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Abstract

Background: Zipf’s law states that the relationship between the frequency of a word in a text and its rank (the most
frequent word has rank 1, the 2nd most frequent word has rank 2,…) is approximately linear when plotted on a double
logarithmic scale. It has been argued that the law is not a relevant or useful property of language because simple random
texts - constructed by concatenating random characters including blanks behaving as word delimiters - exhibit a Zipf’s law-
like word rank distribution.

Methodology/Principal Findings: In this article, we examine the flaws of such putative good fits of random texts.
We demonstrate - by means of three different statistical tests - that ranks derived from random texts and ranks derived
from real texts are statistically inconsistent with the parameters employed to argue for such a good fit, even when the
parameters are inferred from the target real text. Our findings are valid for both the simplest random texts composed of
equally likely characters as well as more elaborate and realistic versions where character probabilities are borrowed from a
real text.

Conclusions/Significance: The good fit of random texts to real Zipf’s law-like rank distributions has not yet been
established. Therefore, we suggest that Zipf’s law might in fact be a fundamental law in natural languages.
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Introduction

Imagine that one takes a text, counts the frequency of every

word and assigns a rank to each word in a decreasing order of

frequency. This would result in the most frequent word having a

rank of 1, the second most frequent word having a rank of 2 and so

on. The histogram of such word ranks is said to conform to Zipf’s

law for word frequencies [1]. In its simplest form, the law states

that f (r), the frequency of a word or rank r obeys

f (r)*r{a, ð1Þ

where a is a constant, the so-called exponent of the law (typically

a&1 [1]). In other words, Eq. 1 indicates that frequency decays

linearly as the rank increases on double logarithmic scale.

Although the law was originally thought to reveal principles of

language functioning [1], many have argued against its relevance

[2–7]. Their major claim is that the statistics of simple random

sequences of characters - including a special one that behaves as a

word delimiter - reproduces Zipf’s law for word frequencies

[2,4,5]. Henceforth, we refer to this special character as a space or

a blank. For instance, the random text

wbqcrw h q rorjleabeyxkrlpqkpchnesguliwkb mrltn q a rss vfs w a h

rlzpxxtxbkqetfwfpqudgwaorqwgqmo wyngwtbseuodboxaw x rldua eucx mmard

xgqzv uu pueuerc pkizuauyrwi bllhjddv bp anud xbxvjyymioymvzebc

tdtsecdijntssyepqdubcvxjd evavybwvejp w z uvspufvdvuzyf t nllifznwatic

has been generated using English letters ranging from ‘a’ to ‘z’ (the

separation between words in our example is arbitrary and due to

automatic formatting).

The idea that random sequences of characters reproduce Zipf’s

law stems from the seminal work of Mandelbrot [8] and was

reformulated in various works [2,4,5,9]. We refer to a random

sequence of characters of the type listed above as a random text so as

to be consistent with [2] although more appropriate names have

been discussed [10]. The simplest version of a random text is based

upon the assumption that all characters are equally likely [2,7]. We

define N as the number of regular characters of the random text and

pb as the probability of a blank. The above example was generated

with N~26 and pb~0:18, which was deemed suitable for English

[4,5]. It is noteworthy that when constructing the example above,

we assumed that all characters are independent, that all letters from

‘a’ to ‘z’ are equally likely and two or more blanks in a row are not

permitted. If two blanks in a row are not allowed then words with no

characters (i.e. empty words) cannot be generated.
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There have been many arguments against the meaningfulness

or relevance of Zipf’s law [2,4,6,7]. However, there are also

reasons that such arguments might be flawed:

N Problem 1

The studies that question the relevance to natural language of

Zipf’s law argue for the matching between Eq. 1 and random

texts. However, Eq. 1 is only an approximation for the real

rank histogram. The best candidate for the actual rank

distribution remains an open question [11–14] for two reasons:

first, the goodness of the fit provided by Eq. 1 in a statistically

rigorous sense is questionable and, second, the best function

may not be unique [15]. If it turned out that when using

statistically rigorous methods that real texts do not usually fit

Eq. 1, then the arguments against the relevance of Zipf’s law

would be seriously challenged.

N Problem 2

As far as we know, in none of the popular articles that argue

against the meaningfulness of Zipf’s law [2–7] is there an

accurate enough derivation of Zipf’s law (Eq. 1) from random

texts. This is of crucial importance because real texts and

random texts may seem to have consistent rank distributions if

not regarded with enough precision simply because two

distinct tiny objects may look similar if our lens is not powerful

enough. Notice that in [2–7] an exact derivation of Zipf’s law

from the assumptions of a random text is absent. Instead, only

equations that are valid for the ensemble of words of a certain

length are provided. For instance, Li [2] defines pw(L) as the

probability of any particular word of length L and proves that

pw(L)v
C

(r(L)zB)a’ ƒpw(L{1), ð2Þ

where B, C and a’ are constants and r(L) is the rank of any

word of length L (a similar derivation can be found in [7]).

