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ABSTRACT
Exploration is a central issue for autonomous agents which must carry

out navigation tasks in environments of which a description is not known a
priori. In our approach the environment is described, from a symbolic point
of view, by means of a graph; clustering techniques allow for further levels
of abstraction to be de�ned, leading to a multi-layered representation. In
this work we propose an unsupervised exploration algorithm in which several
agents cooperate to acquire knowledge of the environment at the di�erent
abstraction levels. All agents are equal and pursue the same local exploration
strategy; nevertheless, the existence of multiple levels of abstraction in the
environment representation allows for the agents' behaviour to di�er. Agents
carry out exploration at di�erent abstraction levels, aimed at reproducing
an ideal exploration pro�le; each agent dynamically selects its exploration
level, based on the current demand. Inter-agent communication allows for
the agents to share their knowledge and to record acquaintances of the other
agents. A communication protocol for organizing teams of agents is provided.

Keywords: Autonomous Agents, Cooperation, Distributed Arti�cial Intelli-
gence, Environment Exploration, Layered Knowledge Representation, Multi-
Agent Systems

1. Introduction

Autonomous agents are mobile versatile machines capable of interacting coherently
with an environment and executing a variety of tasks in unpredictable conditions
[7, 20]. Most activities for an autonomous agent involve planning the cheapest path
which allows for one or more (possibly inter-related) goals to be achieved while
avoiding collisions with obstacles, other agents or people; this navigation capability
necessarily relies on a topological and metric description of the environment.

In our work we consider the case where the agent is given no a priori knowl-
edge, so that it must learn the description of the environment on-line by exploring
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it and interpreting sensor data. However, we assume that some meta-knowledge
concerning the type of environment to be explored is available. Firstly, we assume
that the descriptions of typical sensory patterns present in the environment are
given; the selection of patterns corresponding to distinctive or signi�cant categories
of objects and places enables landmarks to be recognized, when in view, through
a sensor-based classi�cation algorithm [4, 13, 21, 10, 15]. Examples of landmarks
are computers and telephones in o�ce environments, medical equipment and re-
ceptions in hospital environments. Secondly, we assume that characterization of
semantically signi�cant clusters of objects or places is possible; agents recognize
cluster borders by sensing the passageways between adjacent clusters. Example of
clusters in o�ce environments are rooms and 
oors, identi�ed by recognizing doors
and stairs, respectively.

Based on these assumptions, we proposed in [5, 16] a multi-layered architecture
for representing the environmental knowledge to be used by an autonomous agent
for navigation. In this architecture the environment is described, from a symbolic
point of view, by means of a hierarchy of graphs de�ned by applying clustering
techniques, starting from a graph of landmarks and inter-landmark paths (routes).
In section 2. the concepts and formalisms necessary in the context of this paper are
outlined, and the impact of layering on navigation-oriented applications is discussed.

The lack of a priori knowledge of the environment makes the problem of on-line
exploration more relevant. In order to be ready to carry out navigation tasks as soon
as possible, the agents should rapidly acquire a topological and metric description
of the whole environment; an agent which knows the description of a single room
in great detail will be less useful, for most tasks, than an agent which knows less
about each room but has a general picture of the arrangement of the rooms in
departments and 
oors. In section 3. we show how the existence of multiple levels
of abstraction in the environment representation allows for di�erent exploration
pro�les to be de�ned.

In [17] we proposed an algorithm for supervised multi-agent exploration, where
the supervisor dynamically assigns each agent the task of exploring the environment
at a speci�c abstraction level, and coordinates the agents assigned to the same level.
Since the supervisor has, at any time, an exact picture of the exploration progress,
the supervised architecture allows for an accurate scheduling of the resources. On
the other hand, the supervised architecture is based on a point-to-point communica-
tion model which is not always feasible and in any case leads to high communication
costs. Besides, since knowledge of the environment is stored in the supervisor, the
existence of several agents is not exploited to achieve fault tolerance.

In [19] we proposed a multi-agent approach to exploration, in which several
agents cooperate to acquire knowledge of the environment at the di�erent abstrac-
tion levels; no external supervisor/coordinator is required. In this work we re�ne
and extend the unsupervised approach to exploration. All the agents employed
are equal and pursue the same local exploration strategy, inspired by Tremaux's
graph-exploration algorithm. On the other hand, the hierarchical representation
of the environment enables the agents to diversify their behaviour by committing
themselves to exploration at di�erent abstraction levels, aimed at reproducing an
ideal exploration pro�le.

Each agent has an agenda, used for keeping track of the places seen (by the agent



itself or by other agents) but not explored. When the graph-exploration algorithm
cannot be applied, due for instance to a one-way route, the agenda is �rst consulted
locally (within a neighbourhood of the place where the agent currently is), then
vertically (within a neighbourhood distributed on the higher abstraction levels),
and �nally globally (throughout the whole map).

The agents communicate by broadcasting messages; a message sent from an
agent is received only by the agents who are currently placed within a circular area
centred in the sender. Messages are aimed at acquaintanceship: to this end, each
agent keeps the other agents as best informed as possible about where it is, what it
is doing and where it is about to go. Messages are also aimed at knowledge sharing:
fault tolerance is highly improved by having each piece of knowledge shared by
several agents.

A mechanism of team formation is provided. When an agent discovers a new
cluster, it may call for other agents to come and explore that cluster. By comparing
the costs paid by the agents who answered the call to interrupt their activity and
move to the new place, the caller forms an exploration team.

In section 4. the main features of the exploration script are outlined, focusing
in particular on communication protocols, team formation and knowledge sharing.
In section 5., performance of the exploration algorithm is evaluated in terms of
e�ciency, adherence to an optimal exploration pro�le, communication overhead
and fault tolerance. In section 6. we discuss to what extent our algorithm could be
e�ectively employed to carry out exploration of large information spaces such as the
world wide web. The complete exploration algorithm is outlined in the Appendix.

2. Knowledge architecture

The representation adopted for the environmental knowledge has a critical role in
making the formulation of queries about the objects in the environment and the
formulation of planning problems more 
exible, and in simplifying their resolution.
The architecture for knowledge representation that this work is based on, is specif-
ically oriented to navigation in structured environments. We say an environment is
structured if a number of categories of objects and places that can be encountered
in it are described a priori. We call landmarks the objects and places belonging to
a subset of categories which are regarded as distinctive or signi�cant.

According to many cognitive scientists, a cognitive map is organized into suc-
cessive layers at di�erent abstraction levels [11]. The architecture we propose is
organized in knowledge layers determined by the structure of the environment and
by the tasks which must be carried out. Each layer can be thought of as a view of
the environment at a speci�c abstraction level; it includes only those details of the
environment which are signi�cant for a speci�c family of tasks or sub-tasks, and
represents them in the most suitable formalism [16].

A layered representation of the environment is semantically richer than a "
at"
representation. Consider, for instance, a consultant system for planning visits to a
city or a museum. In these applications, the language for user-machine interaction
should allow for constraints to be stated as precisely as possible ("one-hour shopping
downtown (consider the shop hours), walk in the park before sunset, be back at
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Figure 1: A clustering on a simple directed graph (arcs are shown by arrows).

airport by 19.00"). These natural-language requirements are formulated at di�erent
levels of abstraction, and correspond to formal constraints for path planning to be
expressed on di�erent knowledge layers.

The acquisition of the environment description takes place in most cases ana-
logically, for instance from a set of sensor measures or a map. This view of the
environment can hardly be exploited directly to carry out complex tasks, so knowl-
edge must be reorganized and interpreted by abstracting one or more layers, each
suitable for a speci�c task, from the low-level analogical description. Each of these
layers may in turn generate other layers for other tasks, by means of a procedure
of progressive abstraction which creates a taxonomy of layers. Three abstraction
primitives can be used to derive a new layer from an existing one: classi�cation,
aggregation, generalization.

In this section we introduce the restricted formalism needed in this paper, which
concerns representation of layers abstracted by aggregation only.

