
Abstract
A pixel level data fusion approach based on correspondence
analysis (CA) is introduced for high spatial and spectral
resolution satellite data. Principal component analysis (PCA)
is a well-known multivariate data analysis and fusion
technique in the remote sensing community. Related to PCA
but a more recent multivariate technique, correspondence
analysis, is applied to fuse panchromatic data with multi-
spectral data in order to improve the quality of the final
fused image. In the CA-based fusion approach, fusion takes
place in the last component as opposed to the first compo-
nent of the PCA-based approach. This new approach is then
quantitatively compared to the PCA fusion approach using
Landsat ETM�, QuickBird, and two Ikonos (with and without
dynamic range adjustment) test imagery. The new approach
provided an excellent spectral accuracy when synthesizing
images from multispectral and high spatial resolution
panchromatic imagery.

Introduction
Many Earth observing satellites (sensors) are providing
increasingly high-spatial resolution multispectral data.
However, two major factors limit a remote sensing sensor’s
ability to collect high spatial resolution, multi-spectral data
(Zhang, 2004). First, the incoming radiation energy to sensor
is limited by optics size. Second, the data volume to be
collected and stored by the sensor increases exponentially
with higher spatial resolutions. Thus, satellites, such as
QuickBird and Ikonos, bundle a 4:1 ratio of a high-resolution
panchromatic band and lower resolution multi-spectral bands
in order to support both color and best spatial resolution,
while minimizing on-board data handling needs.

The on-ground fusion of panchromatic and multi-spectral
bands may provide an improved product to users, dependent
upon the ability of the fusion technique to accurately repro-
duce a synthetic (fused) imagery from a multispectral imagery
while improving the spatial resolution. Hence, many fusion
techniques are developed to integrate both panchromatic and
multispectral data in order to increase the spatial resolution
of the former (e.g., Cliche et al., 1985; Price, 1987; Welch and
Ehlers, 1987; Chavez et al., 1991; Ehlers, 1991; Shettigara,
1992; Yesou et al., 1993; Zhou et al., 1998; Liu and Moore,
1998; Zhang, 1999; Lemeshewsky, 1999; Ranchin and Wald,
2000; Laben, and Brower, 2000; Ranchin et al., 2003; Cakir
and Khorram, 2003; Chen et al., 2005)
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A critical consideration is how to integrate spatial
information present in the panchromatic image but missing
from the low-resolution multispectral data. Many techniques
transform multispectral data from color space to a new
space in order to have at least one component highly similar
to panchromatic data such as the principal component
analysis (PCA) or intensity-hue-saturation (IHS)-based tech-
niques. By substituting this component with panchromatic
data and then performing inverse transformation to original
color space, a new multispectral image with the spatial
resolution of panchromatic data is achieved. However,
accurate production of the synthetic image is dependent
upon the spectral equality of the substituted component
and the panchromatic band (Švab and OŠtir, 2006). Thus,
panchromatic data is preprocessed (i.e., histogram matched)
before the substitution in order to increase the similarity
to the substituted component. In general, transformation
methods that result in a component more similar to the
panchromatic band do better in terms of the spectral accuracy
of the synthesized images. Some recent studies have focused
on this aspect to improve the fusion process such as the new
modified-IHS proposed by Siddiqui (2003) and FFT-enhanced
IHS method by Ling et al. (2007).

One of the most widely used fusion approaches is based
on the principal component analysis of the images. PCA is a
multivariate statistical technique that deals with the internal
structure of matrices. It breaks down or partitions a resem-
blance matrix into a set of orthogonal (perpendicular) axes
or components. Traditionally, this matrix consists of vari-
ance-covariances or correlations (If a correlation matrix is
used for principal component calculation, it is also known
as “factor analysis” or “standardized principal compo-
nents.”). Each PCA axis corresponds to an eigenvalue of the
matrix. Given an image with n-number of bands, n-number
of principal components can be calculated. PCA is useful for
image encoding, image data compressing, image enhance-
ment, digital change detection, multitemporal dimensional-
ity, and image fusion (Pohl and Genderen, 1998). Some
image fusion applications of the PCA method in the literature
are given by Chavez et al. (1991).