Miller & Chomsky [4] showed that the probability of any word

of length L obeys

pw(L)*(r’(L)zB’){a’’, ð3Þ

where B’ and a’’ are constants and r’(L) is now the mean rank

of all the possible words of length L. In contrast, notice that

Zipf’s law (Eq. 1) is a law of individual ranks, not a law of a

rank chosen to represent all words of the same length (e.g., the

average rank or words of the same length). Recently, it has

been proven that p(r), the probability of observing a word of

rank r in a random text, obeys [16], for sufficiently large r,

c1r{a
ƒp(r)ƒc2r{a, ð4Þ

where c1 and c2 are two positive constants. Although the

derivation of Eq. 4 in [16] for a general class of random texts is

a milestone in the history of random texts, notice that Eq. 4 is

weaker than the definition of Zipf’s law in Eq. 1.

N Problem 3

Eqs. 2, 3 and 4 are derived in the context of a very long text. It is

not known a priori if the parameters of the underlying exact

distribution of ranks depend upon the text length or if the

distribution that is obtained in the context of a very long text is the

same as that of a random text of the size of the order of real texts.

N Problem 4

As far as we know, in none of the popular articles that question

the meaningfulness to natural language of Zipf’s law [2–7] is

there any comparison between the rank histograms of actual

texts and those of random texts. Rather it is simply taken for

granted that an approximate agreement with Eq. 1 is sufficient.

To the best of our knowledge, in none of these cases is either a

visual comparison between the rank histogram of a real text and

that of a random text provided (e.g., by plotting both histograms

together), nor are more convenient rigorous tests of the goodness

of fit of random texts for real texts performed. In some

exceptional cases, a visual comparison between a real text and

an equation similar to Eq. 3 has been made [17] but the

comparison implies the misuse of an equation that was originally

derived for the mean rank of words of the same length to the

individual ranks of actual Zipf’s law-like rank distributions.

Although Mandelbrot did not show simultaneously real and

artificial rank distributions, arguably he inappropriately used

equations that had been derived for individual ranks (e.g., Fig. 1

of [18] and Fig. 2 of [8]).

To address Problem 1, we evaluate the goodness of fits of

random texts to real texts directly by means of samples of ranks

produced by the real process and not indirectly through Eq. 1. To

address Problem 2 we study the consistency between rank samples

from a random text and rank samples from a real text using three

rigorous statistical tests. We skip the mathematical challenge of

obtaining the missing exact rank distribution for individual ranks.

To address Problem 3, we compare real texts with random texts of

the same length. In this way, we can establish that putative

differences cannot be attributed to simply differences in the text

length. To address Problem 4, we compare visually the rank

histogram of random texts with those of real texts so as to provide

an estimate of the enormous differences between both and then we

perform rigorous statistical tests to show that the real word rank

histograms are inconsistent with those of random texts.

We exclude from our analysis a variant of the random text that

generates empty words. Empty words are obtained when

producing two blanks in a row, which is allowed in [4–7,16] but

not permitted in Li’s version [2] (see Text S1). In other cases, it is

not clear if empty words are allowed, e.g., [19]. Excluding empty

words in our study is justified by the fact that the goal of this article

is to evaluate the fit of random texts for real Zipf’s law-like word

rank distributions. As far as we know, in none of Zipf’s pioneering

works [1,20] and in the many studies that followed, have empty

words been included or even considered in real rank histograms.

Indeed, their existence in real texts is very questionable.

Many authors have discussed the explanatory adequacy of

random texts for real Zipf’s law-like word rank distributions

indirectly from inconsistencies between random texts and real texts

beyond the distribution of ranks [19,21–24]. One of the most

typical and recurrent examples is the claim that real word lengths

are not geometrically distributed as expected from a random text

experiment [21–24]. However, the question that we seek to

address here is: do random texts really fit the real Zipf’s law-like

distribution accurately as suggested by many [2,4–7,25]?

To our knowledge, only a few studies have addressed this

question [19,26,27] but in a qualitative manner and only for

certain versions of the random text model. In this article, we go a

step forward by bringing rigorous statistical tests into the debate

and considering all the variants of the random text model that

have been considered in the literature. In particular, we compare

visually some rank histograms from English texts with those of

different versions of the random text model and test rigorously the

goodness of fit of random texts on actual histograms in a set of ten

texts. We demonstrate that - contrary to what has previously been

suggested - random texts fail to fit actual texts even visually.

The Poor Fit of Random Texts
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Finally, we shed light on the failure of random texts to fit actual

texts from the perspective of cognitive science and discuss the

implications of our negative results for the meaningfulness to

natural language of Zipf’s law.

