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Abstract: This paper investigates the performance of two neural network (NN) methods viz. 
a radial basis function network (RBFN)  and a multilayer feed forward network (MFFN) to 
predict the radioactivity levels at a given test site. A comparative evaluation of the two 
networks is done using Root mean square error (RMSE), Pearson’s Rsq, Mean error (ME) and 
Mean Absolute error (MAE). It was found that the RBFN performed marginally better 
compared to the other method 
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1. INTRODUCTION 
Reliable estimation of the natural radioactivity level has always been a challenging 

and intriguing task. Its detection is critical to preserve the state of the natural environment, 
and reduce health hazards. Particularly, radioactive components spread over their surrounding 
areas from the source of generation. As a result, there exists a complex pattern in their spatial 
distribution. However, if this spatial pattern is captured through some pattern recognition 
techniques, the radioactive level at a particular region can be reliably predicted. Usually, an 
estimate always has an uncertainty associated with it which constantly propels us for the 
search of a more reliable and robust estimation technique. Different estimation techniques can 
work under fundamentally different concepts. Recently, the success of artificial neural 
networks (ANN) as an estimation method has provided a new avenue for obtaining improved 
estimates (Yama, et al, 1999; Samanta, et al, 2003; Dutta, et al, 2005; Wu and Zhou, 1993; 
Polishuk and Kanevski, 2000). Among the various ANN alternatives, MFFN has been quite 
popular due to its efficacy in identifying the complex non-linear relationships that often exists 
in the input-output patterns thereby providing a better solution for capturing the difficult 
spatial patterns of the data. Despite its effectiveness, the MFFN can suffer from an extensive 
computational time requirement especially in the training phase. In this study, another class of 
ANN namely the RBFN has been investigated and its results compared with a popular MFFN. 
The biggest advantage of the RBFN over the MFFN lies in its simplicity and reduced 
computational time during training without loosing the power of non-linear spatial mapping 
capability.  However, selection of RBFN parameters prior to training can take time.   
 This paper investigates the applicability of the RBFN towards the detection of the 
natural radioactivity level along with various issues involved in constructing such model.  The 
performance of the RBFN is compared with a conventional MFFN. 

2.  DESCRIPTION OF THE TASK 
 The exercise involved the detection of radioactivity levels at 808 monitoring stations 
from a total of 1008 monitoring stations at a given test site. Prior information was available in 
the form of first 10 days of measurements (i.e. 10 datasets) at 200 of the remaining stations. 
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The data was available in the form of X-coordinate (in m), Y-coordinate (in m) and mean 
gamma dose rate (nanoSieverts/hr). Two sets of data were released for the purpose of 
estimation at the 808 stations on the 11th day.  The first dataset comprised of the 
measurements (X, Y and mean gamma dose rate) at the same 200 stations and only the X, Y 
location for the remaining 808 stations. The second dataset (Joker dataset), however, was a 
simulated dataset identical to the first dataset that was distributed, except for an accidental 
release of high level of radioactivity in the south-western corner of the region. Detailed 
description of the datasets can be found in Dubious and Galmarini, 2005.   

3. METHODOLOGY 

In this paper two different methods, namely, the RBFN and a MFFN have been 
explored for the purpose of radioactivity level detection. Two different techniques viz. the 
random method and genetic algorithm (GA) were considered to divide the data inorder to 
train the NN models.  In other words, the various models were built using four different 
approaches. In the first, a RBF model was trained on the randomly divided data and its 
parameters (centres and width) obtained in an unsupervised fashion. In the second approach, 
model was similar to the first except it was trained on the GA divided datasets. For the third, 
the RBF model was trained on the GA divided datasets, and determination of the model 
parameters was done using a supervised training pattern.  The fourth model was a MFFN with 
a Wardnet1 architecture employing the Levenberg-Marquardt (LM) training algorithm. 

