.420a

aCorrelation at 99 percent confidence level (2-tailed);
bCorrelation at 95 percent confidence level (2-tailed).

TABLE 7. COMPARISON OF REGRESSION RESULTS FOR DIFFERENT POPULATION DENSITY CATEGORIES

PD SPD LPD

Scale Var. Selected Var. R2 Selected Var. R2 Selected Var. R2

Low Bands B7 0.066 B7 0.062 B3 0.056
PCs PC1 0.062 PC1 0.061 PC1 0.056
VIs or VRV TNDVI 0.068 TNDVI 0.071 TNDVI 0.061
Frac. IMP 0.075 IMP 0.071 IMP 0.062
Text. non* non* non*
Temp. TEMP 0.055 TEMP 0.053 TEMP 0.045
Mixture IMP, B3_7 � 7 0.130 IMP 0.071 IMP 0.062

Medium Bands B1, B2 0.290 B1, B2 0.283 B1, B2, B4 0.290
PCs PC2, PC3 0.277 PC2, PC3 0.277 PC2, PC3 0.269
VIs TNDVI, SAVI, 0.641 TNDVI, SAVI 0.611 TNDVI, SAVI 0.597

RDVI, SVI
Frac. GV 0.151 GV 0.141 GV 0.124
Text. B7_7 � 7, 0.215 B7_7 � 7, 0.230 B3_3 � 3, 0.296

B7_3 � 3 B7_3 � 3 B3_5 � 5
Temp. TEMP 0.387 TEMP 0.404 TEMP 0.407
VRV RVI, TNDVI, 0.825 RVI, TNDVI, 0.829 TNDVI, PC2, 0.794

PC2, SAVI, PC2, SAVI,  RDVI, NDVI,
RDVI, SVI RDVI, SVI, B4 SVI

B-temp Mixture TEMP, B7 0.442 TEMP, B7 0.461 TEMP, B7 0.466
B3_7 � 7, RVI, 0.869 TEMP, B3_7 � 7, 0.863 TEMP, 0.831

TNDVI, SAVI, RVI, TNDVI, B7_7 � 7, RVI 
B5, PC1 SAVI, B5, PC1 TNDVI, AVI,

B5, RDVI
High Bands B4 0.138 B4 0.138 B4 0.138

PCs/VRV PC2 0.144 PC2 0.143 PC2 0.142
VIs RVI 0.125 RVI 0.124 RVI 0.123
Frac. GV 0.128 GV 0.127 GV 0.126
Text. non* non* non*
B-temp Mixture TEMP 0.180 TEMP 0.179 TEMP 0.177
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Discussion and Conclusions
Discussion
Using remote sensing techniques to estimate population
density is still a challenging task both in terms of theory
and methodology, due to remotely sensed data, the complex-
ity of urban landscapes, and the complexity of population
distribution. Remotely sensed data are associated with the
characteristics of surface features, but not directly related to
population counts or population densities. For example, the
areas with low population density may be located in
industrial / commercial areas, or in forest / agriculture
dominated areas, but the spectral characteristics of these
landscapes are fundamentally different. The areas with high
population density largely consist of multi-story apartments.
The distribution of these high-density areas varies greatly
with urban spatial structure which has identified three
classical types: concentric zone, sector, and the multiple-
nuclei city (Wheeler and Muller, 1981). In developed
countries, substantial urban growth frequently occurs in
suburban areas due to the re-distribution of population and
decentralization of metropolitan urban functions; while in
developing countries, urban expansion is more related to
rapid population growth and industrialization. In the
Eastern cities, such as Hong Kong, Singapore, and Shanghai,

high population density is often observed in the central part
of a city, where high-rise residential buildings coalesce.
Optical remote sensing data, however, have not directly
been linked to the vertical or internal features of such
buildings for digital analysis of population estimation.

Remotely sensed data and census data are often col-
lected with different formats and stored with different data
structures. The values of any census variable are aggregated
totals or mean values for the entire spatial extent of a census
unit. In other words, census units are assumed to be homog-
enous, no matter what types of variation in land use are
within them. A problem is created when unoccupied areas,
such as water, airports, and forests, are given a population
in the census. Remote sensing data have finer resolution
than the census data. When integrating these two types of
data, a common method is to aggregate remotely sensed data
to an appropriate census level. For example, this research
aggregated various remote sensing variables at a block group