Results

In this article we employ a set of ten English texts (eight novels

and two essays) to evaluate the goodness of fit of random texts in

Table 1. A summary of their statistical properties is shown in

Table 2.

The Versions of the Random Text
We consider three different versions of the random text (RT)

model without empty words that have been considered in the

literature. All the versions generate a random sequence of inde-

pendent characters. These three version are (the subindex

indicates the number of parameters of the version of the random

text):

N RT1

All characters, including the blank are equally likely. This

model is specified with a single parameter: N , the number of

characters other than space. N [ f2,4,6,26g was used in [2].

N~5 was used by [7] allowing empty words. An example of

RT1 with N~2 is

uu kuuuuk k kkk uu u kkuuukuuk uk kukukuuu u ukku kukkk uku uku ku u

kuk kukk uuuk k kk kku uuu u kuukkuk u kku kuukuu u uukk ku uuk kukk u

ukkkkuuu k ukku kuku kuk k k uku k uuku uu kuukukuukk kukku k uk u

Figure 1. The rank histograms of English texts versus that of random texts (RT1). A comparison of the real rank histogram (thin black line)
and two control curves with the 3s upper and lower bounds of the expected histogram of a random text of the same length in words (dashed lines)
involving four English texts. f (r) is the frequency of the word of rank r. For the random text we use the model RT1 with alphabet size N~2. The
expected histogram of the random text is estimated averaging over the rank histograms of 104 random texts. For ease of presentation, the expected
histogram is cut off at expected frequencies below 0:1. AAW: Alice’s adventures in wonderland. H: Hamlet. DC: David Crockett. OS: The origin of species.
doi:10.1371/journal.pone.0009411.g001

The Poor Fit of Random Texts
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N RT2

All characters except the blank are equally likely. This model is

specified with two parameters, N as in RT1 plus pb, the

probability of blank for the 2nd and following characters of a

word (notice that in our case, the probability that the current

word under construction has no character when the blank is

produced is zero). Allowing empty words, N~26 and

probability of blank pb~0:18 was argued to be suitable for

English [4,5] without explaining how pb was estimated. Here

we obtain N and pb from real normalized texts (see Materials

and Methods for details about our text normalization). N is

obtained from the number of different characters of the text

(except the blank). pb is computed from the formula

pb~
Nb

Nc{Nb

, ð5Þ

where Nb is the number of blanks and Nc is the total number

or characters (including blanks). In our text normalization,

Nb is equivalent to the number of different words (i.e. the

maximum rank). pb is the proportion of blanks after excluding

the first character of each word, which cannot be a blank

in our versions of the random text model. An example of

RT2 with N and pb borrowed from Alice’s adventures in

wonderland is

i 0xbple f h gxadchrdcty hz trsykj o b axurvg qfu k kg3kx vwzsj3 xw0t3f

nq ryb uhibb nqhtqb zfgnfk v gdq p30ajh 30 c p k3cgozfe3vt hdmzc k0q

bw fs c kgu lm0tx bh av eu v cmbosjbis a3aks mucjtefrtvko t uyprnz eyti

h3do hm0mx w0kbecyd ti v qoyowzcfiykv3wb

N RTNz1

All characters can take any probability. This model is specified

with Nz1 parameters (i.e. the Nz1 probabilities of each of

Figure 2. The rank histograms of English texts versus that of random texts (RT2). The same as Fig. 1 for the model RT2 with alphabet size
N and probability of blank pb obtained from the real text.
doi:10.1371/journal.pone.0009411.g002

The Poor Fit of Random Texts

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9411



the characters). Three parameter settings have been consid-

ered in the literature:

– L1

N~2 with the probability of the two characters other than

space being 0:47 and 0:2 and the probability of space is 0:33
[2].

– L2

N~4 with the probability of the four characters other than

space being 0:5, 0:13, 0:1 and 0:07 and the probability of

space being 0:2 [2].

– Real
Real character probabilities extracted from the target

writing as in [19].

An example of RTNz1 with real character probabilities

borrowed from Alice’s adventures in wonderland is

tel g shs oo fagl t ersu fa r esnrlaod k ni ihe a o e sh foie r do aorhdaev aiot t

oseldtiyie wq t thsynt w e sptsnsm heooeat utdgeco a iyeb sniemt ehdoy t

thruw twaame eatendeisidle mc nlhtt ih a utfd anulbgleta nlh ohe gt

eehitofnet

Visual Fitting
Here we aim to compare rank histograms from real texts and

expected rank histograms from random texts. If random texts

really reproduce the rank histogram of real texts, then the

histogram of real texts and those of the random texts should

completely overlap. We will see that this is not the case.

