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Abstract
The development and testing of two techniques of texture
analysis based on different mathematical tools—the semi-
variogram and the Fourier spectra—are presented. These are
also compared against a benchmark approach: the Gray-Level
Co-occurrence Matrix. The three methods and their implemen-
tation are briefly described. Three series of experiments have
been prepared to test the performance of these methods in
various classification contexts. These contexts are simulated
by varying the number, type and visual likeness of the texture
patches used in classification tests. More specifically, their
ability to correctly classify, separate, and associate texture 
patches is assessed. Results suggest that the classification
context has an important impact on performance rates of all
methods. The variogram-based and the Gray-Tone Depen-
dency Matrix methods were generally superior, each one in
particular contexts.

Introduction
As scientists and researchers of the remote sensing community
began to use high spatial resolution data, it soon became clear
that spectral-based methods of computer classification and seg-
mentation were doomed to yield unsatisfactory results. At
high resolution, conceptual objects like forests or pasture usu-
ally show significant variations in their pixel values (Strahler
et al., 1986). Stationary in nature, these variations can give rise
to an apparently regular spatial pattern referred to as texture
(Kittler, 1983). One of the key elements that the interpreters use
to identify and analyze images is clearly the spatial arrange-
ment of color and tone that form natural visual entities: visual
texture (Haralick et al., 1973; Pratt et al., 1978).

Because there is no universally accepted definition of
visual texture, one has to choose a definition that best reflects
the objective or the results being sought. The definition
adopted here was given by Pratt (1991, p. 505): natural scenes
containing semi-repetitive arrangements of pixels. The prob-
lem of analyzing and classifying texture has generated a wealth
of studies and techniques that are seldom compared in a sys
tematic way. This study is an experimental analysis of the
problem of classifying texture using different mathematical 
tools. In particular, the specific classification context is ana-
lyzed in terms of the effect of between-class variation and num-
ber of classes on classification accuracy. To achieve the latter, a
special experimental framework has been prepared and experi-
mental results are presented and discussed.

The paper is organized in six sections. A short background
review of feature extraction methods for texture analysis fol-
lows the introduction. Then the three approaches are described
individually and compared through sample data. The fourth
section describes the experimental framework and the data

used for the experiments. Next comes the results and their
analysis followed by the main conclusions.

Background
Reed and du Buf (1993) claim that most development in texture
has been concentrated on feature extraction methods (some-
times called channel-based methods) which seek to extract rel-
evant textural information and map it onto a special dedicated
channel called a feature. The authors classified the various fea
ture extraction methods as belonging to one of three possible
classes: feature-based, model-based, or structural. Cocquerez
and Philipp (1995) have used a similar classification of image
segmentation methods which they compare in varioussitua-
tions (including textured images).

In feature-based methods, characteristics of texture (such as
orientation, spatial frequency, or contrast) are used to classify
homogeneous regions in an image. Model-based methods rely on
the hypothesis that an underlying process governs the arrange
ment of pixels (such as Markov chains or Fractals) and try to
extract the parameters of such processes. Structural methods
assume that a texture can be expressed by the arrangement of
some primitive element using a placement rule. Feature-based,
model-based, and hybrid methods have overwhelmingly domi-
nated the scene in the last 20 years or so. One of their findings
was that, although so many different methods have been devel
oped, no rigorous quantitative comparison of their results had
ever been done, which is a major theme of the present work.

Because Bela Julesz (1965) has shown evidence that human
perception of texture could be modeled using second-order sta-
tistics (although he would later change his theory for the “tex-
ton” approach; see Julesz (1981)) many researchers have explored
second-order statistics as possible features for texture analysis.
Among the most common second-order statistics that have been
used are the co-occurrence matrix, the spatial-autocorrelation,
the covariogram, and the semi-variogram.

The frequency domain approach, also referred to as the
Fourier Spectra approach, has been a long time favorite for tex-
ture analysis. From the early attempts at using it as a texture
analysis tool by Rosenfeld (1962) to the recent use of Gabor 
functions as filters in the frequency domain to create frequency-
and orientation-specific texture features (e.g., Fogel and Sagi,
1989; Jain and Farrokhinia, 1991; Manjunath and Ma, 1996),
the Fourier transform offers infinite possibilities not only for
texture analysis but for applications requiring the analysis of
spatial frequencies and their orientation.

In order to evaluate a technique, it is necessary to have some
base for comparison. In this research, the comparison will take
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the form of another technique that has already been widely
accepted by the scientific community and obviously performs
well. This method was proposed by Haralick et al. (1973) who
have named it Gray-Tone Spatial-Dependence Matrices, also
known as Gray-Level Co-occurrence Matrices (GLCM). Not only
do almost all the authors in visual texture analysis quote the
GLCM, but many have already used it as a comparison technique.
Among them, Davis et al. (1979), Conners and Harlow (1980),
Pratt (1991), Bonn and Rochon (1992), Wu and Chen (1992),
Reed and du Buf (1993), Dikshit (1996), Franklin et al. (2001)
and Zhang (2001) have either used the GLCM method as a com-
parison or have described it in their review.

It was decided that all three methods be rotation-invariant
so that the particular orientation of texture would not be con-
sidered even though it was observed that considering particular
orientations can increase classification accuracy (Franklin and
Peddle, 1989; Maillard, 2001). This was important especially
for the crops and waves classes for which the factors control-
ling their orientation are difficult to predict.

Description of the Three Texture Feature Extraction Methods
The Variogram Approach
Many authors have already shown the potential of the vario-
gram as a texture analysis approach (Serra, 1982; Woodcock et
al., 1988; Ramstein and Raffy, 1989; Miranda et al., 1992; Atkin-
son, 1995; St-Onge and Cavayas, 1995; Lark, 1996). On the one
hand, the variogram is related to other statistical approaches
like the autocorrelation function and the fractal Brownian
motion (Xia and Clarke, 1997). On the other hand, it is compu-
tationally simple and easy to interpret as a graph. One point in
which the variogram appears more appropriate is that only
weak stationarity is assumed, in other words, the expectation
only has to be constant locally (Woodcock et al., 1988).