3.1 Functionality of Radial Basis Function (RBF): 
The RBFN consists of a number of basis functions which are linearly weighted to 

produce an output. In these networks, the input variables undergo a nonlinear transformation 
at the hidden layer by the basis functions. The nature and the magnitude of the output 
emerging from the basis functions usually depends upon two factors (i) the type of basis 
function used, and (ii) the relative distance between the input data space to radial basis 
function centres. Broadly, there are three classes of basis functions available viz, gaussian, 
multi quadratic and thin plate spline. Among them gaussian functions are most commonly 
used. These functions are further characterized by the basis centres and a width or scale 
parameter σ.  It is the number and type of the basis functions along with the various parameter 
values used in RBFN that gives it its corresponding feature detection capability. For example, 
a gaussian radial function is expressed as:    
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The final output, y(x), is the weighted linear combination of the outputs from radial 
basis functions (Rao and Zhang, 2000)   
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where,  

w = weights of the output layer 

M = number of basis functions 

                                                 
1 NeuroShell 2, Release 4, Copyright 1993-2000 by Ward Systems Group⊕ 
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Figure 1 shows a schematic diagram of a radial basis function network where the 
input variable X is mapped in to the output Y. Since the output is a linear function of 
unknown weights wi, they can be computed easily by simply a matrix inversion.  Hence, it 
largely reduces the computation time during training phase.   

Figure 2 is a simplified illustration on the working principle of radial basis function. 
In the example: A, B, C and D are four basis functions with fixed centre in the X-Y plane.  
The width of the basis function determines its range of influence. While detecting the 
radioactivity level at an unknown point, the degree of influence of a particular basis function 
depends on the proximity of its centre to the point under consideration such that if the point 
falls outside the its range of influence it wont have any effect on the output value of the 
radioactivity level.  For example, for the point marked 1, only the outputs of radial basis 
functions A and B will be linearly combined to compute the radioactivity level. Moreover, 
since it is closer to the centre of basis function A than B, it will be influenced more by A. 
Similarly, the radioactivity level at the point 2, is influenced by all the four basis functions, 
while, point 3, is impacted only by the basis function B.   
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3.2 RBF Modeling: 
The primary goal in any modelling task is to find a fit to the statistical process 

responsible for the data. While doing RBF modelling the number and the type of the basis 
function along with its parameters decide the overall performance of the network. The number 
of basis functions is vital as too high or too little of it can lead to the conditions termed as 
“over-fitting” or “under-fitting”. While an over-fitted model memorizes the noise in the data 
an under-fitted model fails to capture relevant features existing in the data. Similarly, as 
mentioned in the previous section the width/scale parameter decides the degree of influence 
of a particular basis function. Apart from that, optimal selection of basis centres is another 
critical element.  These issues, therefore, require a sensible selection of the model parameters 
for its proper generalization, i.e. so that it captures the most regularized variation of the 
system without fitting to noise in the data. There are several approaches (Haykins, 1999; Orr, 
1996; Howlett and Jain, 2001) for the selection of the centre vectors. These may include the 
random method of selection, selection in a supervised fashion employing the standard 
gradient descent approach, or through the various clustering algorithms such as the Kohonen 
network or the self-organizing maps. Among these, the random selection technique is the 
simplest in which M out of the N training data points are randomly selected. This is a trial and 
error approach, such that the M chosen points is used to calculate the RMSE on an 
independent calibration dataset.  The optimum set of the centres points is the one that 
minimizes this error. Once the centre vectors are decided, the next step involves an 
appropriate choice of the width/scale parameter for the basis function as it affects the degree 
of smoothness associated with the output function. The width parameter can either be fixed to 
a particular value for all the basis functions or can be varied. In general, a common width is 
set to all the basis functions, which is some multiple of the average distance between the basis 
centres. Finally, the weights of the output layer are determined as the least square solution to 
the minimization of the total sum squared error. According to this the weight matrix for the 
output layer is given by:  

 

          W = (GT *G)-1 * GT * Y                                              (3) 

