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RESEARCH

In animal and plant breeding, phenotypic selection indices 
(PSI) are used for combining selection of several traits; they pro-

vide animal and plant breeders with objective rules for maximizing 
overall genetic gains. The aim of PSI is to maximize the selection 
response and provide the breeder with an objective rule for simul-
taneously evaluating and selecting several traits (Baker, 1974). One 
of the most efficient methods for predicting the net genetic merit of 
plants and animals is the standard Smith (1936) phenotypic selec-
tion index (SPSI) under the assumption that the net genetic merit 
of the candidates for selection is a linear combination of the addi-
tive genetic values of several traits. When the index parameters are 
known, the SPSI (i) is the best linear predictor of the net genetic 
merits of the candidates for selection, and (ii) has maximum cor-
relation with the true net genetic merit (Bulmer, 1980).

One of the main problems of the SPSI is that, when used to 
select individuals, the mean of the traits can change in a positive 
or negative direction without control. This was the main reason 
why Kempthorne and Nordskog (1959) developed the basic 
theory of the RPSI that allows imposing restrictions equal to 
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correlation theory, we proposed an asymptotic 
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zero on the expected genetic advance of some traits while 
the expected genetic advance of other traits increases (or 
decreases) without imposing any restrictions.

Based on the ideas of the Kempthorne and Nord-
skog (1959) RPSI, Tallis (1962) proposed a selection index 
called PPG-PSI that attempts to make some traits change 
their values based on a predetermined level while the rest 
of the traits remain without restrictions. Mallard (1972) 
pointed out that the predetermined proportional gains 
PSI of Tallis (1962) does not provide optimum genetic 
advances and was the first to propose an optimum PPG-
PSI based on a slight modification of the RPSI.

Another PPG-PSI was proposed by Harville (1975); it 
maximized the correlation between PSI and the net genetic 
merit subject to the restriction that the covariance between 
the index and some linear functions of the genotypes is dif-
ferent from zero. Tallis (1985) modified his original selec-
tion index (Tallis, 1962) and minimized the variance of 
the difference between the index and the net genetic merit 
using restrictions similar to those of Harville (1975). Itoh 
and Yamada (1987) mentioned that the PPG-PSI proposed 
by Harville (1975) and that of Tallis (1985) are equivalent 
and indicated some problems associated with the propor-
tionality constants used in the Harville (1975) and Tallis 
(1985) indices. Later, Lin (2005) demonstrated that the 
PPG-PSI of Tallis (1985) could be extended to cases where 
more than one predetermined proportional gain is imposed 
on the genetic gain per selection cycle and that such an 
index can be constructed in one stage. In practice, the Mal-
lard (1972) and Tallis (1985) PPG-PSI produce the same 
results when two or more traits are restricted.

The SPSI, RPSI, and Mallard (1972) PPG-PSI are 
now the standard selection indices used in plant and animal 
breeding programs for choosing candidates for selection 
with or without predetermined restrictions on the PSI 
traits. When the phenotypic and genotypic variance and 
covariances of these three indices are known, then (i) the 
correlation between the net genetic merits of the candidates 
for selection and the SPSI, RPSI, and PPG-PSI is maxi-
mized, (ii) the mean prediction error is minimized, and (iii) 
the SPSI, RPSI, and PPG-PSI are the best linear predictors 
of the net genetic merit of the candidates for selection and 
the ones with the highest relative efficiency compared with 
other selection procedures and are easy to use.

When the phenotypic and genotypic variance and 
covariances are estimated, it is not known if the sampling 
properties of the SPSI, RPSI, and PPG-PSI coefficients are 
indeed optimal. Tallis (1960) derived a large sample vari-
ance of index weights for individually selecting any number 
of traits and the predicted response when phenotypic and 
genetic parameters are estimated in a half-sib analysis; 
however, the expressions are complicated and do not allow 
identifying situations where selection indices are likely to 
be inefficient. Williams (1962) obtained an exact formula 

for the sampling variance of the index weights for only two 
variables of a specific experimental design. Harris (1964) 
used the delta method to determine the sampling proper-
ties of the SPSI; however, the results are confusing and the 
author did not present a general formula for the sampling 
statistical properties of the SPSI coefficients. Hayes and 
Hill (1980) proposed a transformation of the trait variables 
used for constructing genetic selection indices such that 
the sampling properties of the SPSI weights can be easily 
computed using a general formula; however, the formula 
depends on the transformation of the trait variables.

The selection response of SPSI, RPSI, and PPG-PSI 
will be optimal when the estimator index weights are 
unbiased and have minimal variances, but its efficiency is 
likely to decrease if the estimator index weights are biased 
with no minimal variances. The sampling variance of 
the index weights will therefore provide some idea of the 
likely loss of efficiency; if the variances are high, the index 
is probably far from optimal (Hayes and Hill, 1980).