TABLE 8. BEST ESTIMATION MODELS FOR DIFFERENT DENSITY CATEGORIES BASED ON THE STRATIFIED SAMPLING SCHEME

Model Potential Var. Dep. Var. Regression Equation R2 RE AE

Low 5 Mixture PD 296.190 – 9.136*IMP 
� 7.746*B3_7 � 7 0.130 315.3 97

Medium 6 VRV SPD �649.707 � 37.317*RVI �
1027.726*TNDVI – 1.579*PC2
–538.330*SAVI � 0.608*B4
–12.092*RDVI � 1.183*SVI 0.829 28.9 357

7 Mixture SPD �966.765 � 0.684*TEMP –
0.632*B3_7 � 7 � 46.507 *RVI 
� 1110.756*TNDVI – 581.426*SAVI
–1.003*B5 � 0.514*PC1 0.863 28.4 384

High 8 B-temp/Mixture SPD �565.332 � 2.047*TEMP 0.179 11.4 429

Figure 5. Residual map of estimated population densi-
ties based on the best model of the stratified sampling
scheme. Negative value indicates overestimated and
positive value indicates underestimated.

Figure 6. The most underestimated block group. The
solid line shows the boundary of block groups. The
background image is a digital orthophoto with a pixel
resolution of 0.5 foot (international survey feet), which
was acquired in March and April of 2002 and was
provided for use by the Indianapolis Mapping and
Geographic Infrastructure System.
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Figure 7. The most overestimated block group. The
solid line shows the boundary of block groups. The
background image is a digital orthophoto with a pixel
resolution of 0.5 foot (international survey feet), which
was acquired in March and April of 2002 and was
provided for use by the Indianapolis Mapping and
Geographic Infrastructure System.

level. This aggregation has the potential to result in the
same values for different BGs in spite of their differences in
land use and land cover types, causing errors for population
estimation.

Because of the complexity of population distribution, a
single model is often difficult to fit all the data. Stratifica-
tion of population density in this study has proved to be
effective in improving estimation results. However, the
method of stratifying population based on density may
result in spatial discontinuity of the data, and may be
difficult to find suitable thresholds for stratification. The
population categories identified here correspond, to some
extent, to land cover categories in urban residential areas in
the National Land Cover Database (NLCD) (Vogelman et al.,
1998; Vogelman et al., 2001). Low intensity residential areas
in NLCD, mostly single-family housing units, relate to the
medium population density category, while high intensity
residential, such as apartment complexes and row houses,
relate to high population density category. Moreover, due to
various factors impacting remotely sensed data quality, it is
usually difficult to directly transfer the model developed in
one site to other sites. Many factors need to be considered,
including image acquisition date and time, the atmospheric
condition when the image data were acquired, and the
characteristics of the urban landscapes under investigation.
Model transfer to nearby areas with similar socio-economic
conditions is favorable, if these areas are within the same
image scene or adjacent scenes in the same path of image
acquisition.

Conclusions
Population estimation models developed based on the
integration of satellite imagery and census data have numer-
ous applications. They can be used to provide information
on intra-urban population distribution, which is essential in
urban planning, natural hazard risk assessment, disaster
prevention and response, environmental impact assessment,

transportation planning, economic decision-making, and
evaluation of quality of life. They can also be applied to
validate urban growth models if the time series image data
become available.

This study demonstrates that Landsat ETM� imagery
could be used to provide reasonably accurate population
density estimation by combining various remote sensing
derived variables, such as original ETM� bands, principal
components, vegetation indices, fraction images, temperature,
and textures as explanatory variables. Vegetation related
variables were especially effective. Remote sensing based
models were more suitable for estimation of population with
medium density than with low- and high-densities. The
stratification of population density into some categories and
development of estimation models for individual categories
improved the model performance. Although population
estimation using remotely sensed data are not straightfor-
ward, especially for low- and high- density regions, a major
advantage of this approach is that it can provide a timely
update of a population database and its spatial distribution,
which is impossible by conventional census approaches.

More research is needed to improve the population
estimation through development of suitable models and use
of multi-source data, such as high spatial resolution imagery
and lidar, which are capable to identify individual buildings
and measure the heights of the buildings. Comparative
analyses of different methods are further suggested, for
example, the method based on dwelling counts could be
used to estimate population in low-density area using high
spatial resolution remote sensing images. Further studies are
warranted by incorporating Elvidge’s radiance calibrated
nighttime lights imagery with original frequency data from
satellite imagery, since the former has been proved to be
effective in estimating low and high population extremes
(Elvidge et al., 1995; 1997). In addition, the dynamic
changes of population can be examined if multi-temporal
remote sensing and census data become available.
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