 

where,  

 

G=   ||)(|| 11 μφ −x          ……                ||)(|| 1 Mx μφ −  

 

          ||)(|| 1μφ −Nx           ……     ||)(|| MNx μφ −  

 

 Y = (y1, y2 ………………….. yN-1, yN)  

 
The adverted method of selecting the basis centres and the width randomly, neglecting the 
output patterns in an unsupervised manner, may at times lead to the sub-optimal choice of 
these parameters. Therefore, supervised selection of the network parameters i.e. the centres, 
width and output weights were done employing the standard gradient descent technique. In 
this approach the error function ‘E’ given by equation 4 is minimized with respect to each 
parameter of the model to get the updated values of the parameters for the subsequent 
iterations. For the gaussian radial basis function, the updated equations for the weight, width 
and the center locations are given by equation 5, 6 and 7.  
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where, is the target value for the output unit k when the network is presented with the input 
vector xn. Though the supervised selection procedure may lead to the optimal choice of the 
parameters, it has disadvantages when compared to the unsupervised method stated earlier. 
First, it is computationally intensive and second, there is no guarantee that with this kind of 
training the basis functions will remain localized and if it is the case, it may lead to inferior 
network performance (Nag and Ghosh, 2001).  Both these procedures have been looked upon 
in this paper. The RBFN modelling was done using self developed MATLAB code.  

n
kt

3.3 Multilayer Feedforward Network Modeling: 
A MFFN with a ward-net architecture, as shown in Figure 3, was chosen for the NN 
modeling. The network comprised of 5 slabs: one input slab, 3 hidden slabs and 1 output slab 
(slab is basically a group of neurons; a particular layer may have multiple slabs). Each slab in 
the hidden layer and the output layer consisted of different activation functions. The input 
slab has two neurons for each of the X and Y coordinates while the output slab has one 
neuron for the radioactivity level. The three slabs in the hidden layer used three different 
activation functions viz. tanh, gaussian and complementary gaussian. The idea behind using 
different combinations of the activation functions was to identify various dissimilar portions 
of the dataset as a particular activation function may act good for few typical patterns and 
may not work at all for others. Thus, using different activation functions ensures that at least 
some of the underlying trends in the data are captured. For example, a gaussian activation 
function in one hidden slab may detect features in the mid-range of the data while a gaussian 
complement activation function in another hidden slab may detect features from the upper and 
lower extremes of the data. Similarly, a tanh activation function will tend to squeeze together 
data at the low and high ends of the original data range which may be helpful in reducing the 
effects of outliers.   Thus, the network gets different views of the data.  Combining these three 
features in the output layer is expected to produce better predictions. For the convenience of 
the readers, the characteristic equation of the output signal from the gaussian, complementary 
gaussian and tanh activation function are given by equations 8-10. 

Gaussian activation function =       (8) )exp( 2x−

Gaussian-complement activation function=     (9) )exp(1 2x−−
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where, x is the input to the activation function. A MATAB program applying LM algorithm 
with the batch mode method of selection was developed and used for the training purpose. 
Detail description on the LM algorithm can be found at Hagan et al, 1995.  
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3.4 Model Development: 
The main goal of NN modelling, among several other related issues, is to ensure 

proper model generalization. Neural networks, both RBFN and MFFN, are very flexible 
models; and hence besides fitting to the regular complex curvilinear patterns of the process, 
they may also get fitted to the irregular noisy component in the data, if they exist. Therefore, 
proper care should be taken to restrain the network from fitting to the noise in the data. Thus, 
to ensure model generalization an optimal network has to be chosen by some means.  In 
RBFN, this pertains to the selection of the optimal number of basis functions and their basis 
centres and widths. In MFFN, although selection of the number of hidden neurons is critical; 
the model, however, could be generalized with arbitrarily high number of hidden neurons by 
ceasing the training process at the right time using early-stop method. Note that the early-stop 
training, which was employed in this study, is one of the several popular methods used for the 
MFFN model generalization (Haykins, 1999). In order to select an optimal generalized 
network (either RBFN or MFFN), the network is trained using the training samples, however, 
its performance is observed on a calibration dataset, independent of the training dataset. The 
optimal network is selected which produces least error on the calibration dataset. Thus, 
following the above exercise the network model is calibrated properly.  