A more recent multivariate method, correspondence
analysis (CA) was developed independently by several
authors. An algebraic derivation of CA is often accredited to
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Hirschfield (1935) who developed a formulation of the
correlation between the rows and columns of a two-way
contingency table (Beh, 2004). For the development,
history, and more information of the technique, readers are
referred to Hill (1974), Greenacre (1984), Benzécri (1992),
and Beh (2004). The term “correspondence analysis”
is a translation of the French “analyse factorielle des
correspondances.”

Correspondence analysis can be applied to data tables
other than contingency tables as long as the elements of a
table to be analyzed are dimensionally homogenous (i.e.,
same physical units, so that they can be added) and non-
negative (so that they can be transformed into probabilities
or proportions). The difference between PCA and the CA is
that CA preserves the chi-square (�2) distance when comput-
ing the association between bands (Carr and Matanawi,
1999). In PCA, the distance among objects, in both the
multidimensional space of original descriptors and the
reduced space, are calculated using Euclidean distances.
Most of the time, the last CA component is omitted from the
analyzing procedure because the last eigenvalue is insignifi-
cant or small. However, this could be a valuable asset in
the data fusion process in carrying over the spatial details
from the high spectral resolution imagery into the multi-
spectral imagery.

Although it is very well known to ecologists (Legendre
and Legendre, 1998; Gauch, 1982), correspondence analysis
is rarely explored in the remote sensing community. Carr
and Matanawi (1999) introduced CA for principal component
transformations of multispectral and hyperspectral imagery.
Later, Cakir et al. (2006) successfully applied it to change
detection.

In the following sections, a new pixel level data fusion
process based on correspondence analysis is introduced and
applied to satellite imagery.

Methods
The PCA Approach in Pixel Level Data Fusion
The PCA approach in pixel level data fusion is a five-step
fusion process:

1. Geometric registration of the images to be fused.
2. Calculation of the principal components, or principal

component transformation of the multispectral imagery.
3. Modification of the high spatial resolution imagery (usually

a panchromatic image) to match with the first principal
component of the multispectral imagery.

4. Replacement of the first component image with the high
spatial resolution imagery.

5. Inverse transformation of the principal components image to
original space.

After the multispectral imagery is transformed into
principal components, high spatial resolution imagery
(single band image) is usually stretched to have the same
variance and average as the first principal component (PC1).
Then, the stretched high spatial resolution image replaces
the PC1 image of the transformed multispectral imagery. The
assumption behind this is that the first principal component
carries the information common to all bands and is approxi-
mately equal to the high spatial resolution image. The rest
of the principal components contain the spectral information
unique to each band (Chavez and Kwarteng, 1989). Thus,
replacing PC1 with high spatial resolution imagery should
not (theoretically) effect the spectral accuracy of the fused
product.

At the final step of the fusion process, the new data
set is transformed back to its original data space after the
replacement of PC1

The Correspondence Analysis (CA) Approach in Pixel Level Data Fusion
The first step of PCA transformation is the standardization
of the data matrix that termed “row centering.” In the CA
approach, the data table (X) is transformed into a table of
contributions to the Pearson chi-square statistic. First, pixel
(xij) values are converted to proportions (pij) by dividing
each pixel (xij) value by the sum (x��) of all pixels in data
set. The result is a new data set of proportions (table Q), and
the size is (rxc). Row weight pi� is equal to xi�/x��, where
xi� is the sum of values in row i. Vector [pi�] is of size (r).
Column weight p�j is equal to x�j/x��, where x�j is the sum
of values in column j. Vector [p�j] is of size (c).

The Pearson chi-square statistic, , is a sum of squared 
�ij values; �ij values computed for every cell ij of the contin-
gency table:

(1)

If we use qij values instead of �ij values, so that ,
eigenvalues will be smaller than or equal to 1 which is
more convenient. We used the qij values to form matrix 
which is:

(2)

After this point, the calculation of eigenvalues and the
eigenvectors is similar to the PCA method. Matrix U
produced by:

(3)

which is similar to covariance matrix of PCA. Multispectral
data are then transformed into the component space using
the matrix of eigenvectors.