Let L(0) and R(0) be, respectively, the sets of landmarks and directed inter-
landmark paths (routes) experienced at a given time. We de�ne as symbolic layer

the (weakly connected) directed graph L(0) = (L(0); R(0)); each arc is labelled with
the cost paid when covering the corresponding route. In this work we will assume
that the cost of a route measures the physical distance covered by an agent which
follows that route.

Given a directed graph G = (V;A), with V a set of vertices and A a set of arcs,
we denominate with clustering a partition of the vertices and arcs of G into a set of
clusters and a set of bridges. A cluster is a connected sub-graph of G. The bridge
between two clusters Ci and Cj is the set of the arcs of G which connect a vertex of
Ci to a vertex of Cj . All clusters and bridges are disjointed.

Consider for instance the simple graph in Figure 1, de�ned as

G = (fv1; v2; v3; v4; v5; v6g;
f(v1; v2); (v1; v3); (v2; v4); (v3; v1); (v3; v4); (v4; v3); (v4; v6); (v5; v3); (v6; v5)g)

A possible clustering is de�ned by the three clusters

C1 = (fv1; v2g; f(v1; v2)g);
C2 = (fv3; v4g; f(v3; v4); (v4; v3)g);
C3 = (fv5; v6g; f(v6; v5)g)
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Figure 2: De�nition of clustered layers. The two grey circles at the bottom are
subgraphs of the symbolic layer, represented in the 1-clustered layer as vertices (1-
clusters). The 1-bridge connecting the two 1-clusters corresponds, in L(0), to the
set of the two dashed routes.

and by the four bridges

(C1; C2) = f(v1; v3); (v2; v4)g;
(C2; C1) = f(v3; v1)g;
(C2; C3) = f(v4; v6)g;
(C3; C2) = f(v5; v3)g

We call 1-clusters and 1-bridges the clusters and bridges determined by clustering
the symbolic layer L(0). The directed graph whose vertices and arcs correspond,
respectively, to the 1-clusters and the 1-bridges is called the 1-clustered layer and
denoted with L(1). The 1-clustered layer de�ned by the clustering in Figure 1 is the
graph

L(1) = (fC1; C2; C3g; f(C1; C2); (C2; C1); (C2; C3); (C3; C2)g)
The 1-clustered layer may in turn be clustered, generating a 2-clustered layer,

and so on; a hierarchical clustering can thus be progressively de�ned, producing
a hierarchy of graphs whose root is L(0) (see Figure 2). In general, we name k-

clustered layer and denote with L(k) (k = 1; ::n, where n is the maximum clustering
level) the graph obtained by applying clustering k times, starting from the symbolic
layer. The clusters and bridges of a k-clustered layer are called k-clusters and k-

bridges, respectively (landmarks and routes may be seen as 0-clusters and 0-bridges,
respectively). We call cardinality of a k-cluster the number of (k � 1)-clusters it
contains; the w-cluster which includes a k-cluster or a k-bridge (0 � k < w � n) is
said to be its ancestor at level w. We will assume that the n-clustered layer contains
exactly one n-cluster, which represents the whole environment.

Figure 3 shows an example of how a four-level hierarchical clustering (maximum
clustering level n = 3) can be applied to an o�ce environment.
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Figure 3: Clustering of an o�ce environment. Landmarks in the symbolic layer
correspond to useful objects, and are grouped in 1-clusters corresponding to rooms.
Rooms in the 1-clustered layer, in turn, are grouped into 
oors which form the
2-clustered layer. The 3-clustered layer describes the whole building as a set of

oors.

2.1. Applications in the �eld of information systems

In this section we discuss some applications, outside the robotics �eld, which could
bene�t from adopting the layered knowledge architecture outlined above. Basically,
these applications share four characteristics:

(i) Knowledge consists of "places" and associations between them, so that it can
be modelled by a connected graph. Each place may be a physical object or
location, as well as a concept or a piece of information.

(ii) A cost function can be de�ned on the set of inter-place associations.

(iii) Physical or conceptual navigation between places is possible; the cost of nav-
igating between two places is equal to the sum of the costs of the associations
included in the path followed.

(iv) A hierarchical clustering may be de�ned on the graph of places. Each cluster
must be a connected graph; the semantics of a cluster may be that of a place,
at a higher abstraction level, which aggregates or includes a set of adjacent
places at the level below; or that of an abstract concept which summarizes a
set of associated concepts at the level below.

All the applications which require modelling of a structured environment meet
these requisites. In some cases, typically for autonomous agents, places correspond



to physical objects or locations (landmarks), and navigation means physical motion
between them. In other cases, navigation takes place at a logical level; here we
review three examples:

� Personalized tour planners. In [18] we described an assistant for planning vis-
its to a museum which enables the user to become acquainted with the artistic
contents of the museum, choose some aspects to be further investigated and
plan an itinerary taking a number of constraints into consideration. Places cor-
respond to works of art and facilities, and are classi�ed according to di�erent
criteria (author, historical period, etc.); clusters at di�erent levels correspond
to rooms, apartments and sections. An example of a simple path-planning
problem that may be formulated is: "two hours available time; see all Van
Gogh and Monet and at least one sculpture by Michelangelo, visit the Duke's
Apartment, a brief stop at Leonardo's Mona Lisa, overlook English painters".
Similar considerations could be made for information systems for planning
cultural itineraries within an artistic city or day-trips to an amusement park.

� Vehicle navigation systems. They assist drivers in planning trips and select-
ing routes, by guiding them through geographic space. In the commercial
systems emerging, cars are equipped with an on-board computer, a dash-
mounted graphic screen displaying maps and conveying driving instructions,
and sensors that return the car position. Spatial objects to be modelled
include, for instance, roads, intersections, monuments, shops, and on a di�er-
ent scale, cities, highway exits, clover-leaf junctions; all the objects modelled
are grouped into categories (for instance, gas stations, highway exits, restau-
rants, etc.). The cost might be computed in terms of distance, time, fuel
consumption, toll, tra�c. Some examples of navigation queries which could
be formulated are: "which is the next highway exit?", "which is the closest gas
station?", "how long to an Italian restaurant?", "which is the most convenient
route to Venice?".

� Personal planners. We call personal planner an information system support-
ing constrained path planning on the city map for scheduling the errands and
the appointments of the day. Real-time communicationwith the outside world
is necessary in order to acquire on-line information about the tra�c conditions
and the social events, the shop and o�ce hours, pictures of places, etc. An
example of a natural language sentence expressing some errands for the day
is: "take the dog to Hyde Park; collect spectacles at the optician; have lunch
at a Chinese restaurant; check out some apartments in residential quarters".

Environment knowledge is not the only type of knowledge which can be ef-
fectively modelled. Consider for instance a semantic net: places correspond to
concepts, and inter-place associations to associations between concepts; clustering
allows for highly-interrelated areas of the net to be outlined. Navigation within the
net is ruled by a cost function related to the strength of the associations between
concepts.

An interesting example of a non-environmental information space which could
be modelled by our architecture is the World Wide Web (WWW). Here, places



and associations correspond, respectively, to uniform resource locators (URLs) and
to hyperlinks between them. A cluster identi�es the set of URLs referring to the
same server; most hyperlinks in each page fall within the server boundary, hence,
connectivity within each cluster tends to be higher than inter-cluster connectivity.
The applicability of our exploration technique to the WWW will be discussed in
section 6..

3. Exploration pro�les

The problem of learning the description of an unknown environment by exploring
it and interpreting sensor data has been largely addressed in the robotic literature.
Some approaches are oriented towards building 2- or 3-dimensional scene maps in
the absence of landmarks [2, 14]. The approach to landmark exploration proposed in
[24] mainly addresses the problem of recognizing places in spite of positional errors
due to sensors. Also in [13] the accent is placed on landmark recognition; an agenda
is used to remember the unexplored directions, but the next move is chosen through
heuristic criteria such as that of the least rotation. In [22], the problem of acquiring
a model of an unknown terrain is approached by implementing a graph search on an
incrementally constructed geometric structure called the navigational course, whose
vertices correspond to obstacle vertices. [8] describes a vertex-oriented deterministic
exploration of an undirected graph; markers are dropped and picked up at places,
so that the robot can recognize a place it has visited before.