It appears, however, that most techniques using the vario-
gram do so in the geostatistical manner, i.e., a model is usually
applied whose parameters are taken as a way of describing the
semi-variogram curve. In Remote Sensing images some texture-
based variograms might be best modeled using the spherical
model while others are best represented with an exponential
or even sinusoidal model. This poses a problem in terms of cre-
ating a systematic approach. One solution would be to use the
“best” model type, selected as a texture feature. But using a
nominal scale feature would cause problems further down the
classification process. This would also imply that a battery of
models would have to be fitted for all pixels of all texture sam-
ples, and the cost in terms of computing would be high. For
these reasons and because others have already pursued that line
of research, the “traditional” function representation of sill and
range has not been considered here.

Another point that has received attention is the alternate
use of the mean square-root pair difference (SRPD(h)) function
proposed by Cressie and Hawkins (1980) as a semi-variance
estimator which is resistant to outliers. Lark (1996) has also
shown that for four different classes of texture (urban, farm-
land, woodland, and meadow), when tested for normality, the
SRPD(h) function scored much better than the g(h) function, a
fact confirmed by an earlier study by the author (Maillard,
2001).

Considering these findings, a number of considerations
were taken to implement the texture feature extraction based
on the variogram:

• a rather large window had to be used in order to cover larger
distance lags (up to 32 pixels),

• the texture feature set had to be rotation-invariant but had to
preserve anisotropy, and

• the behavior of the SRPD graph near the origin had to receive
special attention because it bears a special significance in terms
of micro-texture (Serra, 1982; Jupp et al., 1989; Xia and
Clarke, 1997).

After numerous tests using different ways to transform the
variogram into texture features, the most promising approach
was found to be the averaging of selected distance lag intervals.
The SRPD texture feature extraction routine can be summarized
in the following steps:

• For every pixel in the image, a neighboring window (32 by 32
pixels) is considered and four directional variograms (0°, 45°,
90°, and 135°) are computed for all possible combinations in
that window.

• The maximum lag size is equal to one half the window size.
• The mean Square-Root Pair Difference is used as a semi-vario-

gram estimation.
• Six values (features) of the SRPD are computed by giving more

weight to the values corresponding to the smaller lags; in other
words, by computing the SRPD features over regular intervals
on a logarithmic scale. Figure 1a illustrates such a scale with
six lag ranges while Figures 1b and 1c illustrate the semi-vari-
ance graph before and after the averaging, respectively.

• These values are computed for all four directions for a total of
24 features

• The 24 directional features are then transformed to 18 rotation-
invariant features: for each lag, the mean, standard deviation
and sum of perpendicular ratios (�[g0/g90 � g90/g0 � g45/g135
� g135/g45] where g is the estimate of variance) are computed
where the latter two parameters are meant to preserve anisotropy
in the data.

The Fourier Approach
The Fourier-based method proposed by Stromberg and Farr
(1986) was surely the first really successful use of the Fourier
Transform through the application of a series of ring (band-
pass) filters before applying the inverse transforms from which
the texture features resulted. This was consistent with the find-
ings of Richard and Polit (1974) and Harvey and Gervais (1978)
in their psychophysical experiments. But, as Caelli (1982)
would later show, it lacked the orientation component. This
was largely corrected by the method proposed by Wilson and
Spann (1988), which divided the spectral domain into a series
of band-pass/orientation-pass filters defined by a finite prolate
spherical function. Others then suggested the use of a bank of
Gaussian filters applied locally (as opposed to the whole image)
in the frequency domain to create the textural features (Gorenic
and Rotman, 1992). The most popular Fourier-related texture
analysis method is without doubt the “wavelet” transform
which uses a similar approach but replaces the Gaussian filters
by the FT of a Gabor function, also applied locally (Reed and
Wechsler, 1990; Jain and Farrokhinia, 1991; Dunn et al., 1994;
Manjunath and Ma, 1996). The method proposed here makes
use of these most recent findings but also attempts to simplify
significantly these methods and make them more computation-
ally efficient.

In an effort to simplify the approach and to avoid a two-
dimensional transform, the Fourier approach was imple-
mented through appending all lines of pixels in the window in
four directions (0°, 45°, 90°, and 135°). In this approach, the fre-
quencies between zero and the number of lines appended are
artifact and irrelevant because the appending of lines of image
pixels is an artificial process. These artifact frequencies were
eliminated. The following steps summarize the computation
of the Fourier texture features:

• For every pixel in the image, a neighboring window is consid-
ered and four directional transforms (0°, 45°, 90°, 135°) are com-
puted for all appended lines; frequencies between 0 and 32
were eliminated; a window size of 32 by 32 pixels is used for
the 0° and 90° directions and of 64 by 64 pixels for the 45° and
135° directions.

• Six Gaussian filters are applied to the transform to create the
following texture frequency features: very low (centered on 1
cycle per window of 32 pixels), low (2 c/w), mid-low (4 c/w),
mid-high (8 c/w), high (14 c/w), and very high (25 c/w). An
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Figure 1. The construction of texture features for the Variogram approache to texture
classification. (a) The logarithmic scale used to average SRPD values. (b) The original
SRPD graph showing all the values. (c) The six SRPD values based on averaging the semi-
variance according to a logarithmic scale.

average value is computed for each filtered result of each direc-
tion for a total of 24 directional features. Figure 2 illustrates
the process of filtering; in Figure 2a the Gaussian filters are
presented while Figure 2b shows the effect of applying the
filters on a sample transform of a forest image.

• The 24 directional features are then transformed to 18 rotation-
invariant features: the mean, standard deviation and sum of
perpendicular ratios are computed for each frequency band.