A difference between CA and PCA fusion approach is the
substitution of the last component with the high spatial
resolution imagery as opposed to the substitution of the first
component in the PCA. Two methods can be used in this
part of the CA fusion process. The first is the substitution
of the last component with panchromatic band, which is
stretched to have same range and variance with the last
CA component. Second is the injection of details from the
panchromatic band into the last component. Spatial details
can be represented as the ratios of pixel values at the
highest spatial resolution to the pixel values at the lower
resolutions of the same imagery. Similar to a procedure
explained by Liu (2000), spatial details can be injected into
the last component by using the formula:

(4)

where CASimComp is the new simulated last component image
with the spatial resolution of PanHigh which is the high
spatial resolution panchromatic image. PanMean is the image
with local mean values of PanHigh over neighborhoods
equivalent to footprints of CALastComp image pixels. Noting
that PanMean can be calculated either by block averaging
pixels within the footprints of the low spatial resolution
image pixels (Liu and Moore, 1998), or using smoothing
convolution filters (Liu, 2000). Block averaging is used in
this study for PanMean so that values are calculated once for
each lower resolution pixel block as an average of the high
spatial resolution pixels within the block.

Finally, the components image is transformed back to
the original image space using the inverse matrix of eigen-
vectors.

CASimComp �
PanHigh

Panmean
 *CALastComp

Ucxc � QT
cxr Qrxc

Qrxc � �qij� � � pij � pi�p�jwpi�p�j
�

Qrxc

qij � �ij/wx��

�ij �
oij � EijwEij

� wx��� pij � pi�p�jwpi�p�j
�.

�2
p
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Quality Assessment
A variety of quality assessment procedures have been
reported in the literature for pan-sharpened images. There is
a general consensus that more work is needed before a
universal procedure can be defined (Aiazzi et al., 2002). The
lack of availability of truth (reference) images with the same
spatial resolution as the fused image makes quality assess-
ment particularly difficult (Wald et al., 1997). There are two
methods commonly used to mitigate this problem. One
method is to degrade the fused image back to the original
image resolution prior to assessment. Another method
involves the degradation of both pan and multispectral
imagery by the same factor prior to fusion. In both ways, the
original image becomes the reference image to compare it to
either degraded fused image, or the fused image synthesized
from lower resolutions. With these two methods, a number
of parameters can be calculated to measure the accuracy
of the fusion, including any bias in the mean, correlation
coefficients, standard deviation of the difference image
from the reference (original) image, difference between the
variance of reference image and that of fused image, and the
root mean square error (RMSE) (Wald et al., 1997; Ranchin
and Wald, 2000; Aiazzi et al., 2002; Ranchin et al., 2003).
Most often, these parameters are reported as percentages of
the means of each reference image band, except in the case
of the difference of the variances, which is reported as a
percentage to the reference image variance. For the RMSE
however, it would be better to report relative root mean
square error (R-RMSE) instead of RMSE as the percentage of
the reference image band mean.

The relative root mean square error (R-RMSE) standardizes
the RMSE computed per pixel to the true value observed in
that pixel location. The resulting R-RMSE value is expressed
as a percent, and represents the standard variation of the
fusion. The R-RMSE assigns equal weight to any overestima-
tion or underestimation of the statistic (Kroll and Stedinger,
1996). R-RMSE for multispectral images for a given band of k
is expressed as:

(5)

where, DN is the pixel value, and i is the pixel number in
band k.

Based on RMSE, a dimensionless global relative error of
fusion (ERGAS) proposed by Wald (2002) is given as:

(6)

where, is the ratio between pixel sizes pan and MS

images (e.g., 1:4 for Ikonos and QuickBird, and 1:2 for
Landsat-7), �o(k) is the mean of the kth band, and the K is
the number of bands.

Wang and Bovik (2002) introduced a universal objective
image quality measure called the Q index. For a given
reference image x and fused image y to be tested, the Q
index value can be calculated as:

(7)

where �xy is the covariance between reference and fused
image, �o(x) and �o(y) are the means, and and the
variances of the reference and fused images respectively.

s2
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x
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The dynamic range of Q is [�1, 1]. The formula of Q can be
rewritten as a product of three components:

(8)

The first component is the correlation coefficient between the
reference and fused images, and has a value range of [�1, 1].
The second component’s value range is [0, 1], which is
sensitive to any bias in the mean of the fused image with
respect to the reference image mean. The third component’s
value range is also [0, 1]. It is sensitive to changes in vari-
ances between the reference and fused image, and can be
viewed as the measure of contrast similarity between them.
An ideal Q value of 1 can be achieved when the fused and
reference image values are equal to each other on a pixel-by-
pixel basis.