Here our emphasis is on providing a fair visual comparison. We

use the term fair in two senses. First, we consider real and artificial

texts of the same length in words. Notice that the equations that

have been derived so far for the rank distribution of RT1 and RT2

texts are derived in the limit of a very large text in which all words

of the same length must have the same frequency of occurrence

because they are a priori equally likely [2,4,5,7]. If the text is not

long enough, the frequency of words of the same length may differ

noticeably. Here we aim to equate the text size of both the model

and the real text. Second, we do not misuse a theoretical equation

that is not valid for individual ranks as in [17]. The theoretical

rank distribution or even the theoretical expected rank histogram

of random texts are not available, even in their most simples

versions. Therefore, we work on the expected rank histogram of

random texts, which can be easily estimated by simulating the

process and averaging the rank histogram over a sufficiently large

number of artificial texts. Third, we do not use binning as in [26]

which could shadow the differences between actual texts and

random texts.

In the interest of being concise, for visual fits, we chose

four works representing different genres and covering the whole

range of text lengths in the sample. Fig. 1 shows the rank

histogram of the four selected English texts versus the expected

rank histogram of a RT1. From visual inspection, it is obvious

that the agreement between the random text and the real text

is poor. The histograms of random texts are clearly above the

corresponding real histograms for small ranks and clearly

below for larger ranks. Additionally, the curves of real histograms

are smoother as compared to the pronounced staircase decrease

of random texts, especially for small ranks. Fig. 2 shows that

RT2 with N and pb taken from the real text does not improve

the quality of the visual fit. The staircase decrease of the

histogram of random texts becomes more radical and the

plateaus are huge as compared to those of Fig. 1. One may

infer from Figs. 1 and 2 that RT1 gives a better fit than RT2 in

general, but the difference in fitting is mainly due to the small

value of N employed in Fig. 1, which produces smaller plateaus

with regard to Fig. 2.

It is well known that if characters other than the blank have

unequal probabilities then the rank histogram smoothes [2,25,28].

The point is: would this apparently dramatic improvement be

enough to achieve a perfect fit? Fig. 3 shows that these random

texts (RTNz1 model) still deviate from the real texts from which

they borrow the character probabilities. For instance, Fig. 3 shows

that random texts display pronounced humps for high frequencies

and wider plateaus in the low frequency domain with regard to the

Table 1. Summary of English texts employed.

Title Abbreviation Author

Alice’s adventures in wonderland AAW Lewis Carroll
(1832–1898)

The adventures of Tom Sawyer ATS Mark Twain
(1835–1910)

A Christmas carol CC Charles Dickens
(1812–1870)

David Crockett DC John S. C. Abbott
(1805–1877)

An enquiry concerning human
understanding

ECHU David Hume
(1711–1776)

Hamlet H William Shakespeare
(1564–1616)

The hound of the Baskervilles HB Sir Arthur Conan Doyle
(1859–1930)

Moby-Dick: or, the whale MB Herman Melville
(1819–1891)

The origin of species by means
of natural selection

OS Charles Darwin
(1809–1882)

Ulysses U James Joyce
(1882–1941)

The data set of English texts employed in our study.
doi:10.1371/journal.pone.0009411.t001

Table 2. Statistics of the English texts.

Abbreviation
T
(in words)

N
(in chars.) pb max(r) m(r) s(r)

AAW 27342 28 0.254 2574 254.05 466.60

CC 29253 30 0.240 4263 463.31 887.22

H 32839 28 0.253 4582 474.39 932.44

ECHU 57958 36 0.212 4912 433.91 861.35

HB 59967 39 0.244 5568 472.87 990.44

ATS 73523 31 0.248 7169 612.45 1298.53

DC 78819 36 0.228 7385 668.60 1346.19

OS 209176 36 0.207 8955 589.94 1274.53

MB 218522 36 0.229 17190 1291.67 2909.44

U 269589 36 0.228 29213 2425.63 5444.95

Statistical properties of the English texts. See Table 1 for the meaning of each
abbreviation. Texts are sorted by increasing length. T is the text length in
words. N is the number of different characters excluding the blank. pb is the
estimated probability of blank. max (r) is the maximum rank or the observed
vocabulary size. m(r) and s(r) are, respectively, the mean and the standard
deviation of the rank.
doi:10.1371/journal.pone.0009411.t002

The Poor Fit of Random Texts
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real text. Besides, the rank histogram of random texts is clearly

longer than that of real texts in Figs. 2 and 3. The fact that the

plateaus at the low frequency region are much broader for RTNz1

texts than for real texts is well-known [19]. In the next section we

show that the differences between real texts and random texts with

non-commensurate character probabilities are statistically signif-

icant as well as for all the parameters suggested in the literature for

RT1 and RT2.