In our approach, exploration is carried out at a symbolic level; this means that
the agents' goal is to acquire knowledge of the hierarchy of graphs representing
the environment. The link between symbolic exploration and the sensor level is
established by assuming that:

� When an agent reaches a landmark, it can determine whether it has already
visited that landmark or not.

� When an agent is located in a landmark, it can determine the directions of
the routes departing from that landmark. If a restricted number of paths are
physically possible in the environment (for instance, the streets in a city), these
can be directly recognized by sensors (for instance, a sonar array); otherwise,
assuming that landmarks can be sensed only within a given distance range,
the agent will consider as routes all the paths leading to the visible landmarks.

� When an agent is located in a landmark, it can choose to explore one of the
routes sensed.

� The agents know the number of levels of clustering at which the environment
is to be represented; they can recognize the routes belonging to a k-bridge for
any k (for instance, a route crossing a threshold).

Given these assumptions, we are mainly interested in investigating how an agent,
each time it reaches a landmark, should decide which route to follow next in order
to accomplish globally a given exploration strategy.

Exploration may be carried out according to a multiplicity of criteria. In order
to characterize formally the di�erent exploration strategies, we introduce in this



section the concept of exploration pro�le. The exploration pro�le describing a given
strategy � is a vector

p� = [p(1)� ; :::p(n�1)� ]

whose k-th component is the ratio between the number v
(k)
� of k-clusters known at

the time when v landmarks have been experienced if strategy � is being followed,
and v:

p(k)� = p(k)� (v) =
v
(k)
�

v

In general, each component is a function of v.
The exploration pro�le describes the evolution of the global knowledge of the

environment during exploration in terms of the relative amounts of knowledge at
the di�erent abstraction levels. It can be used to calculate the adherence of an on-
going exploration process to a given strategy by comparing the actual distribution
of knowledge to the ideal one: exploration fully adheres to strategy � if, at any
time, the ratio between the number of k-clusters and the number v of landmarks in

the knowledge-base is equal to p
(k)
� (v), for k = 1; :::n� 1.

It is necessary to point out that the exploration strategies are de�ned with
reference to the global knowledge in one or more agents' possession. If only one
agent is exploring the environment, then the bridges and clusters experienced are
those that the agent has visited "personally". In the multi-agent case, we may say
that a place has been experienced if at least one of the agents has visited that place;
depending on the policies adopted for inter-agent communication, the knowledge
that one agent has visited a given place may or not be shared by all the agents or
some of them. Thus, in general, the environmental knowledge we will refer to in
the following is the union of those in the single agents' possession.

3.1. The w-optimal strategy

Layering the representation of the environment enables the de�nition of di�erent
speci�cally-oriented exploration strategies. We call w-optimal an exploration strat-
egy whose primary goal is to acquire knowledge of the graph representing the w-
clustered layer, L(w). A w-optimal strategy aims at exhaustively exploring the
whole w-clustered layer, without considering the other abstraction levels. The w-
clustered layer is completely explored when all the w-bridges have been experienced
in both directions, i.e., at least two opposite routes belonging to each w-bridge have
been covered. We assume that, when a landmark is experienced, the ancestors of
that landmark on all levels are also experienced (if an agent sees a computer, it
necessarily sees the room containing the computer and the 
oor where the room
is); the same can be said for routes and bridges. Thus, it is obvious that exhaus-
tive knowledge of any clustered layer implies exhaustive knowledge of all the layers
above it.

In estimating the exploration pro�le of the w-optimal strategy we consider the
case of a single agent for the sake of clarity; all the results obtained are equally
valid for the multi-agent case, if the global knowledge in all the agents' possession
is considered, and assuming that all the agents cooperate in order to pursue the
given strategy.



Consider an agent which is following a 0-optimal strategy. The agent aims at
exhaustively exploring the symbolic layer, that is, at experiencing all the routes;
we may assume that it explores all the routes within each 1-cluster, then it crosses
a 1-bridge and explores all the routes within the adjacent 1-cluster, and so on. If
c1 is the average cardinality of 1-clusters, the agent discovers a new 1-cluster for
every c1 landmarks visited; similarly, if c2 is the average cardinality of 2-clusters,
it discovers a new 2-cluster for every c2 1-clusters visited. Thus, at the time when
v landmarks are known, an agent following a 0-optimal strategy should know a
number of k-clusters equal to

v
(k)
0 =

vQk

i=1 ci
(k = 1; :::n� 1)

where ci is the average cardinality of i-clusters.
Consider now an agent which is following a 1-optimal strategy. The agent aims

at exhaustively exploring the 1-clustered layer, that is, at experiencing all the 1-
bridges. Seen on the symbolic layer, it moves in straight-line paths which cross the 1-
clusters without necessarily visiting all their landmarks; seen on the 1-clustered layer
it follows a path which, 2-cluster by 2-cluster, exhaustively visits all the 1-clusters
(exactly as an agent following a 0-optimal strategy would visit all the landmarks).
The agent discovers a new 1-cluster approximately for every

p
c1 landmarks visited

(estimate of the cluster diameter), whereas it discovers a new 2-cluster for every
c2 1-clusters visited. After visiting v landmarks, an agent following a 1-optimal
strategy should know a number of k-clusters equal to

v
(k)
1 =

8>>>><
>>>>:

vp
c1

(k = 1)

v

p
c1

kY
i=2

ci

(k = 2; :::n� 1)

Similarly, an agent following a 2-optimal strategy quickly crosses the 2-clusters
and all the 1-clusters inside them, discovering a new 2-cluster for every

p
c2 1-

clusters visited:

v
(k)
2 =

8>>>>>>>>><
>>>>>>>>>:

vp
c1

(k = 1)

vp
c1c2

(k = 2)

v

p
c1c2

kY
i=3

ci

(k = 3; :::n� 1)

It is not surprising that the number v
(1)
2 of 1-clusters experienced is the same as in

the 1-optimal case: in fact, in both cases 1-clusters are crossed in the same way.
The di�erence lies in which 1-clusters are crossed: in the 2-optimal case, those lying
on the diameter of the 2-clusters. Figure 4 reports an example on a simple regular
map.
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Figure 4: Di�erent exploration strategies in a simple regular map where c1 = c2 = 4;
known clusters are in black. When v = 8 landmarks have been visited, two 1-clusters
and one 2-cluster have been visited if a 0-optimal strategy is being followed (a); four
1-clusters and one 2-cluster have been visited if a 1-optimal strategy is being followed
(b); four 1-clusters and two 2-clusters have been visited if a 2-optimal strategy is
being followed (c).

In general, for a w-optimal strategy (w = 0; :::n� 1) it should be:

v(k)w =

8>>>>>><
>>>>>>:

v
kY
i=1

p
ci

(k = 1; :::w)

v
wY
i=1

p
ci

kY
i=w+1

ci

(k = w + 1; :::n� 1)

If landmarks and routes are uniformly distributed within the map and clusters

are regularly-shaped, so that the values estimated above for v
(k)
w can be used, the

exploration pro�le describing the w-optimal strategy turns out to be:

pw = [p(1)w ; :::p(n�1)w ]

where

p(k)w =

8>>>>>>><
>>>>>>>:

1
kY
i=1

p
ci

(k = 1; :::w)

1
wY
i=1

p
ci

kY
i=w+1

ci

(k = w + 1; :::n� 1)

The pro�les for the map in Figure 4 are as follows (n = 3, c1 = c2 = 4):

p0 =

�
1

4
;
1

16

�
;p1 =

�
1

2
;
1

8

�
;p2 =

�
1

2
;
1

4

�
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Figure 5: Expected number of 1-clusters and 2-clusters in function of the number
of landmarks when a 0-optimal (a), 1-optimal (b) and 2-optimal (c) strategy is
followed. We assumed n = 3 and c1 = c2 = c3 = 4; hence, the map contains 64
landmarks, 16 1-clusters, 4 2-clusters, 1 3-cluster.