The Gray-Level Co-occurrence Matrices
The Gray-Level Co-occurrence Matrices (GLCM) method was
implemented in a manner similar to its original form (in Hara-

lick et al., 1973). Because many of the features first described by
Haralick are highly correlated among themselves (Haralick et
al., 1973), a pre-selection was done to reduce the 14 possible
measures to less than half. The selection was done by combin-
ing all the features used by many different research teams that
have used the GLCM method. Table 1 gives a listing of the
authors considered and the texture features they have used.
Analyzing the table revealed that the most commonly used fea-
tures are in decreasing order of popularity: Angular Second
Moment, Entropy, Inertia (initially contrast), Correlation, and
Inverse Difference Moment.

Apart from the texture features used, pixel pair sampling dis-
tances have to be chosen with respect to the expected spatial fre-
quencies present in the images. The choice of sampling distance
is as important as the types of measurements. In order to be as
objective as possible, the sampling distances have been chosen
based on the visual analysis of the semi-variograms of the sample
texture patches. This analysis yielded the following distances:
three, six, and twelve pixels. In their original setting, Haralick et
al. would choose a particular sampling distance and then rotate it
by steps of 45 degrees so that, for a distance of three pixels, the
x,y sampling distances setting would be (3,0), (3,3), (0,3), and
(�3,3) for the 0°, 45°, 90°, and 135° orientations, respectively.
Then, for each sampling distance, the mean and standard devia-
tion would be computed over the four orientations instead of
using each orientation separately. Therefore, the features are not
orientation-specific but still account for some effect of anisot-
ropy. This approach is meant to obtain rotation-invariant features
similar to those adopted for the variogram and Fourier methods.

The following steps summarize the implementation of the
GLCM method:

• For every pixel in the image, a neighboring window (32 by 32
pixels) is considered and matrices are computed for three differ-
ent pixel pair sampling distances (3, 6, and 12 based on analysis
of the variograms) and four directions (0°, 45°, 90°, and 135°).

• Five measurements are computed for each matrix: contrast,
angular second moment, inverse difference moment, entropy,
and correlation for a total of 60 features.

• The 60 “directional” features are transformed into 30 rotation-
invariant features by computing the mean and standard devia-
tion over the four original directions.

Comparison of the Three Approaches
Displaying the texture features from the three methods as
images would be of little help in understanding how these 
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Figure 2. Filtering the Fourier transform of a single (forest)
pixel. (a) The six Gaussian filters. (b) Result of applying the
six filters on the Fourier transform of the neighboring window
of a forest pixel (0º direction).



TABLE 1. LIST OF THE GLCM FEATURES USED IN SOME TEXTURE ANALYSIS STUDIES

Author(s) and Year Feature Used (See Legend at Foot of Table)

Haralick et al., 1973–Three Experiments (a) ASM, Con, Cor (b) ASM, Con, Cor, Ent (c) ASM, Con, Cor, SSq, IDM, SAv, SV,
SEnt, Ent, DV, DEnt

Haralick, 1979 ASM, Con, Cor, IDM, Ent
Davis et al., 1979 ASM, Con, Cor, Ent
Conners and Harlow, 1980 ASM, Cor, IDM, Ent
Rosenfeld and Kak, 1982 ASM, Con, IDM, Ent
Gonzalez and Wood, 1992 ASM, Cor, IDM, Ent, Other
Sali and Wolfson, 1992 ASM, Con, IDM, Ent, DEnt
Wu and Chen, 1992 ASM, Con, Cor, IDM, SAv, SV, SEnt, Ent, DV, DEnt, IMC
Anys and He, 1995 SSq, ASM, Ent, Con, Cor, Others
Dikshit, 1996 Ent, Con, IDM, ASM
Hay et al. (1996) ASM, Ent, IDM, SV

Legend: ASM: Angular Second Moment, Con: Contrast (or inertia), Cor: Correlation, SSq: Sum of Squares, IDM: Inverse Difference Moment,
SAv: Sum Average, SV: Sum Variance, SEnt: Sum Entropy, Ent: Entropy, DV: Difference Variance, DEnt: Difference Entropy, IMC: Information
Measure of Correlation, MCC: Maximum Correlation Coefficient, Other: Other measures.

multi-dimensional spaces can help separate textures of various i.e., forest, residential, desert, crops, shrub, and waves (samples
of these classes are presented in Figure 4).origin. A graph representation was preferred for its simplicity

and ease of interpretation. Figure 3 illustrates the data gener- The semi-variogram (Figure 3a) displays variance as a
function of lag distance. The sill reached by each textureated by each method as a series of graphs for six texture classes:

(b)(a)

(c)

Figure 3. Six texture classes mapped from the three different methods of texture analysis. (a) Semi-variogram. (b) Fourier
transform. (c) Five measures taken from the GLCM.
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lard, 2001). Such a framework has already been proposed by the
MeasTex project through three aspects: (1) the implementation
of major texture processing paradigms, (2) a library of texture
images, and (3) a measure of their performance (MeasTex,
2001). In this work, some further refinements of such frame-
work are proposed through the use of a texture base exclu-
sively dedicated to visual textures found in high-resolution
images of the Earth and a series of specific experiments, both of
which are described below.

Data Set Description
The texture samples were extracted from scanned aerial photo-
graphs of the Emerald (desert samples) and Brisbane areas
(both in Queensland, Australia) and correspond to six different
generic classes of texture: forest, residential areas, arid envi-
ronment, agriculture, shrub, and ocean waves. Figure 4 pre-
sents the texture images used while the generic classes are
briefly described next.