In the next section, we employ rigorous statistical fitting,

not because we think that it is strictly necessary when large

visual differences between random and real texts are found (e.g.,

Figs. 1 and 2), but so as to provide a foundation for a more

mathematically precise understanding of the differences between

real texts and random texts and to extend, in a concise way,

the analysis to the texts and parameters settings not consid-

ered in the figures. Notice that the poor visual fit of random

texts shown in Figs. 1, 2 and 3 also applies to the real texts in

Table 1 not visually examined in these figures so as to conserve

space.

Rigorous Statistical Fitting
We detailed in the introduction that we did not seek to

evaluate the goodness of fits of random texts for actual rank

histograms through Zipf’s law because this implies the risk that

the target equation, i.e. Eq. 1, is not accurate enough [11,14]. A

typical way of testing the fit of a certain model to real data is from

the exact distribution that characterizes the model [12].

However, as mentioned in the introduction, this is impossible

in the current situation because the exact rank distribution of

random texts is unknown. To our knowledge, only approxima-

tions have been derived. Furthermore, the intention of our article

was not to derive this equation per se. In light of the absence of

such an exact distribution, we evaluate the consistency of ranks

from a real text with those of a random text of the same length

Figure 3. The rank histograms of English texts versus that of random texts (RTNz1). The same as Fig. 1 for the model RTNz1 with
alphabet size N and character probabilities obtained from the real text.
doi:10.1371/journal.pone.0009411.g003
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(in words) through three different statistics of the rank r in a text

of length T :

N max (r), the maximum rank. max (r) is the observed

vocabulary size and measures the width of the rank histogram).

Notice that the actual vocabulary of a random text model is

infinite (a priori, any string of at least one letter can be formed),

contrary to the actual vocabulary of a writer, which although

large is finite. Support for max (r) comes from previous work

suggesting that the pattern of observed vocabulary growth is

useful for distinguishing between natural and RTNz1 texts

[19]. We find that max (r) is indeed useful for any kind of

random text and that simply its value is enough to distinguish

random texts from real texts for the versions and parameter

settings considered in this article.

N m(r), the mean rank.

N s(r), the standard deviation of the rank.

To our knowledge, the expectation of these statistics for a text of

a certain finite length has not previously been reported. If the rank

distribution of the real texts and that of the random texts are the

same, statistically significant differences between the value of the

above statistics in real texts and those of random texts should not

be found or be exceptional. Here we consider the whole set of ten

English texts including the four works we examined in detail in the

previous section (Table 1).

For each real text, we estimate the expectation and standard

deviation of these statistics by generating 104 independent random

texts for all the versions and parameters of the random text

reviewed above. Notice that the length in words of the random

texts is the same as that of the real text. Then we calculate k, the

distance to the mean (measured in units of the standard deviation)

between the value of real value of the statistic in the target text and

that of a random text of a certain version and parameter setting.

The three rank statistics yield three distances, i.e.,

kmax (r)~
max (r){m( max (r))

s( max (r))
ð6Þ

km(r)~
m(r){m(m(r))

s(m(r))
ð7Þ

ks(r)~
s(r){m(s(r))

s(s(r))
, ð8Þ

The sign of the distance indicates whether the actual value is

smaller than the expected (kv0) or larger than expected (kw0) for

the hypothesis of a random text. Table 3 shows a summary of

these signed distances for the texts in our data set.

How can we determine the significance of these distances? The

Chebyshev inequality provides us with an upper bound of the, p-

value, the probability that the value of the distance is due to mere

chance for any kind of distribution. This upper bound is 1=DkD2,

where D:::D is the absolute value operator [29]. Henceforth we use

the term absolute distance to refer to DkD. We estimate the mean (m)

and standard deviation (s) that are needed to compute the

distances (Eqs. 6, 7 and 8) by simulating the version of the random

text with the parameter setting under consideration a certain

number of times (104 in our case). Table 3 shows, that all absolute

distances (for any novel, any version of the random text and

any parameter setting) are above 36:8. The minimum absolute

distance is achieved by RTNz1 for CC with the parameters setting

L2 and the statistic m(r). This means that the distance p-values, in

all cases do not exceed 1=362&8:10{4. Next we examine some

concrete examples of the huge distance between a real text and a

certain random text model and parameter setting using the results

in Table 3. The minimum absolute distance achieved by any

statistic for:

N the fair die rolling experiment considered in [7] (RT1 with

N~5) is 76:8 standard deviations, which is achieved by the

text CC (A Christmas carol, by Dickens). This means that the p-

value of the differences for any statistic and for all texts does

not exceed 1=76:82&2:10{4. In our version of the model, we

do not allow for empty words to make the model more

realistic.

N the variant of the random text model considered in [4] (RT2) is

93:1 standard deviations, which is achieved by the text AAW

(Alice’s adventures in wonderland, by Carrol). This means that the

p-value of the differences for any statistic and for all the texts

does not exceed 1=93:12&10{4. In our version of the model,

we do not allow for empty words to make the model realistic

and estimate the parameters from the real text.