Actually, the w-optimal pro�le we have calculated above does not hold during
the entire exploration. In fact, as v increases, the expected number of k-clusters

calculated by means of the pro�le, v
(k)
w = p

(k)
w � v, exceeds the total number of

k-clusters in the k-clustered layer,

v
(k)
tot =

nY
i=k+1

ci

Thus, the expected number of k-clusters should be calculated as (see Figure 5):

v(k)w = minfp(k)w � v; v(k)tot g

4. The agents

In our approach agents are homogeneous, are not coordinated by a central supervi-
sor, and do not share any physical memory. Each agent has a private knowledge-base
where the landmarks, routes, clusters and bridges known are stored. Every time an
agent reaches an unknown landmark, it puts that landmark and the route it has
just followed in its knowledge-base.

The agents communicate with each other by broadcasting messages; a message
sent from an agent is received only by the agents who are currently placed within
a circular area with radius � (communication range) and centred in the sender.
We assume that message reception is error-free. The agents' communication pro-
tocol is described in sections 4.4. (as to team formation), 4.5. (management of the
acquaintances) and 4.6. (knowledge sharing).

The goal of all the agents is to acquire knowledge of the whole environment. In
principle, any exploration pro�le could be pursued by the agents, depending on the
requirements of the speci�c application. Our main concern is that the agents be
ready to carry out navigation tasks as soon as possible; since navigation tasks may
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Figure 6: Optimal exploration pro�le as a function of k (n = 5, c1 = c2 = :::c5 = 10).

be formulated in terms of places de�ned at any abstraction level, it is impossible to
direct exploration a priori on a speci�c level.

Based on these considerations, in our approach we require agents to have at any
time a general picture of all clustered layers; more precisely, we de�ne the optimal
exploration pro�le as the average of n pro�les, each aimed at a di�erent abstraction
level (see Figure 6):

p = [p(1); :::p(n�1)]

where

p(k) =
1

n

n�1X
w=0

p(k)w =
1

n
Qk

i=1

p
ci

0
@ kX

j=1

1Qj

i=1

p
ci

+ n� k

1
A (k = 1; :::n� 1)

Our algorithm is aimed at having the union of the agents' private knowledge-
bases grow, during exploration, according to the optimal pro�le p; thus, the number
v(k) of k-clusters which should be known when v landmarks have been experienced
is:

v(k) = minfp(k) � v; v(k)tot g
where v

(k)
tot is the total number of k-clusters. Thus, for instance, if n = 5 and

c1 = ::: = c5 = 10, the optimal number of 2-clusters when v landmarks have been
experienced is

v(2) = minf0:068 � v; 1000g
In section 5. we will evaluate to what extent the actual evolution of exploration

adheres to the optimal pro�le.

4.1. Commitments, activities, modes of an agent

As argued in [12], commitment is a key concept in the theory of multi-agent systems.
In general, a commitment may be viewed as a pledge to undertake a speci�ed course
of action. [3] distinguishes between internal, social and collective commitment;
in the following we will refer to internal commitment, which corresponds to the



commitment de�ned in [6]. Internal commitment expresses a relation between an
agent and an action, and is linked to the existence of a persistent goal. In our
approach, at each time, every agent is either committed to exploring a given cluster
(scope) or (temporarily) uncommitted. Each agent chooses its scope according to
its current position and to the knowledge it has of the environment, be it directly
experienced or transmitted from other agents. An agent is temporarily uncommitted
when its current knowledge of the environment does not enable it to �nd itself a
scope.

In [12] it is argued that commitments can be re-assessed not only when they have
been satis�ed, but also for other reasons (for instance, the agent has discovered
some new information, or has interacted with another agent); the policies which
rule reconsideration of the commitments are called conventions. In our approach,
commitment to a scope may be dropped for four reasons:

(i) the scope has been completely explored;

(ii) the agent is not able to continue exploration of the scope;

(iii) a more convenient scope is found (agents reconsider the convenience of their
scopes during the formation of a team; convenience is not evaluated from the
point of view of the single agent, but from that of the collectivity of agents);

(iv) the agent, while moving to reach a particular route within its scope, detects
a collision with another agent directed to the same route.

Basically, an agent may be involved in three activities. When it is outside the
scope it is committed to, its actions are directed to reach the scope. When it is inside
its scope, it carries out exploration of the scope by means of a graph-exploration
algorithm, supported by an exploration agenda. An agent may also stand still, when
it is temporarily uncommitted or is communicating with the surrounding agents in
order to select a more convenient scope.

From an internal point of view, an agent may be seen as an automaton.
Seven operating modes are de�ned: explore, move to, go towards, go to, wait ack,
wait con�rm, wait. When it is in one of the �rst four modes, the agent moves in
the environment in order to reach or explore the scope; hence, at each landmark,
it must decide which route to follow next based on its current knowledge of the
environment. The agent's mode determines the algorithm used to select a route,
but is not su�cient to determine which route will be selected. Thus, the �rst four
modes are characterized by an additional piece of information (extension) which,
together with the operating mode, determines the agent's decision (for instance,
when in mode move to, the agent follows a path to a given destination; thus, mode
move to is extended with its destination).

Table 1 summarizes the agent's modes and extensions, while Figure 7 gives a
global picture of how the transitions between the agents' modes occur. More de-
tailed explanations will be given in sections 4.2. through 4.4. The complete algorithm
is outlined in the Appendix.



Mode Extension Activity Decision Scope

explore exploration explore graph-expl. current cluster
level the scope algorithm

move to destination reach/explore next in path ancestor of
(agenda) the scope destin. route

go towards target compass target
(call for team) reach

go to target the scope next in path target
(call for team)

wait ack -evaluating-
wait con�rm - stand still - -evaluating-
wait -uncommitted-

Table 1: Operating modes of an agent. The fourth column indicates the criterion
used to select the next route; the �fth column contains the scope the agent is
committed to.

4.2. Exploration

The main activity of the agents consists in carrying out exploration at a given
abstraction level within their scope. We call k-agent (k = 0; ::n� 1) one following
a k-optimal strategy to explore a scope corresponding to a (k + 1)-cluster. Since
following a k-optimal strategy means being interested in acquiring knowledge of the
graph which represents the k-clustered layer, we may say that a k-agent explores
the environment "at level k".

The graph-exploration algorithm that agents adopt to explore their scope is a
variant of Tremaux algorithm [23]. The classical Tremaux algorithm carries out
exhaustive exploration of a directed graph by considering local knowledge only; it
requires all arcs to have an opposite and it is optimal, meaning that each arc is
visited exactly once. In our approach, several agents may have the same scope and
thus interfere in each other's exploration schedule; moreover, we assume that some
routes having no opposite may exist in the environment (corresponding to one-way
streets, doors which can be opened one way only, etc.). Hence, it may occur that
Tremaux algorithm suggests an agent to take a route which does not exist or has
already been visited by some other agent; in our variant, when this happens we say
that the agent has got "lost".