It is noteworthy to point out that for a legitimate calibration exercise, the properties of 
the training and calibration datasets should be statistically similar. Otherwise, network will 
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not produce the desired generalized performance. Unfortunately, the common practice is to, 
randomly subdivide the available samples at the model development stage into training and 
calibration subsets. However, this random selection of samples produces several undesirable 
characteristics including statistical dissimilarity among the data sets, especially when the data 
are few and sparse (Bowden, et al, 2002).  In this regard, Ganguli and Bandopadhyay, 2003a; 
Ganguli, et al, 2003b; Samanta et al, 2004 explored the possibility of using GA for the data 
division in neural network modelling. They achieved good success while applying GA for 
generating statistical similar datasets.   

 A simple way to estimate the generalization performance of the network is to 
measure the error it makes on a separate dataset (prediction set) which is unseen during the 
training process. Thus, the entire dataset can be divided into three subsets i.e. training, 
calibration and the prediction dataset. However, in this exercise the prediction dataset (808 
observations) was unknown. So the known data (200 points) was divided into two subsets viz. 
the training subset and calibration subset using two different procedures in 4:1 proportion. In 
one case, the training data (160) and the calibration data (40) were obtained randomly while 
in another case it was obtained using GA. The use of GA ensured that the datasets were 
statistically similar, since there is no guarantee of them being similar if obtained randomly. 
Data division using GA has been described in the next section. Table 1 and Table 2 show the 
statistics for the 1st and 2nd dataset respectively. Initially, for the first dataset, the 200 
observations from the first ten days of measurement and from the 11th day were averaged to 
get a single dataset of 200 observations. However, for the second dataset (joker dataset) this 
prior information available from the first 10 days of measurement was not considered as it 
contained few high outlier values in the dataset released on the 11th day. It was seen that with 
RBF modelling 16 centres and for MFFN modelling 9 hidden neurons produced the optimum 
results. The performance was validated by the mean square error (MSE) and Rsq values in the 
validation dataset of 40 observations. This analysis was performed for several network 
architectures by varying the number of hidden neurons, number of hidden layers, type of 
activation function in case of MFFN modelling and number of centres in case of RBF 
modelling. Further, in RBF modelling supervised selection of the model parameters described 
in the earlier section were also carried out using the GA divided datasets. After the models 
were developed they were tested on the 800 test data points. 

 

X Y Radioactivity X Y Radioactivity GA division 
1st  dataset 

Training Set Calibration Set 

Mean 8.5 e04 3 e05 96.27 8.5e04 3e05 96.01 

Std Dev. 9.8e04 2.1e05 17.67 9.6e04 2.1e05 17.74 

Random Div 
1st  Dataset 

 

Mean 8.4e04 3e05 95.8 9.0e04 2.9e05 97.21 

Std Dev. 9.5e04 2.2e05 16.23 1.1e05 1.8e05 22.65 

Table 1. Statistics of data-division for the 1st dataset. 
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X Y Radioactivity X Y Radioactivity GA division 

2nd  dataset 
Training Set Calibration Set 

Mean 8.5e04 2.9e5 107 8.3e04 3e05 117.6 

Std Dev. 9.6e04 2.1e05 109.5 1.0e+05 2.1e05 154.9 

Random Div 
2nd  Dataset 

 

Mean 7.6e04 2.9e05 110 1.2e 05 3.2e05 99.2 

Std Dev. 9.8e04 2.1e05 134.2 8.7e04 2.0e05 25.7 

Table 2. Statistics of data-division for the 2nd dataset. 