N the random text with unequal letter probabilities (RTNz1 with

the three different parameters settings) is 36 standard

deviations, which is achieved by CC with the parameter

setting L2 (this is the minimum distance for all versions of the

random texts and parameter settings). Thus, the p-value of the

differences for all statistics and for all the tests does not exceed

1=362&8:10{4. This is striking, since it has been claimed that

unequal letter probabilities improve the fit of random texts to

the rank distribution of real texts dramatically [25]. In

contrast, we show that the hypothesis of a random text is still

rejected with unequal letter probabilities.

Next we focus on the sign of the distances in order to shed light

on the nature of the disagreement between real and random texts.

The sign of the distance indicates whether the actual value is too

small (kv0) or too large (kw0) for the hypothesis of a random

text. In all the cases shown in Table 3, the sign of this new distance

is negative (the real values of the statistic are too small) except for

RT1 with N~2 and RTNz1 with the parameters setting L1,

where that distance is positive (the real values of the statistic are

too large in these cases). A further statistical test confirming the

results obtained thus far is presented in Text S1.

Discussion

We have seen that three different rank statistics are able to

show, independently, that ten English texts and random texts with

different versions and parameters settings are statistically incon-

sistent in all cases. We have seen that for the majority of the

parameter settings considered, the nature of the disagreement is

that the real rank statistic is smaller than that expected for a

random text.

Although we have shown the poor fits of random texts by means

of rigorous statistical tests, our limited exploration of the

parameter space cannot exclude the possibility that random texts

provide good fits for actual rank histograms with parameter values

not considered here. Notice that random texts fail both with

arbitrarily chosen parameters, e.g., the fair die rolling experiment

[7] with N~5 and pb~1=6 (model RT1), and with parameters

inferred from the target text, which would seem a priori more likely

to yield a good fit. Despite our limited exploration of the

parameter space, in the absence of concrete parameter values for
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which random texts fit real rank histograms accurately, the

meaningfulness for natural languages of Zipf’s law-like word

distributions remains viable.

We believe that the quest for parameters that provide a good fit

of random texts on real texts is a tough challenge for detractors of

the meaningfulness of Zipf’s law, because real writers do not

produce words by concatenating independent events under a

certain termination probability. Real writers extract words from a

mental lexicon that provides almost ‘ready to use’ words [30]. Our

main point here is that generally the lexicon provides root word

forms that can be completed with affixes. The valid root forms are

basically determined a priori. Although writing can be a very

creative exercise, real writers do not construct words ‘on the fly’ as

in the random texts that have previously been presented as an

argument against the utility of probability distributions in

language. Although some writers do invent many words, their

creativity is limited by the need to be understood by their readers.

Indeed, the meaning of invented words has to be guessed from the

surrounding words. If the context words are also invented, then

the reader is likely to get completely lost. Considered from this

perspective, random texts are a case of maximum word creativity,

and are not limited by a need to be understood (recall the

meaningless examples of random texts in the Introduction and the

Results section) but only constrained by the prior character

probabilities.

There are still many models of Zipf’s law for which the goodness

of fit to real texts has not been studied rigorously (e.g., [31,32]). A

remarkable exception is [21]. Further research is necessary in

Table 3. Distance to the mean in standard deviations.