Forest includes basically all natural tree formations, both
closed and open. Reforestation is not included in this class.
Residential has been preferred to Urban because it usually
covers more extensive areas. Although all residential texture

Figure 4. Data set composed of 36 square patches of tex- patches have been selected in the Brisbane area, it could
ture from six generic classes: forest (F6), residential areas incorporate other types of residential areas like shantytowns

or other suburbs.(R6), desert (D6), crops (C6), shrub (S6) and waves (W6).
Desert is a rather broad class that includes natural areas withEach column (T6(a) to T6(f)) contains one sample of each
scarce vegetation in which the soil, rock, and low vegetationgeneric class.
are responsible for the texture patterns.
Agriculture is another very broad class that was intended to
incorporate all structured forms of agriculture including
orchards. Pasture is a somewhat marginal member of thisclearly separates them from each other, but it is the behavior of class only when it shows some artificial pattern.

the curve near the origin that is most determinant as a discrimi- Shrub was basically meant to complement the forest class
nating factor. The most striking features are the height and for low and open naturally vegetated areas. This class justi-
irregularity of the Residential class, the cyclic shape of the fies itself by its extent in many countries like Australia.
Crops and, to a lesser extent, Waves classes. Interestingly, the Waves is a generic class of bodies of water under the influ-
latter reaches its peak at a distance of three pixels and then ence of wind or currents. Both ocean and lakes are included,
drops and stabilizes with an undulating pattern. Apart from the but rivers remain a marginal member when wide enough to

produce a visible wave pattern.height of the sill and the level of regularity of the curve, it is the
slope described by the first few points that better differentiate

Six samples of each generic class were selected for a totalthe six texture classes. The fact that these first few data points
of 36 texture image samples of 128 by 128 pixels each. To assesshave received more attention in generating the texture features
the appropriate resolution, a local variance was computed for amade it possible to preserve this important aspect.
series of resolutions in the same manner suggested by Cao andThe one-dimension Fourier transform of the same six tex-
Lam (1997) and yielded a graph with a first break at about twoture classes is presented in Figure 3b. The graph was con-
meters and a peak at about three. Scanning the 1:25,000-scalestructed as described above by appending all lines (in the
black-and-white photographs at a resolution of 450 dpi yieldedhorizontal direction in this case) and then eliminating the arti-
a ground resolution of about 1.4 meters and ensured that mostfact frequencies. Interestingly, the average amplitude of each
spatial variability was preserved without generating unneces-texture frequency curve follows the same progression order as
sarily large image sets. All texture samples are presented inin the sill reached in the semi-variogram graph; in increasing
Figure 4.order: Crops, Desert, Forest, Waves, Shrub, and Residential. As

As can be observed, each column of the data set contains abefore, the Crops class has a well-defined frequency peak but so
different sample of each generic texture class (named T6(a) tohas the Shrub class, a feature not easily perceived in the semi-
T6(f)) while each row is composed of six different samples of avariogram. The high frequency part of the curves (lower end) is
single generic class (named F6, R6, D6, C6, S6, and W6).much more confused and clear patterns are hard to identify.
Although the choice criteria were somewhat suggestive, careFor the Grey-Level Co-occurrence Matrix, a series of mean-
was taken to pick samples with low within-class variability butstandard deviation plots were constructed for each co-occur-
high within-generic class variability. For example, each indi-rence based measure: contrast, angular second moment,
vidual Forest sample had to be homogeneous (texture-wise),entropy, inverse difference moment, and correlation. The
but the generic class is represented by diversified samples ofmean marks the center of each plot line while the height is
forest.determined by the standard deviation. Generally speaking, all

The first series of classifications will be carried out on eachfive measures appear to separate well the six classes analyzed
column of texture samples separately. This was a way of simu-except for two class pairs: Desert—Forest and Shrub—Waves.
lating six different classification contexts (as, for instance, withThe former can only be distinguished by the correlation and the
different photographs). The second series of classificationslatter by the contrast and the inverse difference moment.
will be performed on each row of the set to simulate thematic
conditions in which one wishes to distinguish similar yet dif-Experimental Methodology
ferent classes of texture. The last series of classifications willA special experimental framework is needed in order to evalu-

ate and compare texture analysis methods (Smith, 2001; Mail- include all 36 samples.
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that no special consideration has been taken for the borders andThe Comparison Tool
edges of the texture samples can be seen as another source ofClassification is a statistical tool used to assign an object to one
bias. In this case the bias is partly wanted in order to assessof a number of possible groups or classes with the help of a
how each method behaves with respect to texture edges. Todecision rule (James, 1985). The classification technique is
evaluate better how these edges alter the results, a separate(usually) a point-dependent algorithm, meaning that only one Kappa statistic was computed where the edges (and their zone

pixel is considered at a time. In order for it to consider region- of influence) have been removed from the computation. This
based information such as texture, this information has to be is consistent with the fact that many authors consider that
first extracted in the neighbourhood of each pixel and coded on texture analysis and texture edge recognition should be

approached as different tasks. Pratt (1991) suggested thata different plane, which is called a texture feature here and is
boundaries should be established prior to attempting textureperformed here by one of three texture processing algorithms.
measurements. Serra (1982) treats the edge effect from whatClassification was preferred over segmentation approaches for
he calls the individual-textural paradigm. Recent texture analy-various reasons:
sis methods that integrate both region growing and edge detec-
tion such as the one proposed by Pavlidis and Liow (1990) are● Classification algorithms have been used in Image Processing

for quite some time and are probably the most widely used the consecration of such an approach.
pattern recognition techniques,

● The decision rules of classification algorithms are simple and Classify to Associate, Generalize, Merge, and Separate
easy to control whereas many region-dependant segmentation Although classification can be defined simply as a way of
algorithms use a threshold that can be hard to set, and assigning an object to one of a number of possible groups, it is

● The texture feature extraction (using one of the texture analysis in fact a complex operation by which a geographical meaning ismethods) can yield an analysis of the behavior of the various
given to a set of spectral and spatial measurements. Accordingtextures for each method.
to Nyerges (1991), four abstraction types have been used to sup-