One final remark on quality assessment procedures is
that the selected degradation technique itself can influence
the quality of the assessment. Wald et al. (1997) reports that
this effect can be minimized by the selection of a proper
degradation procedure among many available ones such as
simple averaging, wavelets, cubic convolution, bi-cubic
spline, and methods using Modulation Transfer Function
(MTF) of the sensor. For example, the consequences of MTF
filtering are proofed by Aiazzi et al. (2006). It should be
noted that the choice of degradation method should be
clearly reported in the quality assessment of the fusion
method. Currently, it was omitted in most studies. In this
study, simple averaging is used as the degradation process
for all methods.

Application
Four images are tested in this study. These images are an
8-bit Landsat-7 ETM� imagery of California’s San Francisco
Bay (SFB) area (excluding thermal infrared band), an 11-bit
QuickBird imagery of North Raleigh (Figure 1), North
Carolina, and two 11-bit Ikonos images with and without
dynamic range adjustment (DRA)1. The Landsat scene was
acquired on 07 July 1999 and covers approximately 22,705 km2

(5,134 	 4,914 multispectral pixels). The QuickBird imagery
was acquired in summer of 2002. Multispectral image
dimensions are 2,940 pixels by 1,540 pixels (approximately
26 km2). Ikonos imagery of coastal Georgia with DRA off has
dimensions of 2,048 pixels by 2,048 pixels (approximately
67 km2). Ikonos imagery of Wilson, North Carolina, with
DRA on was acquired in 2002 and has image dimensions of
512 pixels by 512 pixels (4.19 km2).

Two CA fusion methods, one with the replacement of
last component with stretched pan image and one with the
injection of details into last component using Equation 4,
were implemented and tested using the test images listed
above. Results were compared to two equivalent PCA based
methods (one with the replacement of the first component
with the stretched pan image and another with the injection
of details into the first component using Equation 4.)

Visual comparisons revealed that all the fused images
inherited high spatial information from the panchromatic
image very well. Both CA and PCA approaches with detail
injection to components method provided sharp synthetic

Q �
sxy

sx sy
�

2mo(x) mo(y)

(mo(x))2 � (mo(y))2 �
2sx sy

s2
x s2

y
.

1 A DRA algorithm attempts to optimize the most significant
portion of the data distribution or histogram, usually at the
expense of the least significant portions. This stretching
leads to changes in radiometric accuracy and can be prob-
lematic for pansharpening.

R

M-16.qxd  1/8/08  3:03 PM  Page 185



186 Feb r ua r y  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 1. True color (a) and false color (b) display of QuickBird test imagery over Raleigh, North Carolina.
A color version of this figure available on the ASPRS website: www.asprs.org.

images with good color balance as seen from the Figure 2a
and 2b and Figure 3a and 3b for QuickBird imagery. However,
color distortion was evident for the PCA-based stretched PAN
substitution method in some test images especially for the
QuickBird data (Figure 2c and 2d and Figure 3c and 3d).
For all displays, same look-up (contrast) tables are used as
suggested by Wald et al., (1997).

In order to evaluate the quality of the fusion quantita-
tively, test images were spatially degraded to lower resolu-
tions. Landsat data was degraded by a factor of two (into

30- and 60-meter spatial resolution for PAN and MS, respec-
tively). QuickBird and Ikonos data were degraded by
a factor of four. As previously discussed, fusion from
lower resolutions results in a fused product with the same
spatial resolution as the original input multispectral
image (30-meter for Landsat, 2.44-meter for QuickBird,
and 4-meter for Ikonos). This enables the direct comparison
between the fused and original, which becomes a reference
image for comparative evaluations of the accuracy of the
fusion process.
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Figure 2. True color display of the fused images for the QuickBird data at the 61 cm resolution.
Only a subset of the whole image is shown: (a) PCA fusion with detail injection, (b) CA fusion with
detail injection, (c) PCA fusion with stretched panchromatic band substitution, and (d) CA fusion
with stretched panchromatic band substitution. A color version of this figure available on the ASPRS
website: www.asprs.org.