RT1 RT2 RTNz1

Abbrv. k N~2 N~4 N~5 N~6 N~26 - L1 L2 Real

AAW max (r) 42.6 297.5 2133.2 2163.4 2573.4 2160.6 54.0 274.3 2147.1

m(r) 130.5 259.7 278.6 294.2 2312.9 293.1 173.0 246.3 285.7

s(r) 56.3 283.4 2119.5 2156.8 22033.6 2153.1 74.1 263.0 2135.5

CC max (r) 99.1 280.7 2120.0 2151.1 2555.4 2158.5 116.8 253.7 2139.3

m(r) 267.3 254.5 276.8 293.6 2317.8 298.0 347.2 236.8 287.1

s(r) 136.5 272.8 2111.9 2149.5 21969.6 2159.2 169.9 248.7 2134.7

H max (r) 103.5 286.6 2127.6 2158.4 2581.5 2157.7 121.5 258.6 2142.3

m(r) 277.8 258.4 281.4 297.6 2331.3 297.5 361.9 240.5 289.1

s(r) 142.1 277.8 2118.3 2155.8 22017.9 2154.6 176.8 253.1 2135.4

ECHU max (r) 75.6 2133.8 2184.6 2226.0 2795.6 2275.9 93.7 298.9 2240.5

m(r) 247.4 281.9 2108.5 2129.7 2431.3 2155.9 328.9 261.6 2137.4

s(r) 106.3 2112.7 2161.7 2210.2 22494.6 2278.7 138.1 282.9 2227.2

HB max (r) 92.0 2131.4 2182.2 2225.5 2791.3 2246.2 112.8 293.8 2207.3

m(r) 272.8 282.6 2109.2 2131.3 2432.7 2142.6 366.7 260.5 2121.9

s(r) 127.8 2112.0 2161.0 2211.0 22482.7 2238.3 165.5 279.9 2189.0

ATS max (r) 120.7 2137.9 2195.9 2242.1 2854.7 2253.9 143.7 297.7 2219.7

m(r) 369.8 287.6 2118.6 2142.1 2469.4 2148.1 488.6 263.6 2130.6

s(r) 173.0 2118.1 2173.1 2226.1 22620.6 2241.3 218.5 283.9 2199.6

DC max (r) 119.2 2143.6 2201.8 2250.1 2882.0 2294.2 143.9 2102.1 2246.5

m(r) 404.6 289.5 2120.6 2145.5 2482.0 2168.9 540.4 264.0 2143.9

s(r) 175.7 2121.8 2177.0 2232.0 22678.1 2288.0 224.7 286.6 2226.7

OS max (r) 72.9 2258.2 2341.1 2419.4 21446.2 2539.9 100.0 2205.0 2443.3

m(r) 349.3 2148.4 2189.5 2228.6 2754.5 2289.1 486.6 2119.9 2240.5

s(r) 117.7 2203.8 2279.5 2362.9 23939.7 2514.2 164.6 2160.9 2390.7

MB max (r) 222.1 2221.6 2311.1 2392.2 21418.5 2470.9 266.4 2155.8 2382.7

m(r) 849.5 2137.8 2184.8 2226.4 2765.8 2266.8 1152.2 298.0 2221.3

s(r) 352.8 2184.8 2265.5 2350.9 23908.0 2444.5 452.7 2130.7 2339.9

U max (r) 404.3 2200.7 2303.2 2398.6 21491.0 2481.1 466.6 2120.8 2388.7

m(r) 1672.5 2133.7 2190.8 2241.7 2828.3 2285.2 2206.4 278.8 2235.9

s(r) 693.6 2175.0 2266.7 2364.3 24068.4 2462.1 862.0 2107.3 2354.5

Summary of k, the distance to the mean (in standard deviations), between real values and those of random texts for three different rank statistics: max(r) (the maximum
rank), m(r) (the mean rank) and s(r) (the standard deviation of the rank). The first column contains the abbreviation of the text (see Table 1 for the meaning of each
abbreviation). Texts are sorted by increasing length. The columns after the first column correspond to different versions of the random text model and different
parameter settings. For each text and parameter setting, we show kmax (r) , km(r) and ks(r) , the distances from each of the three rank statistics. N is the number of
characters other than space. L1 and L2 are two parameter settings borrowed from [2]. Real indicates that all character probabilities are obtained from the original text.
Distances are computed from the estimated mean and standard deviation of the rank of a certain random text through 104 independently generated replicas. The
random texts have the same length in words as the target real text.
doi:10.1371/journal.pone.0009411.t003
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order to establish which models provide the best fit in a statistically

rigorous sense. Indeed, this is yet another reason to conclude that

two fundamental research problems about Zipf’s law in natural

languages, namely its meaningfulness and a realistic explanation of

it, remain open.

Materials and Methods

Materials
To simplify the analysis, we normalize the English texts in

Table 1 by removing all marks, lower casing all letters, converting

all spaces into blanks and leaving only one blank after each word.

In this way, we obtain a sequence of words whose length is at least

one character and separated by a single blank. A similar

normalization procedure is used in [19] although this study does

not provide enough details to determine if its normalization

procedure is exactly the same as ours.

After text normalization, there is a small fraction of word

characters that are not letters in the English alphabet. Most of

these characters are digits or accents. To make sure that our results

are not a consequence of these infrequent characters we repeated

the fitting tests excluding words not made exclusively of English

lowercase letters from ‘a’ to ‘z’ after text normalization. We found

that the results were qualitatively identical: each of the three rank

statistics is able to reject the hypothesis of a random text in all

cases.

Computational Methods
Here we aim to provide some guidelines to perform the

computer calculations presented in this article for easy replication

of our results. In what follows we consider the computational

efficiency of three issues: (i) the generation of random words; (ii)

counting the frequency of random words; (iii) and sorting.