In the present study, the problem is not to assign each pixel port meaning in geographical information: classification
to one of a group of possible classes in the test image because (“instance-of” relationship), association (“member-of” rela-
the class membership is already known for all pixels in the tionship), generalization (“kind-of” relationship), and aggre-
image. An alternate formulation would be: can a given set of gation (“part-of” relationship). Often, a classification process
variables describing the texture of a pixel makes its assignment is expected not only to classify but also to generalize and some-
to the “right” class possible? Or rather, to what extent can the times even to associate objects depending on the amount of
“right” texture class be assigned to the texture patches forming information available about the region being classified. Classi-
the test image given one of three methods of texture analysis? fication is used as a generalization tool by expecting it to elimi-
To ensure the most objective approach, a “blind” technique has nate unnecessary details, sometimes through the use of filters
been used for defining the training class samples. Training was either prior to or after the classification process. Association is
done through a mixture of systematic and cluster sampling: six- sometimes expected as in the case of opposing slopes of a hill
teen equally spaced clusters of 25 pixels (5 by 5) ensured that receiving different amounts of light and having different spec-
the class was well represented (2.44 percent) and that the sam- tral signatures but that should nonetheless be associated to the
ples were spread throughout the image. Although other studies same class.
have shown that clusters of up to 25 pixels reduce bias due to On another level of reasoning, the process of classification
autocorrelation (Congalton, 1988), it can still be expected is one that has both the functions of joining and separating
within the clusters because texture processing is always based objects as belonging to the same class or not. In a general land-
on neighboring windows of pixels. use/land-cover type classification, the different types of forest

For classification to be considered a testing tool, a number might not be known or relevant, in which case the classifier is
of assumptions had to be made, six of which are described expected to be able to join all forest types into one broad class.
here: Not having the information on all forest types present also pro-

hibits effective sampling. In another situation, a user might
● Bayes’ rule is optimal only if minimizing Total Errors of Classifi-

want not only to differentiate the forest types but also theircation (TEC) is considered the “best” criterion; for instance, it
health status. Can a single classification algorithm be an effi-does not take classification error cost into account (James, 1985).
cient tool for both situations? Part of the answer might lie in the● In its normal form, the Bayes’ rule assumes that all variables

from the measurement vector have a normal distribution. How- choice of the number and type of features (or variables) being
ever, as was pointed out by Scheffé (1959), because the sample used. Experiments have been selected to assess both types of
size is reasonably large (400) and is the same for all textures, situation as well as the generalization problem.
the assumption of normality can be relaxed (Clark and Hosking,
1986). Some consideration of normality has already been taken Description of the Experiments
by preferring the Square-Root Pair Difference (SRPD) to the It is clear, from the observations above, that no single experi-straight semi-variance because it has been found to have a more

ment could assess all of these problems. Mike James (1985)normal distribution and is more resistant to outliers (Lark, 1996).
points out that classification methods have been criticized for● TEC and its complement, Total Success of Classification (TSC),
working well during tests but giving poor results in a “real” sit-are acceptable ways to express the error measure through a

confusion matrix. TEC is obtained by subtracting the number of uation but that this situation usually results from an inadequate
correctly classified objects from the total number of pixels. test procedure. To ensure adequacy of the test procedure, three
However, the Kappa statistic also takes the mere chance factor different classification experiments have been prepared in
into account (Foody, 1992) and so it was preferred as a classifi- order to assess all of the above aspects. These experiments are
cation accuracy value. explained below.

● It is usually assumed that the conceptual objects being classified
have low within-class variability but, in the case of texture, ● First experiment: evaluating the different approaches for sepa-

rating and classifying sets of texture patches having very differ-such a statement would have to be reviewed because texture
variability is not yet a well defined concept. ent visual characteristics and belonging to different generic

classes of objects.● All a priori probabilities are equal because all texture samples
are of equal size. ● Second experiment: assessing the separation capability of the

methods by comparing their performance in separating sets of● Overall accuracy and the edge effect. The fact that the training
areas are part of the texture sample being classified brings a similar textures belonging to the same generic class and evaluat-

ing their relative performance according to the textural contextbias in the classification results and so these pixels were with-
drawn from the overall accuracy computation. Also, the fact (e.g., forest versus residential).
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TABLE 3. RESULTS OF PAIRWISE COMPARISON OF KHAT VALUES FOR OVERALL
RESULTS OF TABLE 2; S � SIGNIFICANT AT THE 99% LEVEL OF CONFIDENCE, NS �

NOT SIGNIFICANT AT THE 99% L.O.C.

GLCM vs VGM VGM vs FFT FFT vs GLCM

Z Z Z(a)
Data set Statistic Result Statistic Result Statistic Result

T6a �44.60 S 24.21 S 20.50 S
T6b �24.26 S �7.40 S 31.68 S
T6c 1.96 NS �11.59 S 9.64 S
T6d �53.16 S 18.31 S 34.78 S
T6e �4.20 S 2.35 S 1.85 NS(b)
T6f �28.02 S 6.13 S 21.90 S

1960; Congalton, 1991; Foody, 1992). Analysis of Table 3
(c) reveals that differences as low as 1 percent or less can still be

significant given their context and the large samples used. InFigure 5. Classification results from all three methods using
fact, only two pairwise comparisons did not prove signifi-the T6a texture subset. (a) The GLCM approach. (b) The VGM
cantly different at the 99 percent level of confidence (but wouldapproach. (c) The FFT approach.
be at 95 percent).