Mean bias (�Diff) values, standard deviations of the
differences (�Diff), differences in variances, and R-RMS errors
are reported in Tables 1, 2, 3, and 4, respectively, for
all test images and fusion methods. Interestingly, based
on these parameters and test images, CA-based methods
performed better in infrared bands while PCA-based meth-
ods performed better in the blue band. One possible

explanation is that in PCA, the distances between objects, in
both the multidimensional space of the original descriptors
and the reduced space, is proportional to the statistical
covariance. Since the blue band usually has the highest
covariance with other bands (for the data types used in this
study), PCA applies more emphasis to blue band and less to
the infrared band, which usually has the lowest covariance
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Figure 3. False color display of the fused images for the QuickBird data at the 61 cm resolution.
Only a subset of the whole image is shown: (a) PCA fusion with detail injection, (b) CA fusion with
detail injection, (c) PCA fusion with stretched panchromatic band substitution, and (d) CA fusion
with stretched panchromatic band substitution. A color version of this figure available on the ASPRS
website: www.asprs.org.

values with other bands. On the other hand, CA gives more
emphasis to dissimilarity. Since the infrared bands are the
most dissimilar bands to other bands, CA puts more weight
on these bands.

ERGAS values which represent global error for each
image are reported in Table 5. Wald (2002) suggests that
an ERGAS value less than three represents satisfactory
quality or better. Based on this suggestion, both CA and

PCA based methods with detail injection did very well in
terms of fusion quality for QuickBird and Ikonos with DRA-
off imagery. They also performed satisfactorily for the
Landsat imagery. However, all methods performed rela-
tively poorly for the Ikonos-Wilson imagery. This was
especially true for band 4 where spectral and radiometric
composition of the data were altered with the DRA proce-
dure in order to optimize the most significant portion of
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TABLE 1. MEAN BIASES (�Diff) AND THEIR RELATIVE VALUES TO ORIGINAL IMAGE MEANS (�o). BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

�Diff as �Diff as �Diff s �Diff as 
�Diff % to �o �Diff % to �o �Diff % to �o �Diff % to �o

Band1 �0.25 �0.31% 0.30 0.37% �0.12 �0.14% 0.60 0.75%
Band2 �0.24 �0.36% 0.26 0.39% �0.14 �0.22% 0.81 1.22%
Band3 �0.25 �0.33% 0.28 0.38% �0.20 �0.27% 1.65 2.20%
Band4 �0.27 �0.24% 0.38 0.34% �0.07 �0.07% 0.42 0.38%
Band5 �0.27 �0.24% 0.38 0.34% �0.21 �0.18% 2.12 1.88%
Band7 �0.24 �0.34% 0.27 0.38% �0.20 �0.28% 1.55 2.16%

Band1 �0.23 �0.07% 2.58 0.83% 1.00 0.32% 2.74 0.88%
Band2 �0.25 �0.06% 3.13 0.70% 1.59 0.35% 4.84 1.08%
Band3 �0.23 �0.08% 2.49 0.85% 1.22 0.42% 4.51 1.55%
Band4 �0.25 �0.04% 3.99 0.56% 1.52 0.21% 0.85 0.12%

Band1 �0.36 �0.09% 3.07 0.73% �0.97 �0.23% 2.13 0.51%
Band2 �0.35 �0.09% 3.03 0.74% �1.64 �0.40% 2.91 0.71%
Band3 �0.33 �0.11% 2.60 0.85% �1.77 �0.58% 2.83 0.92%
Band4 �0.35 �0.08% 3.18 0.72% �2.92 �0.66% 4.62 1.04%

Band1 �1.46 �0.25% 4.69 0.80% 7.84 1.33% 9.64 1.64%
Band2 �1.50 �0.21% 5.24 0.74% 8.77 1.24% 10.45 1.48%
Band3 �1.50 �0.22% 5.18 0.75% 8.71 1.25% 10.46 1.51%
Band4 �48.43 �7.42% �41.72 �6.39% �41.28 �6.32% �41.75 �6.39%

TABLE 2. STANDARD DEVIATIONS OF THE DIFFERENCE IMAGES (�Diff) AND THEIR RELATIVE VALUES TO ORIGINAL IMAGE MEANS (�o). 
BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

�Diff as �Diff as �Diff as �Diff as 
�Diff % to �o �Diff % to �o �Diff % to �o �Diff % to �o

Band1 4.07 5.04% 9.62 11.92% 3.44 4.26% 7.14 8.84%
Band2 3.62 5.46% 8.65 13.03% 3.39 5.10% 8.93 13.45%
Band3 5.00 6.67% 9.67 12.90% 5.55 7.40% 17.02 22.69%
Band4 4.55 4.07% 10.99 9.82% 4.85 4.34% 6.36 5.69%
Band5 7.64 6.75% 12.66 11.18% 8.38 7.40% 21.78 19.23%
Band7 6.18 8.61% 10.21 14.22% 6.51 9.06% 16.49 22.95%
AVERAGE 5.18 6.10% 10.30 12.18% 5.35 6.26% 12.95 15.48%