Random word generation. Here we explain how to

generate a random word efficiently. We start with the simplest

(or naı̈ve) algorithm of random word generation (we assume that

the space delimiting words does not belong to the word):

1. Start with an empty string of characters s.

2. Generate a random character c and add it to s.

3. Generate a uniform random deviate x*U(0,1).

4. While x§pb do

5. Generate a random character c and add it to s.

6. Generate a uniform random deviate x*U(0,1).

Generating a uniformly distributed random letter (steps 2 and 5)

for the models RT1 and RT2 with a standard random uniform

given the alphabet size N is straightforward. Generating a random

letter for RTNz1 where probabilities come from a real text can

also be easily performed in h(1) time using a table look-up method

[33]. If character probabilities come from a real text (as in the

parameter setting Real (Results section), we can place all the

characters other than space from that text in a table and then

choose one uniformly in h(1) time. This needs space h(Nc{Nb),
where Nc is the number of characters of the text after text

normalization (including blanks) and Nb is the number of blanks. If

the character probabilities are given a priori but are rational

numbers (as in the parameter settings L1 and L2 borrowed from

[2]), then we can generate a table where the relative frequency of

each character is the same as the desired probability. Alternatively,

for the case of RTNz1 in general, one can use an inversion method

with a guided table [33]. The fact that normally N%Nc{Nb in

large enough texts implies that this inversion method requires less

space than the table look-up method while keeping the h(1) time

for generating a random letter.

Imagine that a random word has length L (we assume L§1 in

our random texts). The naı̈ve algorithm above needs invoking a

random uniform deviate generator 2L times, i.e. L times for

generating each of the L random characters (steps 2 and 5) and L
times for determining if more characters have to be added or not

(steps 3 and 6). We can reduce the number of random uniform

deviates that need to be generated using the following algorithm:

1. Generate a random geometric deviate L*G(pb).

2. Generate a random word w of length L,

where is Step 2 is performed through the following algorithm

1. Start with an empty string of characters s.

2. Repeat L times

3. Generate a random character c and add it to s.

Of key importance is the generation of the random geometric

deviate in h(1) time. It is possible to generate a random geometric

deviate L with parameter pb (L§1) from a random uniform

deviate x through the formula [33,34]

ð9Þ

where l~ log (1{pb). To save computation time, the constant l
is calculated only once. The second version of the algorithm needs

to generate only Lz1 uniform deviates (one for generating the

geometric deviate and L for each of the L characters comprising

the word) whereas the naı̈ve first version required 2L uniform

deviates.

It is still possible to generate a random word of length L with

only L uniform deviates. The idea is to allow the blank to be

among the characters that can be generated once the first non-

blank character has been placed. The algorithm is

1. Start with an empty string of characters s.

2. Generate a random character c (c cannot be a blank) and add it

to s.

3. Generate a random character c (possibly a blank).

4. While c is different than blank do

5. Add c to s.

6. Generate a random character c (possibly a blank).

Word frequency counting. We define T as the length of a

text in words. By ignoring the length of a word, the frequency of a

word efficiently can be counted in h(1) time and h(T) space using

a hashing table [35] of character strings.

With simultaneous random word generation and counting, the

time efficiency can be improved by employing more memory for

the case of RT1 and RT2. The idea is to keep the hashing table

only for counting the frequency of the words of lengths greater

than Lmax and using a matrix F~ffijg for counting the frequency

of each of the Ni words of length i such that 1ƒiƒLmax. fij is the

frequency of the j{th word of length i with 1ƒjƒNi. In this way,

a random word of length Lmax or smaller can be simultaneously

generated and counted involving only two random deviates with

the following simple algorithm:

1. Generate a random geometric deviate i*G(pb)

2. If iƒLmax then
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3. Generate a random uniform number j*U ½1,Ni�.
4. Increase fij by one.

5. else

6. Generate a random word w of length i by means of the

algorithm above.

7. Increase the frequency of w by updating the hashing table of

character strings.

The extra memory needed for the table of words of length not

exceeding Lmax is

S(Lmax)~
XLmax

L~1

NL ð10Þ

~

N(NLmax{1)

N{1
if N§2

Lmax if N~1

8<
: ð11Þ

Sorting. Sorting natural numbers efficiently is needed to

calculate ranks. Obtaining the ranks of a certain text (real or

random) requires sorting the word frequencies from the random

text in decreasing order. All the above techniques may not

contribute to increase significantly the speed of the computer

calculations if the sorting takes more than h(T) time, where T is

the length in words of the text. In our case, we can take advantage

of the fact that frequencies lie within the interval ½1,T � and then we

can use counting sort [35], which allows one to sort elements in

linear time.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0009411.s001 (0.24 MB

PDF)
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In: Grzybek P, Köhler R, eds. Exact methods in the study of language and text.

To honor Gabriel Altmann. Berlin: Gruyter. pp 131–140.

23. Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law.

Contemporary Physics 46: 323–351.

24. Manin DY (2008) Zipf’s law and avoidance of excessive synonymy. Cognitive

Science 32: 1075–1098.

25. Wolfram S (2002) A new kind of science. Champaign: Wolfram Media.
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