The graph-exploration algorithm can be sketched as follows:

ExploreGraph (vex,arc set,from arc)

/* the agent has reached vertex vex through arc from arc; arc set is

the set of the arcs departing from vex */

f if not (vex visited for the first time)

f if 9 to arc2arc set:(to arc=opposite(from arc))^(to arc62KB)
return to arc; /* a cycle has been closed:turn back */



EXPLORE
do: explore graphWAIT

WAIT_CONFIRM

WAIT_ACK

MOVE_TO
do: follow path

GO_TO
do: follow path

GO_TOWARDS
do: follow compass

lost
[agenda not empty]

/ plan path

lost
[agenda empty]

new lmk
[agents needed in cluster] 

/ send call for team

time out
/ form team

destination
reached

receive msg
[agenda empty]

receive msg
[agenda not empty]

collision
[agenda not empty]
/ replan path

collision
[agenda empty]

receive ack
[cost<∞]
/ insert in team

receive call for team
[helpful]

/ send ack

receive confirm
[in team]

receive confirm
[out of team]

fail
/ plan path

target reached

target reached

receive call for team
[non-helpful]
/ send ack

Figure 7: Mode chart for an agent. Following the OMT formalism, boxes represent
modes, and arrows transition between modes. Each transition is labelled according
to the syntax event [condition] /action, meaning that the transition is caused by
event, occurs only if condition is true, and causes action to be executed. The activity
executed while being in a state is expressed by a do: notation. The dashed rectangle
de�nes a macro-mode.
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Figure 8: A small sample graph. The routes are numbered from 1 to 8.



route lm. reached choice route lm. reached choice

1 U go ahead 1 U go ahead
3 U go ahead 3 U go ahead
7 K (cycle closed) turn back 7 K (lost) -
8 K go ahead
5 U (cul-de-sac) turn back
6 K go back
4 K go back
2 K (exp. over) -

Table 2: Exploration sequence. Each row reports the route just followed, the land-
mark reached (K stands for known, U for unknown) and the choice made by the
graph-exploration algorithm. The sequence on the left describes a successful ex-
ploration; in the sequence on the right, the agent gets lost since another agent has
already visited route 8.

else

if 9 to arc2arc set:(to arc 62KB)^(opposite(to arc)62KB)
return to arc; /* go ahead */

else

if 9 to arc2arc set:to arc62KB
return to arc; /* go back */

else

return null; /* exploration is over, or lost */

g
else

if 9 to arc2arc set:(to arc62KB)^(opposite(to arc) 62KB)
return to arc; /* go ahead */

else

if 9 to arc2arc set:to arc62KB
return to arc; /* cul-de-sac: turn back */

else

return null; /* lost */

g

Consider as an example the small graph in Figure 8. Its exploration takes place
as shown in Table 2, where two di�erent cases are reported: on the left, the agent
succeds in completing exploration of the graph; on the right, the agent cannot
complete exploration and gets lost, since another agent has explored one of the
routes.

From a conceptual point of view, the algorithm adopted by all agents to explore
the graphs at the levels they are assigned to is the same. Nevertheless, while the
0-agents apply the algorithm to landmarks and routes, which are physical entities
in the environment, the other agents apply it to clusters and bridges, which are
only useful abstractions. In particular, while visibility of the routes departing from



Figure 9: Di�erent exploration paths followed by a 0-agent and a 1-agent in a map
containing nine 1-clusters. Dashed routes are those belonging to 1-bridges; black
routes are those already covered. The square and the triangle show, respectively, the
current positions of the 0- and the 1-agent. The 0-agent has exhaustively explored
the two clusters in the upper-left corner; the 1-agent is following the borders of the
1-clusters aimed at exploring the 1-clustered layer.

a landmark is guaranteed by the sensor level, the same is not true for k-clusters
(k > 0): for instance, knowing which 1-bridges depart from a 1-cluster entails fol-
lowing the whole edge of the 1-cluster. Figure 9 shows the di�erent exploration
paths followed by a 0-agent and a 1-agent on the same map: the 0-agent carries
out exhaustive exploration inside 1-clusters; the 1-agent, on the other hand, follows
the edges of the 1-clusters and takes the routes contained in the 1-bridges. From a
behavioural point of view we might say that, though all agents are equally "curi-
ous" (due to their standard exploration strategy), those working on low layers are
"meticulous", while those working on high layers are more "super�cial".

The operating mode corresponding to the activity of exploring a cluster is ex-
plore, and its extension is the exploration level k. When in this mode, every time
the agent reaches a landmark it determines the new route to follow by applying the
graph-exploration algorithm at level k.

In mode explore, the scope the agent is committed to is its current (k + 1)-
cluster. The commitment is dropped when the scope is completely explored; it may



also be dropped if the agent gets lost, unless it can resume exploration of the scope
by consulting its agenda (see section 4.3.).

4.3. The agenda

Each agent has an agenda which it uses to continue exploration when, applying the
graph-exploration algorithm in mode explore, it gets lost. The agenda is structured
in n layers: the k-th one reports, for each known (k + 1)-cluster, all the routes
belonging to k-bridges that have not yet been explored. The agenda is updated
every time the agent reaches an unknown landmark by adding the departing routes;
routes are removed from the agenda as they are explored.

When a k-agent gets lost, it �rst consults its agenda locally, that is, it looks
within the k-th layer of the agenda for a route included in the scope (that is,
a route belonging to an unexplored bridge contained in the scope). If no such
routes are found, the agenda is consulted vertically, that is, a route belonging to
an unexplored bridge contained in one of the ancestors of the scope is searched.
Finally, if the vertical search gives no results, the agenda is consulted globally, that
is, on the whole map and on all levels.

The procedure for consulting the agenda is sketched below:

ConsultAgenda ()

/* Looks for a possible destination and returns the route to be

followed next, if any. Position, Scope, ExploLevel, Destination are

part of the private memory of each agent; they store, respectively,

the landmark where the agent is or the last one where it has been,

the agent's current scope, its exploration level, its destination */

f /* local consultation */

Destination r2Agenda[ExploLevel]:(r internal to Scope)^
(r is nearest to Position);

if (Destination is null)

f /* vertical consultation */

newLevel minflev:(ExploLevel<lev<n)^
(9r2Agenda[lev]:r internal to Ancestor(lev+1,Scope))g;

if (newLevel is not null)

f ExploLevel newLevel;

Scope Ancestor(ExploLevel+1,Scope);

Destination r2Agenda[ExploLevel]:(r internal to Scope)^
(r is nearest to Position);

g
else

/* global consultation */

if (Agenda6= ;)
f Destination r2Agenda:(r is nearest to Position);

ExploLevel lev:Destination2Agenda[lev];
Scope Ancestor(ExploLevel+1,Destination);

g



else

Destination null;

if (Destination is not null)

f Mode "MOVE TO";

RemoveAgenda(ExploLevel,Destination);

Path ShortestPath(Position,Destination);

return NextIn(Path);

/* returns the first route in the planned path */

g
else

return null;

g

If, by consulting its agenda, the agent �nds a route to follow (Destination),
it plans a path to that route and enters mode move to. In this mode, it simply
follows the path planned until it reaches the destination; after visiting it, the agent
enters mode explore again. The extension of mode move to is the destination. If the
agenda is empty, so that no destination can be found, the agent enters mode wait;
it stops, and waits for a "call for team" or for any other message which enables it
to put some routes in its agenda.

If the agent succeeds in �nding a route by means of a local consultation, its
commitment does not change, since the scope remains the same. In this case, since
reaching the destination route may be considered to be a phase of the exploration,
the activity of an agent in mode move to is still that of exploring the scope. On the
other hand, if local consultation fails, the agent has either completed exploration of
the scope or is unable to continue it; hence, the commitment is dropped. If vertical
or global consultation succeeds, the agent commits to a new scope: the cluster
including the destination; in this case, the activity of an agent in mode move to is
that of reaching the scope. If the agenda is empty, the agent remains uncommitted;
its activity is to stand still.

4.4. Team formation

The team formation mechanism is aimed at distributing agents e�ectively within
the environment. Every time a k-agent (k � 1), while exploring its scope, discovers
a k-cluster, it evaluates whether it is worth forming a team of (k � 1)-agents to
explore that k-cluster. The evaluation consists in comparing the number of (k� 1)-
agents currently exploring the k-cluster with the optimal number of (k � 1)-agents
per k-cluster. The agent estimates the current number of (k�1)-agents by counting
its acquaintances (see section 4.5.). The optimal number of (k � 1)-agents per k-
cluster, opt(k), is estimated as a function of the communication range � and of the
average radius of k-clusters rad(k) as follows.

In the optimal situation, agents are uniformly distributed within the cluster, for
instance positioned in the vertices of a regular triangular-meshed grid. The optimal
inter-agent distance is equal to �: in fact, if the agents were closer they would
interfere with each other in applying the graph-exploration algorithm; if they were



further away, they would not be able to communicate. Thus:

opt(k) =
3
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(every triangular mesh contributes to opt(k) with three vertices, and each vertex is
shared by six meshes).