Band1 38.36 12.34% 31.97 10.28% 26.15 8.41% 66.20 21.29%
Band2 42.70 9.53% 36.31 8.10% 41.08 9.16% 119.94 26.75%
Band3 38.22 13.11% 33.90 11.62% 38.21 13.10% 120.98 41.48%
Band4 59.95 8.49% 63.00 8.92% 98.36 13.92% 105.58 14.94%
AVERAGE 44.81 10.86% 41.29 38.92% 50.95 11.15% 103.17 26.12%

Band1 23.11 5.52% 22.84 5.45% 14.77 3.53% 26.32 6.28%
Band2 21.19 5.17% 21.64 5.28% 24.92 6.09% 28.68 7.00%
Band3 21.21 6.92% 21.89 7.14% 26.91 8.77% 26.16 8.53%
Band4 32.74 7.36% 35.31 7.93% 44.51 10.00% 41.74 9.38%
AVERAGE 24.57 6.24% 25.42 6.45% 27.78 7.10% 30.72 7.80%

Band1 142.74 24.27% 154.00 26.19% 165.53 28.15% 291.78 49.62%
Band2 131.61 18.63% 148.78 21.06% 153.72 21.76% 267.05 37.81%
Band3 145.37 20.94% 161.55 23.28% 166.98 24.06% 282.55 40.71%
Band4 222.07 34.00% 236.00 36.14% 344.08 52.69% 361.73 55.39%
AVERAGE 160.45 24.46% 175.08 26.67% 207.58 31.66% 300.78 45.88%
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the data distribution or histogram, usually at the expense
of the least significant portions. Overall, CA-based methods
were better than PCA-based methods in terms of ERGAS
value for the test images.

For a final quantitative quality measure, Q values for
individual bands and averages for entire MS images are

reported in Table 6 for all methods and test images. This
quality test also showed that PCA-based methods performed
very well in blue bands while CA based methods were
performing better in infrared bands. However, it also
showed an overall trend that CA outperformed PCA in most
of the cases.
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TABLE 3. DIFFERENCES IN VARIANCES BETWEEN ORIGINAL (REFERENCE) AND FUSED IMAGES AS PERCENTAGE

OF THE ORIGINAL VARIANCES BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

Band1 �15.78% �14.80% �6.60% �4.54%
Band2 �8.94% 0.54% �6.47% �8.72%
Band3 �1.59% 15.91% �6.55% �0.02%
Band4 �8.32% �88.13% �2.46% �33.90%
Band5 0.85% 21.85% �5.35% 8.50%
Band7 1.08% 26.95% �4.01% 18.75%

Band 1 �27.15% 8.78% �8.53% �6.63%
Band 2 �7.90% 14.30% �6.90% �12.24%
Band 3 �2.92% 13.63% �5.78% �6.46%
Band 4 2.50% 11.12% 15.70% 29.91%

Band 1 �22.28% 11.56% �18.95% �5.69%
Band 2 �5.57% 14.09% �23.54% 3.95%
Band 3 �0.51% 14.82% �23.79% 7.49%
Band 4 3.97% 4.92% �25.46% 4.63%

Band 1 �1.29% 39.22% �11.80% 10.57%
Band 2 �5.74% 39.83% �10.40% 5.37%
Band 3 �1.20% 43.59% �7.72% 12.00%
Band 4 34.83% 27.32% 51.68% 64.19%

(s2
original � s2

fused).

TABLE 4. RELATIVE ROOT MEAN SQUARED ERRORS (R-RMSE) BETWEEN ORIGINAL AND FUSED

MS IMAGES. BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

Band1 4.80% 12.75% 4.06% 9.39%
Band2 5.26% 14.67% 4.84% 15.16%
Band3 7.34% 18.08% 7.67% 32.10%
Band4 4.12% 9.88% 4.33% 5.75%
Band5 7.40% 13.83% 7.83% 24.06%
Band7 9.95% 20.70% 10.01% 33.82%
AVERAGE 6.46% 14.98% 6.46% 20.05%