Given the slightly superior (but mostly significant) success
rate of the GLCM method, the first experiment has failed to dem-
onstrate that the alternative methods proposed can bring any

● Third experiment: separating a mixture of both different and improvement. These results suggest that the GLCM method,
similar textures and testing the capacity of good association to when used properly, is a very efficient approach to simple tex-
test the performance of each method for the classification of a ture classification problems where the texture characteristicslarge number of classes (36) belonging to both very similar and

are visually very different.very different geographic realms.
The second best method, the VGM approach, shows slightly

poorer results but the difference in Khat (4 percent at the mostResults and Discussion and about 1 percent on average) can be considered small but
important, given the fact that the differences are significantFirst Experiment: Separating a Set of Very Different Textures
and apply to four subsets out of six.The first experiment has been organized in the following man-

The same reasoning can be applied to the FFT results whichner: first, the gray-level dependency matrix method (GLCM)
are systematically the lowest for both kinds of result (overallwas applied, then the variogram method (VGM), and finally the
and no edges). The fact that, in the frequency domain, the highFourier-based approach (FFT). In order to give more reliability
frequencies (which correspond to small lags or sampling dis-to the results obtained, the classification tests were carried out
tances in the other methods) are usually regarded as noise canon all six similar (but different) sets of six texture patches each.
perhaps explain the poorer performance of the FFT methodFigure 5 shows the graphical results of the best results obtained
which is typically used to separate signal (larger frequencies)with the T6a set for each method while Table 2 shows the tabu-
from noise.lar results of six sets of textures samples.

In all three methods and for all six texture sets, edgesThe results clearly show that all three methods of texture
account for about 20 percent of misclassification errors onprocessing approaches have very good potential for classifica-
average. This is a very significant number which tends to con-tion purposes because, in all cases, the Kappa statistics ob-
firm the fact that texture boundaries have a major role in classifi-tained are mostly over 70 percent (one exception), and over 90
cation errors (Ferro and Warner, 2002) and should perhaps bepercent if edges are not computed. Table 3 presents a pairwise
extracted prior to classification as suggested by varioustest of significance between the three Khat’s obtained for each
authors (Pavlidis and Liow, 1990; Pratt, 1991; Jones, 1994). Thisset. The test uses the normal deviate (Z statistics) to determine
also outlines the role of patch size, hence resolution: in a textureif the confusion matrices are significantly different (Cohen,
patch of 128 by 128, considering a texture analysis window of
32 by 32, the zone of influence of the texture edge is equal to 1282

� [128 � 32]2 or 7168 pixels in this case, which is about 44 per-TABLE 2. CLASSIFICATION SCORES (KAPPA STATISTICS) FROM THE
cent of the total number of pixels of the patch. This percentageCLASSIFICATION OF SIX TEXTURE SETS; WHITE COLUMNS SHOW OVERALL
drops to 24 percent for a 250 by 250 patch, 12 percent for a 500RESULTS WHILE GRAY COLUMNS SHOW THE RESULTS WITHOUT CONSIDERING THE
by 500 patch, and 6 percent for a 1000 by 1000 patch.EDGES. BEST RESULTS ARE IN BOLD AND THE LAST ROW SHOWS THE

AVERAGE SCORE

Second Experiment: Separating Sets of Similar Textures
GLCM Method VGM Method FFT Method In the second series of experiments, six texture sets composed

Texture K̂ � 100 K̂ � 100 K̂ � 100 of similar texture samples were created (Figure 4) in order to
set Overall No edges Overall No edges Overall No edges test the capacity of the three methods to separate textures

belonging to the same generic classes. Additionally, this seriesT6a 90.1% 99.8% 86.1% 99.4% 82.2% 93.1%
of experiments helps characterize the particular aspects of tex-T6b 79.2 98.0 80.8 99.3 73.9 95.5
ture that are better taken into account by the three differentT6c 76.0 99.1 78.5 99.9 76.4 97.1
methods.T6d 79.8 100.0 75.8 95.5 67.6 95.3

T6e 75.4 99.4 74.8 98.9 74.4 92.1 Table 4 shows the compiled results for all six texture sets
T6f 76.6 99.3 75.2 99.5 70.1 93.1 for both overall and no edges results. In four out of six texture

sets, the VGM method performed better by yielding superior TSCAverage 79.5 99.3 78.5 98.8 74.0 94.4
scores of 
1% (F6), 
4% (D6), 
2.5% (C6), and 
2% (W6), all
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TABLE 4. CLASSIFICATION SCORES (KAPPA STATISTICS) FROM THE CLASSIFICATION OF THE SIX TEXTURE SETS EACH COMPOSED OF TEXTURE PATCHES BELONGING

TO THE SAME GENERIC CLASS. BEST RESULTS FOR EACH ARE IN BOLD

GLCM Method VGM Method FFT Method

K̂ � 100 K̂ � 100 K̂ � 100
Texture Set Overall No edges Overall No edges Overall No edges

F6 (forest) 77.7% 93.4% 78.6% 93.3% 72.3% 87.0%
R6 (residential) 76.7 93.2 60.1 81.9 46.7 64.3
D6 (desert) 74.1 91.7 77.9 95.4 75.3 87.5
C6 (crops) 92.6 100.0 95.0 100.0 85.4 98.4
S6 (shrub) 83.1 97.3 73.7 92.4 69.4 87.4
W6 (wave) 86.9 98.2 88.8 99.6 84.4 95.3

of which were significant at the 99 percent confidence level. As the other experiments (Table 5). This was predictable to a cer-
tain extent because, by increasing greatly the number offor the other two cases (R6 and S6), the GLCM method was supe-

rior by about 16.6 percent and about 9.4 percent, respectively. classes, the chance of misclassification was also increased.
Both the VGM and GLCM methods produced Khat results ofIn all cases, the VGM and the GLCM methods were significantly

better than the FFT approach by a margin of 2.5 percent to 30 about 65 percent to 67 percent. The FFT came in last with a score
approximately 8 to 10 percent lower. If these results are overallpercent in Khat scores. The results for no edge scores are as

high as 100 percent in some cases. The difference between over- quite similar, the detailed analysis of their graphical counter-
part shows that the behavior of each method can be different.all and no edge results are about 14 percent on average for the

three methods which can be considered high given the sample Figure 6 shows the difference image between the classification
results of the three methods and what would be the ideal clas-size.