If the current number of (k � 1)-agents in the k-cluster is less than the optimal
number, the agent decides to issue a "call for team": it broadcasts a message
teamMSG, whose argument is the k-cluster which the team is supposed to explore
(which we will call target), and enters mode wait ack. In this mode the agent waits
for a given time, collecting the acknowledgements issued by the listening agents; its
activity is to stand still. The agent may still be considered to be committed to its
previous scope; actually, since it may itself become part of the team, it is evaluating
whether it is worth committing to a more convenient scope.

Each agent receiving a "call for team" replies with the message ackMSG, whose
argument is the cost to be paid for joining the team, which we callmembership cost.
A receiving agent may be willing to be part of the team, in which case it is said
to be helpful, or not. An agent is always helpful if its mode is wait; if its mode is
explore, it is helpful only if it is not the only agent exploring its cluster. In all the
other cases, the agent is non-helpful.

A non-helpful agent includes in its acknowledge message an in�nite membership
cost, so that the caller does not include it in the team, and keeps operating in its
previous mode.

For a helpful agent, however, the membership cost must be estimated. The
membership cost is the sum of two contributions: the �rst, cost0, is the cost paid
to reach the target, and is calculated as the cost of the cheapest path from the
current agent's position to the target; the second contribution, cost", expresses the
cost which the agent would pay to give up its job in its current cluster. Suppose
the agent is exploring a k-cluster C as a (k � 1)-agent; let opt(k) be the optimal
number of (k � 1)-agents per k-cluster, and curr(k � 1; C) the current number of
(k�1)-agents within C (excluding the agent itself). Contribution cost" is calculated
considering that:

(i) Case (opt(k) � curr(k�1; C) > 0: should the agent leave C, the number of
agents remaining within C would become lower than it should be; the agent
must be discouraged to leave, hence, cost" must be positive.

(ii) Case (opt(k) � curr(k�1; C) < 0: should the agent remain in C, the agents
within C would be more than they should be; the agent must be encouraged
to leave, hence, cost" must be negative.

(iii) The higher the di�erence between the current and the optimal number of
agents, the higher the cost should be (both in positive and in negative).

(iv) When (opt(k) � curr(k�1; C) = 1, meaning that one agent would be missing
in order to reach the optimal situation, it should be cost" = � (since � is the
inter-agent distance in the optimal case).



Based on these considerations, we adopted for cost" the following expression:

cost" = � � (opt(k)� curr(k � 1; C))
After transmitting its acknowledgement message, a helpful agent enters mode

wait con�rm, and stands until it receives a con�rm message from the caller.
The caller stands in mode wait ack for a �xed interval of time. When this time

expires, it evaluates the proposals it has received from the listening agents. It should
be noted that the caller is itself a candidate for joining the team; its membership
cost is calculated exactly as described above (since the caller is already on the
target, it is cost0 = 0). The number of agents which should form the team is equal
to the number of (k � 1)-agents missing in the target C, say

m = opt(k)� curr(k � 1; C)
Let h be the number of helpful agents, candidate to form the team. If h > m,
the h�m agents having the highest membership costs are dropped from the set of
candidates.

Consider for instance an agent ag1 who has issued a call for team to explore a
cluster where m = 3 agents are missing; let � = 25 be the communication radius.
Four agents have received the call: ag2, with membership cost cost2 = 20; ag3,
with cost3 = 50; ag4, with cost4 = 30; ag5, with cost5 = 1. The membership
cost of ag1 is cost1 = 10. The �fth agent is non-helpful, hence, it is h = 4. Since
h > m, the agent having the highest membership cost, ag3, is dropped from the set
of candidates which thus becomes fag1; ag2; ag4g.

Initially, the team is formed by all the candidate agents. The team cost is de�ned
as:

tc =
X

agi2Team
costi + � (m� Cardinality(Team))

where costi is the membership cost of agent agi. The �rst term expresses the cost
paid by the members; the second expresses the cost paid for having less than the
optimal number of agents in the team, and is estimated exactly as for contribution
cost" in the membership cost (see above). In our example, the team cost is tc = 60
(Cardinality(Team) = m).

Then, a tentative team Team0 is formed by excluding the most costly agent,
agj . Its cost is:

tc0 =
X

agi2Team0

costi + � (m� Cardinality(Team0)) = tc� costj + �

where costj is the membership cost of agj . If tc0 < tc, it is convenient to drop
agj from the team, since the cost paid by agj to join the team is higher than
the cost for having one less agent. All candidate agents are considered, sorted by
their membership costs in descending order, and are progressively dropped from the
team until for one agent it is tc0 � tc, meaning that a (sub)optimal team has been
formed. In our example, the most costly agent is ag4; the cost of the tentative team
fag1; ag2g is 55; thus, ag4 is dropped from the team. The next agent considered is
ag2; the cost of the tentative team fag1g is 60; thus, fag1; ag2g is the optimal team.



The team-formation algorithm is sketched below:

FormTeam (cands)

/* cands is the set of candidate agents; each element is a pair

<agi,costi> */

f while (Cardinality(cands)>m)

cands cands-GetMostCostly(cands);

team cands;

while (Cardinality(team)>0)

f agj GetMostCostly(team);

if (costj>�)

team team-agj;

else

break;

g
return team;

g
After the team has been formed, the caller sends a message con�rmMSG to

all the agents from which it has received an acknowledge message; the message
addressed to the agents chosen for forming the team includes the target and the
level at which exploration will take place, k � 1. The caller enters mode explore; if
it is itself part of the team, it drops its previous commitment and commits to the
target, beginning its exploration as a (k � 1)-agent; otherwise, the agent maintains
its commitment and resumes exploration of the scope as a k-agent.

Among the helpful agents, those which were not chosen resume their previous
jobs. The agents in the team, on the other hand, drop their previous commitments
and commit to the target; they enter mode go towards and start moving towards
the target. Mode go towards is aimed at discovering new places and may be thought
of as a compass navigation. At each landmark, the agent chooses the route whose
direction di�ers the least from that of the target. If a convenient route cannot be
found, the agent plans a path to the target and enters mode go to, in which it follows
the planned path similarly to mode move to. For both modes go towards and go to

the extension is the target; the activity is to reach the scope. When the scope is
reached, the agent starts its teamwork and enters mode explore as a (k � 1)-agent.

In Figure 10, the protocol for team formation is sketched.
It should be noted that team formation may be a recursive process. Consider a

3-agent which has discovered a 3-cluster and has issued a "call for team". Among
the 2-agents in the team, the one who will �rst reach a 2-cluster within the target
(the caller itself, if it is member of the team) may issue a new "call for team" to
explore that 2-cluster. Similarly, one of the 1-agents in the new team may issue a
call to form a team of 0-agents to explore the �rst 1-cluster discovered.

4.5. Acquaintances

The concept of acquaintance has a key role in supporting coherent social behaviour
in multi-agent systems. In the concurrent object-oriented language ACTOR, the
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Figure 10: Communication protocol for team formation. The dashed agent is the
caller. Among the three listening agents, the white one is helpful and is chosen for
the team; the grey one is helpful but is excluded from the team; the black one is
non-helpful.

acquaintance model is limited to representing the names and locations of the other
agents known in the environment [1]. In MACE, an acquaintance is an explicit
model of another agent and describes its roles, goals and skills [9]. In the case of
exploration, an accurate acquaintance model enables each agent to cooperate with
the other agents situated in the same area, in order to avoid repeated exploration
of clusters and bridges.

In our approach, an acquaintance is determined by who the agent is, where it
is, what it is doing, and how it chooses what to do next. More precisely, each
acquaintance is organized as follows:

Acquaintance: AgentId

f Position ...

Direction ...

ExtdMode: f Mode ...

[Extension ...]

g
g
where Position is the landmark where the agent is or, if the agent is following a
route, the landmark it comes from; Direction is the route the agent is following or
is about to follow; ExtdMode is the combination of the mode and the extension.