Band1 12.86% 10.13% 8.28% 22.26%
Band2 10.50% 8.16% 9.16% 28.87%
Band3 21.49% 18.96% 17.50% 53.39%
Band4 9.68% 10.71% 16.94% 18.36%
AVERAGE 13.63% 11.99% 12.97% 30.72%

Band1 5.24% 4.99% 3.16% 6.11%
Band2 4.66% 4.43% 5.29% 6.53%
Band3 6.27% 6.06% 7.75% 7.88%
Band4 7.51% 8.50% 9.18% 8.83%
AVERAGE 5.92% 6.00% 6.35% 7.34%

Band1 52.31% 66.68% 48.22% 107.94%
Band2 59.56% 82.20% 62.04% 82.56%
Band3 86.72% 119.33% 85.21% 115.45%
Band4 337.03% 337.90% 482.21% 518.84%
AVERAGE 133.91% 151.53% 169.42% 206.19%

TABLE 5. ERGAS VALUES FOR ALL TEST IMAGES AND METHODS. BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

Landsat 3.14 6.13 3.26 8.46
QuickBird 2.76 2.46 2.85 6.98
Ikonos – Coastal 1.58 1.65 1.88 1.98

(DRA off)
Ikonos – Wilson 6.36 6.87 8.54 11.64

(DRA on)
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TABLE 6. Q-STATISTICS FOR ALL METHODS. IDEAL VALUE IS 1. BEST RESULTS ARE GIVEN IN BOLD

CA-Detail CA – Stretched PCA-Detail PCA – Stretched 
injection PAN substitution injection PAN substitution

QBand 1 0.95 0.71 0.96 0.83
QBand 2 0.97 0.84 0.98 0.83
QBand 3 0.98 0.93 0.98 0.81
QBand 4 0.98 0.90 0.97 0.96
QBand 5 0.98 0.93 0.97 0.80
QBand 7 0.97 0.92 0.97 0.79
QAverage 0.97 0.87 0.97 0.84

Qband1 0.91 0.92 0.95 0.70
Qband2 0.96 0.97 0.97 0.73
Qband3 0.97 0.98 0.97 0.72
Qband4 0.96 0.95 0.89 0.86
QAverage 0.95 0.96 0.95 0.75

Qband1 0.93 0.92 0.97 0.90
Qband2 0.97 0.97 0.96 0.95
Qband3 0.98 0.97 0.96 0.96
Qband4 0.98 0.97 0.96 0.96
QAverage 0.97 0.96 0.96 0.94

Qband1 0.91 0.87 0.89 0.61
Qband2 0.92 0.87 0.89 0.65
Qband3 0.91 0.85 0.88 0.63
Qband4 0.83 0.81 0.54 0.45
QAverage 0.89 0.85 0.80 0.58Ik
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Conclusions
In this paper, correspondence analysis (CA) was introduced
to the fusion of high spectral resolution imagery with high
spatial resolution imagery at the pixel level. For most of the
study images, the CA procedure described here performed
equally well or better compared to PCA-based methods.
Although both procedures are very similar to each other
in terms of structure, the CA procedure differs from PCA in
two distinctive ways: first, CA preserves the chi-square (�2)
distance when computing the association between bands.
Second, fusion takes place in the last component as opposed
to the first component in PCA. Because the last component has
almost zero original image variance in the CA-based methods
(in most cases), theoretically altering the last component will
not as greatly affect the spectral content of the original image.
In PCA however, by replacing the first component with the
panchromatic image, most of the original image variance is
altered (the first component represents the most of the original
image variance). This could be acceptable if the panchromatic
imagery is highly correlated to first principal component.
Depending on the scene and the contents of the imagery, the
correlation between the panchromatic image and the first PCA
component could be high and the PCA method may perform
well but it is not the case at all times.

CA and PCA seemed to be complimentary fusion methods
where each performed well in different bands. For the study
images, CA-based methods performed better in infrared bands
while PCA-based methods performed better in blue bands.
Depending upon the need of the user; this could be an
interesting trait that informs the selection of the appropriate
fusion procedure for a particular application. However, given
the fact that the infrared band usually carries more informa-
tion than the blue band, a CA-based approach might have a
slight edge over PCA in most applications.

One final remark is that both CA and PCA fusion results
were dramatically improved when spatial details from
panchromatic bands were injected into the last (as in CA) or
first (as in PCA) components rather then substituting with a
stretched panchromatic band. This suggests that even further
improvements are possible to both CA- and PCA-based
methods if better injection methods can be implemented.
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