The first texture set for which the GLCM proved superior, sification. The most striking difference lies in the size and fre-
quency of wrongly classified pixels and in the patches theyR6, is also characterized by relatively low Khat for all three

methods. One conclusion that this brings is that the R6 texture form. In the GLCM results, these patches are relatively large,
infrequent, and more concentrated around the edges of the tex-set is a poor candidate with ill-defined textures. Another obser-

vation is that the fact that the GLCM method includes a broader ture patches; hence, the Khat of 93.8 percent for the no edge
result. In the VGM classified image, these patches appearvariety of measurements is possibly the reason why it scores bet-

ter whereas the other methods are more “specialized.” In the smaller on average but more frequent and sometimes give a
speckled impression. However, the edges and borders accountsecond texture set for which the GLCM shows superior results,

S6, the situation is different but still keeps similar elements. for a significant part of errors (a Khat difference of 26.2 percent).
The classification result generated with the FFT feature setAlthough the Khat scores are higher (roughly between 65 per-

cent and 80 percent), a visual inspection of the individual tex- appears to suffer even more from a salt and pepper look: the
patches are mostly small but very frequent. While about 23 per-ture patches (see Figure 4) reveals that some of them are not

very homogeneous, having sometimes a dual textural charac- cent of misclassified pixels are attributable to edges and bor-
teristic (patches #3, #4, and #6 in particular), which tends to ders, another 20 percent are found within the central parts of
give more weight to cues other than the simple spacing of the texture patches. In all cases the differences between the
apparent objects on the background scene (which is the basis three methods are quite significant, as can be seen in the pair-
for the variogram approach). In this regard, the GLCM method wise test of significance of Table 6.
has a definite superiority over the other two. This suggests that The observations above suggest the following facts:
measurement type diversity can prove an important asset for

● The GLCM method scores higher than the other two methods fortextures that are not necessarily blessed with a homogeneous
complex classification situations,visual aspect.

● The VGM method yields comparable scores but the differenceAs for the FFT method, its generally poorer performance
from the GLCM is significant,can be attributed to two different facts. The first one is inherent

● The fact that patches of misclassified pixels are generally largerto the approach (or its implementation) that was chosen, in-
but less frequent for the GLCM method suggests that the methodvolving the appending of consecutive lines in a semi two-
is not easily affected by small differences and is spatially moredimensional approach instead of the full two-dimensional Fou-
consistent, andrier transform. This approach might have created undesired

● The FFT feature sets are more likely to be affected by smallartifacts (for instance, the phase of the frequencies is not variations in textures than the GLCM approach.
respected in this approach). The second one is that, unlike the
real time series for which the Fourier transform was developed, Reclassification of the set of 36 textures. Table 7 presents
spatial frequencies in these texture sets are ill-defined and the Khat results obtained after reclassification of the classified
often require a complex set of sine-like waves to describe results of Table 5 (third experiment), and Figure 7 shows the
square-like shapes (as in the case of residential areas). difference image of the generic classes reclassification.

Although, in the overall classification of the set of 36 textures
Third Experiment: Separating a Mixture of Both Different and Similar Textures
In the first part of this experiment, the whole texture set of Fig-
ure 4 has been classified to assess the capacity for each method
to deal with a complex situation where both different and simi- TABLE 5. KHAT SCORES FROM THE CLASSIFICATION OF THE SET OF 36 TEXTURES.

GRAY COLUMNS SHOW NO EDGE RESULTS. BEST RESULTS ARE IN BOLDlar texture samples are mixed. In the second part, a reclassifica-
tion has been performed to assess the good association capa-

GLCM Method VGM Method FFT Methodbility by observing the nature of the errors of the first phase:
K̂ � 100 K̂ � 100 K̂ � 100i.e.,whether the wrongly classified pixels were at least within
Overall No edges Overall No edges Overall No edgesthe good generic class or not.

The classification of the set of 36 textures yielded results 67.2% 93.8% 65.4% 91.6% 57.1% 80.3%
that are much poorer than those which had been achieved in
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(b)(a) (c)

Figure 6. Difference image for classification results of the 36 textures set (misclassified pixels are shown in white,
correctly classified one in gray). (a) The GLCM approach. (b) The VGM approach. (c) The FFT approach.

TABLE 6. RESULTS OF PAIRWISE COMPARISON OF KHAT VALUES FOR OVERALL gains from 18 percent to 28 percent accuracy when not consid-
RESULTS OF TABLE 5; S � SIGNIFICANT, NS � NOT SIGNIFICANT AT THE 99% LEVEL ering exact class membership but, in these cases, it appears to

OF CONFIDENCE be due to high within-class variability marked by variations of
the between-trees distances. As for the Desert generic class, aGLCM vs VGM VGM vs FFT FFT vs GLCM
combination of high within-class variability and low contrast

Z Statistic Result Z Statistic Result Z Statistic Result with relation to the other texture patches might have combined
to increase accuracy from 14 percent to 19 percent.19.6 S 87.5 S �107.2 S

Conclusions
Three methods of texture classification have been tested in this
paper, two of which have received a novel implementation: thethe GLCM method scored better, it was this approach that bene-

fited the least from the reclassification into generic classes mov- semi-variogram and the Fourier spectra. Both have been imple-
mented to be computationally efficient and to relate in someing from an all-classes Khat statistic of 67.2 percent to 72.2

percent (a difference of 5 percent) compared with the FFT way to psychophysical evidence about human vision (Mail-
lard, 2001). All three methods have proved to be powerful toolsmethod that increased from 57.1 percent to 66.1 percent (a dif-

ference of 9 percent) or even the VGM whose TSC score increased for texture classification, but the gray-level co-occurrence
matrix has shown superior results for dealing with simple situ-from 65.1 percent to 71.4 percent (a difference of 6 percent).