The acquaintances of an agent are stored in a private message box, so called
because it is kept up-to-date through inter-agent communication. Just before leav-
ing each landmark, agents broadcast a message landmkMSG which includes their
position, their direction, their extended mode, the route they followed to reach
the landmark and the routes departing from it (only those still included in their
agenda). Every time an agent receives a landmkMSG from another agent, it stores
in its message box an acquaintance containing the position, direction and extended



mode of that agent (the other information transmitted is used for knowledge shar-
ing; see section 4.6.). If no landmkMSG from an agent is received for some time,
meaning that it has exited the communication range, its acquaintance is deleted.

An agent uses its message box to calculate the total number of agents exploring
its current cluster. By comparing this number with the optimal number of agents
in that cluster, it decides if it is worth issuing a "call for team" to explore a cluster,
to acknowledge a "call for team" it has received, and to change exploration level
when consulting its agenda.

When in mode move to, agents also use their message boxes to look for possible
path collisions with other agents. Consider an agent A moving to a destination
route r. Agent A detects a collision in two cases: when one of its acquaintances is
in mode explore and is about to take route r, and when one of its acquaintances is
in mode move to with destination r and is nearer to r than A. Every time an agent
detects a collision, it consults its agenda in order to �nd a new destination.

4.6. Knowledge sharing

In order to increase the agents' operativeness and fault tolerance, during exploration
and especially when exploration is over, agents should know as much as possible
about the whole environment; thus, sharing of the knowledge-base between the
agents is strongly encouraged. Throughmessage landmkMSG, each agent can inform
the agents within the communication range as to the route it has just visited and
the landmark it has met.

Agenda sharing is fundamental in avoiding routes being explored more than once
by di�erent agents. Message landmkMSG includes the set of the routes departing
from the current landmark, as well as the one the agent is about to explore (the
agent's direction); thus, the other agents can keep their agendas up-to-date by
inserting in them all the routes received, except the one being explored by the
sender.

Message landmkMSG carries local knowledge only; alone, it cannot guarantee a
satisfactory level of knowledge sharing, since the communication range is limited.
Thus, also a message carrying global knowledge has been provided.

Every time an agent receives any message from another agent which is not in
its message box (meaning that the two agents have not communicated recently),
it broadcasts a message transmitMSG including its whole knowledge-base and its
agenda. Thus, two agents who have not met for some time are enabled to share
their knowledge.

5. Performance evaluation

In this section we discuss the performance of our algorithm from three points of
view: adherence to the optimal exploration pro�le, e�ciency, fault tolerance. We
will describe the evolution of exploration in function of the cost c paid by each agent
from the beginning of exploration for travelling along the routes; if agents move at
a constant speed, c may be assumed to be proportional to the time that has elapsed
since the beginning of exploration.



The adherence of the exploration pro�le to the optimal one can be evaluated at
cost c, when v landmarks have been experienced, as

profileAdherence(c) = 1� 1

n� 1

n�1X
k=1

jv0(k)(c)� v(k)j
v(k)

where v0(k)(c) is the number of k-clusters actually experienced at cost c and v(k)

is the optimal number of k-clusters calculated in function of v as shown in section
4. Figure 11.a shows, for a sample map, how the average pro�le adherence evolves
during an exploration; adherence turns out to be higher than 80% for more than half
the exploration global time. Figure 11.b shows how the adherence, averaged on the
whole exploration, depends on the number of agents; as we could reasonably expect,
adherence increases with the number of agents, since several agents can more easily
be distributed on the di�erent levels. Simulations show that, given the number of
agents, the average adherence is not greatly a�ected by the communication range
�.

It may seem that adherence to the pro�le is relatively low, especially during
the �rst phases of exploration. This is mainly due to two distinct factors. Firstly,
the optimal pro�le is calculated with reference to an ideal map, with a regular
structure and with constant cluster cardinality on each level, which is not true
in general and in particular for the sample maps used for simulations. Secondly,
e�ciency and pro�le adherence are often contrasting requirements which cannot be
achieved together: our approach to exploration pursues a trade-o� between the two,
so that pro�le adherence is partially sacri�ced in favour of e�ciency.

E�ciency is evaluated by comparing, at the end of exploration, the cost paid
by each agent with the ideal cost which would have been paid if no route had been
taken more than once:

costPerAgent =
1

idealCost
� totalCost

g

where g is the number of agents, totalCost is the cost globally paid by all agents for
exploration and idealCost is the sum of the costs of all the routes in the environment
(totalCost � idealCost). In an ideal situation, it is

idealCostPerAgent =
1

g

Figure 12 compares the cost per agent with the ideal cost per agent. The cost per
agent is proportionally higher when several agents are employed, since they tend to
interfere with each other.

Fault tolerance is calculated at cost c as the average percentage degree of knowl-
edge sharing:

faultTolerance(c) =
1

g
� 1
r

gX
i=1

i � h(i)) � 1

where r is the total number of known routes and h(i) is the number of routes whose
knowledge is shared by a number i of agents. When all g agents share all the
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Figure 11: (a) Pro�le adherence during a 6-agents exploration, in function of the
cost c paid by each agent. (b) Pro�le adherence averaged on the whole exploration,
in function of the number of agents g. The sample map employed has more than
500 landmarks and 1400 routes, and has 4 clustering levels. The communication
range is 50% of the total map diameter.

knowledge it is h(g) = r, hence faultTolerance(c) = 1. Figure 13.a shows how the
average fault tolerance evolves during exploration; it is found to be higher than 97%
during the whole exploration. Figure 13.b shows how the average fault tolerance
depends on the number of agents; it appears that fault tolerance is always higher
than 90%.

We close this section by discussing some issues concerning communication be-
tween agents. Figure 14 reports the average cost paid by an agent in the interval
between two subsequent transmissions of the same message. The frequencies of
the landmkMSG and teamMSG messages broadcasted by each agent appear to be
substantially independent of the number of agents, as we could expect since these
messages are connected to the map topology and not to interactions between agents.
Instead, the frequency of the transmitMSG message grows linearly with the num-
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Figure 12: Cost per agent compared to the ideal cost per agent in function of the
number of agents g.

ber of agents. It is interesting to observe that, while for the landmkMSG and
the transmitMSG messages the frequency does not change signi�cantly with the
communication range, the frequency of the teamMSG message decreases when the
communication range increases.

6. Conclusion

In this paper we have presented an algorithm for unsupervised multi-agent explo-
ration of structured environments. According to the current necessity, each agent
dynamically selects a speci�c abstraction level for exploring the environment; coor-
dination with the other agents and knowledge sharing are accomplished by message
broadcasting. A protocol for team formation is provided, aimed at conducting ex-
ploration of clusters more e�ectively.

We claim that the basic principles underlying our algorithm could be e�ectively
applied to carry out exploration of large, unknown information spaces. Consider
the WWW example, outlined in section 2.1.; in that context, exploration is relevant
since it allows for indexes used by search engines to be kept constantly updated.
Indeed, some aspects of our approach should be dropped. In the �rst place, whereas
robot navigation in a physical environment requires knowledge of routes, navigation
of the web requires knowledge of URLs: thus, the Tremaux-based graph-exploration
algorithm, which is oriented to acquiring knowledge of routes, should be replaced
with a landmark-oriented exploration algorithm. Secondly, while an unknown URL
may have been reached for the �rst time by following a path of hyperlinks, once
an URL is known it may be accessed directly, at a lower cost. Lastly, unless the
exploring agent is capable of moving physically from one site to another, the cost
for reaching an URL does not depend on the location of the previously visited URL:
thus, reaching an URL from a neighbouring one is not necessarily less costly than
reaching an URL from an URL located on a di�erent server !(actually, some web
explorers called worms do move from one site to another; for such explorers, moving
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Figure 13: (a) Fault tolerance during a 6-agents exploration, in function of the cost
c paid by each agent. (b) Fault tolerance averaged on the whole exploration, in
function of the number of agents g.

between URLs on the same server is less costly than moving from one server to
another). On the other hand, the most relevant aspects of our approach are worth
to be preserved. In particular, the team formation protocol allows for agents to
distribute e�ectively within the web, by crowding at those sites where several URLs
are located. The acquaintance model discourages redundant exploration of URLs
and sites, by making each agent aware of the allocation of the other agents on the
web. The use of an agenda is still necessary to support the agent whenever it gets
lost, due to the presence of other agents at the same site. Knowledge sharing, and
in particular agenda sharing, lead the agents to a more accurate evaluation of the
commitment scope.