 
3.5 Data Division using Genetic Algorithm: 

Genetic algorithms (GA) has been popularly used in many scientific domains such as 
computer science (Bhuyan, 1995), operation research (Fang, et al, 1993), social science 
(Holland, 1975), biology (Kremer, 1992), mining engineering (Ganguli, et al, 2003b). 
Recently, it has been widely applied for data divisional purpose (Bowden, et al, 2002; 
Ganguli & Bandopadhyay, 2003a; Ganguli, et al, 2003b; Samanta, et al, 2004). However, 
these researchers used the GA to split the entire dataset into three subsets i.e. the training, the 
validation and the prediction subset. 
 GA is an optimization technique based on the theory of genetics and natural selection 
(Goldberg, 1999). It divides the data in such a way that the statistical difference is minimized 
for the subsets of the dataset. The reason for division into subsets has been mentioned in the 
previous section.  
The data division basically consists of the following cycle of steps: 

• Evaluate the fitness of all individual data division in the population. In the present 
study each individual represents a random replicate of the original dataset. 

• Create a new population by performing operations such as crossover and mutation on 
the individuals based on a fitness function. 

• Discard the unfit population, generate a new population and iterate using the new 
population as shown in Figure 1. 

  
A generation is basically one cycle of the above three steps to form a possible solution. The 
first generation (Generation = 0) operates on a population of randomly generated individuals. 
From thereon, genetic operation, improves the population. GA used for data division sorts the 
samples into the subsets by using a set of random numbers. To accomplish this, a random 
number seed is generated. This random number seed controls the generation of random 
sequence of numbers from which 'n' population members of the individual datasets are 
created. Pairs of members are selected and the genetic operations of cross over and mutation 
are applied to obtain a new improved population. To evaluate the "fitness" of each solution an 
objective function is required, which would minimize the sum of the modified t-stat between 
each pair of the three subsets as specified by (Ganguli, 2003b). The modified t-stat function is 
given by, 
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where, mean1, var1, n1 are the mean, variance and number of elements in group1, 
while mean2, var2, n2 are the mean, variance and number of elements in group2.  Note that 
the modified t-stat sets the definition of equivalency.  This definition should be changed to 
suit the problem.  Simply speaking, minimization of Equation (11) constitutes minimization 
of the difference between the means and variances of subsets, i.e. the subsets would have 
similar means and variances.  For non-normal data, this may not be the right approach to 
equivalency.  For non-normal data, one could try ensuring similarity using simple approaches 
such as difference between various deciles (such as 10th decile, 30th decile and median). 

4. RESULTS AND DISCUSSION 
 The statistical properties of the training, calibration and predictions are presented in 
Tables 3 and 4.  It should be noted that the prediction subsets were not known. Tables 5 
through 9 present the statistical summary of the estimates and their respective errors for the 
two test datasets used in this study. Figures 4 through 11 show the contour plots of the 
estimated radioactive levels at the region using the various methods while Figures 12 through 
15 present the 3-D surface plots of the estimated values for the 2nd dataset which gives 
another view of the radioactivity level distribution at the region.  It could be seen from Table 
6 and Table 8 that for the 1st dataset almost all the methods performed equally well with the 
exception of the RBF method with GA data division and supervised training. This may be due 
to the basis functions not staying localized. However, the same RBF method with the GA data 
division and unsupervised training had a slight edge over the other two in terms of Pearson's r 
and RMSE. There was not much difference in the results for these three methods, which may 
be due to the very similar properties of the training and calibration dataset obtained from the 
GA and random data-division (Table 3) on which the model was trained. The MFFN, 
however, had a large bias. It is also revealed that the neural network models work appreciably 
better for the first data set in comparison with the 2nd data set.  This result is quite expected 
since the 2nd data set contained some outlier values. It is further revealed from Figures 7, 9 
and 11 that alhough the methods MFFN and RBF with GA data division are able to detect the 
anomalies that exist in the south-western corner of the second dataset, they are not able to 
detect the large magnitudes of the outliers. The MFFN model in this case also had a large bias 
and RMSE. From Table 6 and Table 9 it could be seen that in case of the 2nd dataset the RBF 
model with random data division didn’t work well compared to the RBF model with GA data 
division. This can be attributed to the very different training and calibration sets obtained 
from GA and random data division (Table 4). It could be seen from Table 4 that, the range of 
the radioactivity value in the calibration set was far less than that of the training set. So the 
model might have been under trained, when it predicted the 808 points on the prediction 
dataset. However, this was not the case with the GA data-division for which the training and 
the calibration subsets had almost similar properties. So the magnitude of the predictions was 
also large for the GA division model compared to the random division model.  
 As far as the uncertainties in prediction are concerned, the standard deviation can be 
considered a crude yardstick of the measure of uncertainty associated with the prediction 
performance. Further, it is revealed that the execution time of RBFN network was less than a 
minute using a standard Pentium 4 machine. The MFFN took around 10-15 minutes to get 
executed.  Therefore, the RBFN network might be preferable for large data set where 
execution time is also an important factor. 
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 Min Max Mean Median Std. Dev 