Still, the results tend to show that all three methods cannot reli- ations where the textures are visually easily separable. The
semi-variogram was, however, slightly superior for distin-ably be expected to perform good association and that not hav-

ing proper training areas for all classes can be costly in terms of guishing very similar texture patches, but more extensive test-
ing is needed to confirm this. In complex situations (a largeclassification errors. One could conclude that these methods

are generally better at separating than associating. number of classes), the VGM and GLCM have performed almost
equally but with generally poorer results (but better than theIt is interesting to look at which generic classes have gained

the most out of reclassification because it gives an insight on FFT). Much of this poorer performance can be attributed to bor-
ders and edges, which tends to show the importance of using athe factors that might affect the texture classification accuracy.

The Residential class gains from 31 percent to 50 percent of resolution finer than the “optimal” resolution as given, for
instance, by a measurement like the local variance. The goodaccuracy when accepting misclassified pixels that fall into

another Residential texture class as correctly classified. This is association test proved the GLCM method slightly superior but
showed that none of the methods tested can be expected to per-understandable because this generic class stands out from the

rest by its contrast and square-like objects. The Shrub class also form good association for classes not accounted for in the train-

TABLE 7. KAPPA STATISTICS OF THE GOOD ASSOCIATION ANALYSIS THROUGH THE RECLASSIFICATION OF THE 36 TEXTURES SET. BEST RESULTS ARE IN BOLD

GLCM Method VGM Method FFT Method

K̂ � 100 K̂ � 100 K̂ � 100
Generic Class correct class correct generic class correct class correct generic class correct class correct generic class

Forest 55.0% 66.0% 48.9% 59.3% 43.2% 58.9%
Residential 65.6 96.9 61.3 93.1 37.4 87.5
Desert 51.3 70.5 52.1 66.5 40.8 54.4
Crops 72.1 75.4 71.7 75.0 63.3 72.8
Shrub 63.9 81.4 54.9 82.5 49.2 76.1
Waves 62.8 67.8 68.2 77.0 64.1 76.6

All classes 67.2 72.2 65.4 71.4 57.1 66.1
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(a) (c)(b)

Figure 7. Difference image for reclassification of the 36 textures set according to generic classes (misclassified
pixels are shown in white, correctly classified one in gray). (a) The GLCM approach. (b) The VGM approach. (c) The
FFT approach.
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Principes et Méthodes, Presses de l’Université du Québec, Qué- rence texture to increase forest structure and species composition
bec, Canada, 485 p. classification accuracy, Photogrammetric Engineering & Remote

Sensing, 67(7):849–855.Caelli, T., 1982. On discriminating visual textures and images, Percep-
tion & Psychophysics, 31(2):149–159. Gonzalez, R.C., and R.C. Woods, 1992. Digital Image Processing, Addi-

son-Wesley Publishing Company, Reading, Massachusetts, 716 p.Cao, C., and N. Lam, 1997. Understanding the scale and resolution
effects in remote sensing and GIS, Scale in Remote Sensing and Goresnic, C., and R.S. Rotman, 1992. Texture classification using the
GIS (D.A. Quattrochi and M.F. Goodchild, editors), CRC Press, cortex transform, CVGIP: Graphical Models and Image Proc-
Lewis Publishers, Boca Raton, Florida, pp. 57–72. essing, 54(4):329–339.

Clark, W.A.V., and P.L. Hosking, 1986. Statistical Methods for Geogra- Haralick, R.M., 1979, Statistical and structural approaches to texture,
phers, John Wiley and Sons, New York, N.Y., 518 p. Proceeding of the IEEE Transactions Systems, Man and Cybernet-

ics, 67:786–804.Cocquerez, J.P., and S. Philipp (editors), 1995. Analyse d’Images: fil-
trage et Segmentation, Masson, Paris, France, 457 p. Haralick, R.M., K. Shanmugan, and I. Dinstein, 1973. Texture feature

for image classification, IEEE Transactions Systems, Man andCohen, J., 1960. A coefficient of agreement for nominal scales, Educa-
tional and Psychological Measurements, 20(1):37–40. Cybernetics, SMC-3:610–621.

366 Apr i l  2003 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Harvey, L.O., Jr., and M.J. Gervais, 1978. Visual texture perception and Reed, T.R., and du H. Buf, 1993. A review of recent texture segmentation
and feature extraction techniques, CVGIP: Image Understand-fourier analysis, Perception & Psychophysics, 24(6):534–542.
ing, 57(3):359–372.Hay, G.J., K.O. Niemann, and G.F. McLean, 1996. An object-specific

Reed, T.R., and H. Wechsler, 1990. Segmentation of textured imagesImage-texture analysis of h-resolution forest imagery, Remote
and Gestalt organization using spatial/spatial-frequency represen-Sensing of Environment, 55:108–122.
tations, IEEE Transactions on Pattern Analysis and Machine Intel-Jain, A.K., and F. Farrokhnia, 1991. Unsupervised texture segmentation
ligence, 12(1):1–12.using Gabor filters, Pattern Recognition, 24(12):1167–1186.

Richard, W., and A. Polit, 1974. Texture matching, Kybernetik, 16:James, M., 1985. Classification Algorithms, John Wiley and Sons, Lon-
155–162.don, United Kingdom, 211 p.

Rosenfeld, A., 1962. Automatic recognition of basic terrain types fromJones, G., 1994. Image segmentation using texture boundary detection,
aerial photographs, Photogrammetric Engineering, 28(1):Pattern Recognition Letters, 15:533–541.
115–132.Julesz, B., 1965. Texture and visual perception, Scientific American,

Rosenfeld, A., and A.C. Kak, 1982. Digital Picture Processing, Volume212:38–48.
2, Academic Press, New York, N.Y., 351 p.———, 1981. Textons, the elements of texture perception, and their

Sali, E., and H. Wolfson, 1992. Texture classification in aerial photo-interaction, Nature, 290:91–97.
graphs and satellite data, International Journal of Remote Sens-Jupp, D.L.B., A.H. Strahler, and C.E. Woodcock, 1989. Autocorrelation ing, 13(18):3395–3408.and regularization in digital images, II: Simple image models, IEEE
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