Currently, we are working to extend our multi-agent approach to the case of
heterogeneous agents which must carry out a set of navigational tasks in a structured
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Figure 14: Average cost interval between two landmkMSG (a), transmitMSG (b)
and teamMSG (c) messages broadcasted by one agent, in function of the number of
agents g. Since the average cost of the routes of the map employed is 1, the diagram
may also be read as reporting the average number of landmarks an agent visits in
the interval between two subsequent transmissions of the message.



environment. An agent entrusted with a task that, due to the agent's capabilities or
position, turns out to be very costly may decide to issue a "call for team" in order to
entrust some sub-tasks to other agents; each agent replies by proposing an exchange
with its most costly task. The evaluation of proposals and counterproposals gives
rise to a negotiation protocol which, if successful, will lead to reassigning the tasks
in a globally cheaper manner, and consequently to a signi�cant advantage for all
the partecipating agents.
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Appendix

In this section the complete exploration script is outlined. We denote the variables
belonging to the private memory of each agent with names beginning with a capital
letter: Position (the landmark where the agent is or the last one where it has
been), Direction (the route the agent is following), Mode, ExploLevel (the current
exploration level), Destination, Target, KB (the knowledge-base), Agenda, MBox

(the message box), Path (the path being followed to reach the destination or the
target); it is convenient to denote with Acq a structure including the position, the
direction and the mode together with its extension. Names beginning with small
letters denote local variables and parameters.

Explore(lm) /* lm is the landmark where I am initially */

f Position lm;

Mode "EXPLORE";

ExploLevel 0;

Destination null;

Target null;

KB ;;
Agenda ;;
MBox ;;
Path empty;

rs RoutesFrom(lm); /* routes exiting lm, as determined by sensors */

PutKB(lm); /* PutKB adds a new landmark or route

to knowledge-base */

PutAgenda(rs); /* PutAgenda adds a set of routes to agenda */

Direction Random(fr:r2Agenda[0]g);
if (Direction is not null)

f Mode "EXPLORE";

ExploLevel 0;

Scope Ancestor(1,Position);

RemoveAgenda(0,Direction);

/* RemoveAgenda(k,r) removes route r from level k of agenda */

Broadcast(all,landmkMSG(Acq,null,rs\Agenda));
/* the second parameter is the route just followed (if any),

the third is the set of the routes departing and still included

in agenda */

g
else

f Mode "WAIT";

/* all routes exiting lm have already been explored;

wait for messages */

Broadcast(all,landmkMSG(Acq,null,;));
g
do

if (Direction is not null)

MoveIn(Direction); /* else stand still */



loop

g
Event handling:

when Landmark(lm, from r) do

/* reached landmark lm through route from r */

f Position lm;

rs RoutesFrom(lm);

if (from r62KB)
PutKB(from r);

if (lm62KB)
f PutKB(lm);

PutAgenda(rs);

g
case Mode of

f "EXPLORE" do

Direction ExploreDirection(rs,from r);

"MOVE TO" do

if (Position=SecondEndOf(Destination))

/* reached my destination */

Direction ExploreDirection(rs,from r);

else

/* look for collisions with other agents */

if Collision()

f Direction ConsultAgenda();

if (Direction is null)

Mode "WAIT";

g
else

Direction NextIn(Path);

"GO TO" do

if (Position2Descendants(0,Target))
/* reached the target:teamwork starts */

Direction ExploreDirection(rs,from r);

else

Direction NextIn(Path);

"GO TOWARDS" do

if (Position2Descendants(0,Target)
/* reached the target:teamwork starts */

Direction ExploreDirection(rs,from r);

else

Direction TowardsDirection(rs);

g
Broadcast(all,landmkMSG(Acq,from r,rs\Agenda));

g



when TimeOut do

/* the time for team formation has ended */

f Team FormTeam(Cands);

/* send confirm messages to the agents in the team */

for each agent2Team do

Broadcast(agent,confirmMSG(Ancestor(ExploLevel,Position),

ExploLevel-1));

if (myself2Team) /* I will be part of the team */

f Scope Ancestor(ExploLevel,Position);

ExploLevel ExploLevel-1;

g
/* send messages to the agents not in team */

for each agent2(Cands-Team) do

Broadcast(agent,confirmMSG(null,null));

/* resume exploration */

Direction ExploreDirection(rs,from r);

Broadcast(all,landmkMSG(Acq,null,rs\Agenda));
g

when Received(message,sender) do

/* received a message from sender */

f if (sender62MBox) /* I have not met sender for a while */

Broadcast(sender,transmitMSG(KB,Agenda);

case message of

f landmkMSG(acq,from r,rs) do

f if (from r 62KB)
PutKB(from r);

if (landmark 62KB)
f PutKB(landmark);

PutAgenda(rs);

g
else

RemoveAgenda(level,direction);

if (acq.Mode="MOVE TO")

RemoveAgenda(level,destination);

PutMBox(sender,<acq>);

g
transmitMSG(kb,agenda) do

f MergeKB(kb);

MergeAgenda(agenda);

g
teamMSG(target) do

f if (Mode="EXPLORE"^
NumberOfAgentsWithin(Scope,ExploLevel)�1)_
(Mode="WAIT")

f /* helpful */

Broadcast(sender,ackMSG(MembershipCost(Position,target)));



OldMode Mode; /* save my previous mode */

OldDirection Direction;

Mode "WAIT CONFIRM";

Direction null;

Broadcast(all,landmkMSG(Acq,null,null));

g
else

/* non helpful */

Broadcast(sender,ackMSG(1));

g
ackMSG(cost) do

if (cost<1)

Cands Cands[f<sender,cost>g;
confirmMSG(target,level) do

f if (target is not null) /* I will be part of the team */

f Mode "GO TOWARDS";

Target target;

ExploLevel level;

Scope target;

g
else /* I will not be part of the team */

Mode OldMode;

Direction OldDirection; /* resume movement */

Broadcast(all,landmkMSG(Acq,null,null));

g
g
if (Mode="WAIT")

/* see if agenda is still empty */

f Direction ConsultAgenda();

if (Direction is not null)

Broadcast(all,landmkMSG(Acq,null,rs\Agenda));
g

g
Functions:

ExploreDirection(rs,from r)

f if (Position visited for the first time)^
(ExploLevel�1)^
(AgentsNeeded(ExploLevel-1,Position)>0)

/* send a call for team */

f Broadcast(all,teamMSG(Ancestor(ExploLevel,Position)));

Mode "WAIT ACK";

direction null;

Cands f<myself,MembershipCost(Position,
Ancestor(ExploLevel,Position))>g;

/* set of candidates to team membership */

g



else

f direction ExploreGraph(Position,rs,from r);

if (direction is not null)

f Mode "EXPLORE";

RemoveAgenda(ExploLevel,direction);

g
else

direction ConsultAgenda();

if (direction is null)

Mode "WAIT";

g
return direction;

g

TowardsDirection(rs)

f direction RouteInDirection(rs,Target);

/* choose, among the routes in rs, the one closer to

the direction of target */

if (direction is not null)

f RemoveAgenda(ExploLevel,direction);

return direction;

g
else

f Mode "GO TO";

Path ShortestPath(Position,Target);

return NextIn(Path);

g
g

AgentsNeeded(k,landmark)

return OptimalNumberOfKAgentsPerCluster(k+1)-

NumberOfAgentsWithin(Ancestor(k+1,landmark),k);

NumberOfAgentsWithin(cluster,k)

f n 0;

for each agent in MBox do

if (MBox[agent].Position2Descendants(0,cluster))^
(MBox[agent].Mode="EXPLORE")^
(MBox[agent].ExploLevel=k)

n n+1;

return n;

g