Random Division 

Training 58.8 138 95.80 97.5 16.23 

Calibration 58.2 153 97.21 98.1 22.65 

Prediction 57 180 98.02 98.80 20.02 

GA Division 

Training 58.2 153 96.27 97.8 17.67 

Calibration 68.8 140 96.07 95.2 17.74 

Prediction 57 180 98.02 98.80 20.02 

Table 3.  Statistical properties of the first dataset (Radioactivity Levels) 

 

 

 

 

 

 

 

 

 Min Max Mean Median Std. Dev 

Random Division 

Training 58.8 1499 110 97.5 134.2 

Calibration 58.2 196.1 99.2 100.8 25.7 

Prediction 57.00 1528.80 105.40 98.95 83.71 

GA Division 

Training 58.2 1499 107 99.65 109.5 

Calibration 58.8 1070.4 117.6 95.6 154.9 

Prediction 57.00 1528.80 105.40 98.95 83.71 

Table 4.  Statistical properties of the second dataset (Radioactivity Levels) 
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N=808 Min Max Mean Median Std. Dev 

True (First 
Dataset) 57.00 180.00 98.02 98.80 20.00 

Estimates (First 
Dataset) 67.40 126.60 97.70 99.30 14.30 

True (Second 
Dataset) 57.00 1528.80 105.40 98.95 83.71 

Estimates 
(Second Dataset) 61.40 129.80 103.30 103.40 17.01 

Table 5. Comparison of the estimated and measured values (nSv/h) 

(Original Method: RBF+ random data division) 

 

First Dataset N = 808 Min. Max. mean median Std. Dev. 

True Values (First Dataset) 57 180 98.0 98.8 20.0 

RBF (Random Division) 67.4 126.6 97.7 99.3 14.3 

RBF (GA division + 
Unsupervised training) 

65.6 123.4 97.2 98.9 14.1 

RBF (GA division + 
Supervised training) 

63.8 108.93 96.5 98.8 10.1 

LMA 68.2 126.8 100.2 101.2 14.60 

Second 
Dataset 

N = 808  

True Values (Second Dataset) 57 1528.8 105.4 98.95 83.71 

RBF (Random Division) 61.4 129.8 103.3 

 

103.4 17.01 

RBF (GA division + 
Unsupervised training ) 

45.9 191.9 106.7 101.62 37.23 

RBF (GA division + 
Supervised training) 

50.1 203.8 105.2 101.63 38.84 

LMA 72.5 273.9 123.4 103.5 51.4 

 
Table 6. Comparison of the True and estimated values (nSv/h) (Other Methods) 
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Data sets: MAE ME Pearson’s r  RMSE 

First data set 9.92 0.2 0.76 13.1 

Second data set 17.5 5.1 0.29 80.6 

Table 7. Comparison of the errors (Original Method, RBF random division) 

 

 
 
 

Data sets: MAE ME Pearson’s r  RMSE 

Original Method ( Random) 9.92 0.2 0.76 13.1 

RBF (GA division + 
Unsupervised Training ) 

9.62 0.90 0.78 12.7 

RBF (GA division + 
Supervised training) 

12.2 1.50 0.64 15.9 

LMA (Ward Net) 9.93 2.18 0.76 13.3 

Table 8. Comparison of the errors for 1st dataset (Other Methods) 

 
 
 
 
 

Data sets: MAE ME Pearson’s r  RMSE 

Original Method ( Random) 17.5 5.10 0.29 80.6 

RBF (GA division + 
Unsupervised Training ) 

28.2 -0.22 0.31 80.1 

RBF (GA division + 
Supervised training) 

28.9 -1.29 0.33 79.9 

LMA (Ward Net) 38.5 17.98 0.27 87.3 

Table 9. Comparison of the errors for 2nd dataset (Other Methods) 
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Figure 4: 1st Dataset Random RBF Figure 5: 2nd Dataset Random RBF 

Figure 6: 1st Dataset GA division 
+Unsupervised Training RBF 

Figure 7: 2nd Dataset GA division 
+Unsupervised Training  RBF 
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Surface Plots for the Second Dataset: 

 Figure 10: 1st Dataset feedforward Figure 11: 2nd Dataset feedforward 
network

Figure 8: 1st Dataset GA division + 
Supervised Training RBF 

Figure 9: 2nd Dataset GA division + 
Supervised Training RBF 
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Figure 12: 3D Surface Plot for 2nd Dataset (Random Data Division)

Figure 13: 3D Surface Plot for the 2nd Dataset (GA division + Unsupervised Training) 
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Figure 14: 3D Surface Plot for the 2nd Dataset (GA division + Supervised Training) 

Figure 15: 3D Surface Plot for 2nd Dataset (Feed forward network) 
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5. CONCLUSION 
In this paper two NN modelling techniques were investigated to estimate the radioactivity 
levels at the given test site: one using the RBFN and the other employing a MFFN. Usually, 
in NN modelling the three subsets (training, calibration and prediction) need to statistically 
similar. The model is trained on the training subset and predictions are made on the prediction 
dataset hoping that the information available is representative of the real world situation. But 
this was not the case with us. The prediction dataset was unknown and so, it was of interest to 
see how the selection of training and calibration subset could affect the model performance.  
During the model development stage, the data was divided into two subsets: training and the 
calibration.  The training data was used to train the NN models, and the calibration data was 
used to generalize (calibrate) the models. In one case the training and the validation data set 
were obtained by random division from the original set of 200 observations, while in the other 
case it was obtained using GA to ensure statistical similarity. The network parameters i.e. the 
number of centres for RBFN, and the number of hidden neurons for MFFN were determined 
by observing the performance of the models on the calibration dataset. Apart from this, for the 
RBF model built on the GA divided datasets, both supervised and unsupervised training 
approaches were explored. The actual performance of the models was tested on 800 data 
points supplied for the prediction purpose. From the results, it is evident that neither of the 
methods performed well in the 2nd dataset; although the performance was reasonable well for 
the 1st data set. The performance (in the prediction subsets) of the various models were 
probably governed by the similarities (or lack thereof) between the training/calibration 
subsets and the prediction subsets.  For example, in the second dataset, the standard 
deviations of the training/calibration subsets are very different from that of the prediction 
subset.  Additionally, due to relative sparseness of the training/calibration subsets, the two 
subsets (in both datasets) did not achieve the degree of similarity as one would desire.  The 
performance of the RBF with GA data division and supervised training of gradient descent 
algorithm was marginally better. However, such an improvement might not be statistically 
significant. On the other hand, the gradient descent approach for the RBFN approach didn't 
improve the model performance for the 1st dataset. 
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