The aim of this study was to demonstrate that, in the 
asymptotic context, it is possible to generate a general for-
mula for determining the sampling properties of the esti-
mators of the SPSI, RPSI, and PPG-PSI coefficients using 
the canonical correlation theory (Anderson, 1999, 2003). 
The formula proposed does not depend on any transforma-
tion of trait variables or on a specific experimental design.

MATERIALS AND METHODS
Theory of Phenotypic Selection Indices
The Vector of Coefficients of the SPSI
Let  and  be vec-
tors of true breeding values and economic weights, respectively, 
of t traits under selection. The objective of the Smith (1936) 
PSI is to predict and select the net genetic merit H = w¢g using 
the PSI:I = b¢p¢, where  is a vector of 
trait phenotypic values and  is a vector of 
coefficients of the PSI. Let P−1 be the inverse of the pheno-
typic covariance matrix (P) and G, the matrix covariance of the 
vector of true breeding values g; then the vector

b = P−1Gw 	   [1]

maximizes the PSI expected genetic advance per selection cycle 
for each trait, that is,

  
[2],

where k is the standardized selection differential or selection 
intensity.

The Vector of Coefficients of the Restricted 
Phenotypic Selection Index
Suppose that the breeder is interested in improving only r of t (r 
< t) traits, leaving (t − r) unchanged. Kempthorne and Nordskog 
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optimum PPG-PSI. The PPG-PSI expected genetic advance 
per selection cycle for each trait could be written as

 [6],

where k was defined in Eq. [2].

Canonical Correlations Between p and g
Let p and g be vectors of trait phenotypic values and true breed-
ing values, respectively, of t traits under selection, as defined in 
Eq. [1]. In addition, suppose that p and g have a joint normal 
distribution. We can define a new vector as ;

in this case, the covariance matrix of x will be . 

Matrices P and G were defined in Eq. [1]. From the covariance 
matrix of x, we can find one measure of the association between 
p and g using the canonical correlation theory (Anderson, 1999, 
2003; Cerón-Rojas et al., 2008a). In this case, the solution is

 [7],

where bj, the jth eigenvector, and lj, the jth ( ) 
canonical correlation of p and g can be used to find the sam-
pling statistical properties of Eq. [1], [3], and [5].

In addition, bj and lj can be estimated from

 [8],

where , , , and  are maximum likelihood estimates 
(Anderson, 2003; Cerón-Rojas et al., 2008b) of P, G, bj, and 

, respectively. Note that  is positive only if  is positive 
definite (all eigenvalues positive) and  is positive semidefinite 
(no negative eigenvalues). Since  is an asymmetric matrix, 
the values of  and  can be obtained using singular value 
decomposition (Cerón-Rojas et al., 2008b).

Datasets
Dataset 1
These data are from commercial egg poultry lines and were 
obtained from Akbar et al. (1984). The estimated phenotypic 
( ) and genetic ( ) covariance matrices among rate of lay 
(number of eggs), age at sexual maturity (d), egg weight (kg), 
and body weight (kg) were:

 and 

.

(1959) solved this problem by assuming that b¢Pb = 1 and 
imposing restrictions on the SPSI expected genetic advance per 
selection cycle for each trait (Eq. [2]). Kempthorne and Nordskog 
(1959) maximized the function:  
with respect to b, where C¢ = U¢G, C¢b = 0, and U¢ is a matrix 
of ones and zeros (1 indicates that the trait is restricted and 0 that 
the trait has no restriction); 0.5l and  are 
Lagrange multipliers. The rest of the parameters were defined in 
Eq. [1]. The vector that maximizes Y and EPSI under the given 
restrictions is

bKN = Kb	  [3],

where K = [I – Q], Q = P−1C(C¢P−1C)−1C¢, and b = P−1Gw 
is the vector of coefficients of the SPSI; I is an identity matrix 
of order t ´ t; P−1 and G were defined in Eq. [1]. When U¢ is a 
null matrix (no restrictions on any traits), bKN = b. The RPSI 
expected genetic advance per selection cycle for each trait could 
be written as

 [4],

where k was defined in Eq. [2].

The Vector of Coefficients of the Predetermined 
Proportional Gains Phenotypic Selection Index
Mallard (1972) extended the idea of Kempthorne and Nordskog 
(1959) by considering that if mq is the population mean of the 
qth trait before selection, one objective could be to change mq 
to mq + dq, where dq is the predetermined change in mq in one 
selection cycle (in Kempthorne and Nordskog [1959], dq = 0, 

); the rest of the traits change with no restrictions.

Let  be a matrix of pre-

determined changes, where r is the number of predetermined 
proportional gains and dq ( ) is the qth element of the 
vector of predetermined restrictions , 
imposed by the researcher. Let M¢ = D¢C¢ be a new matrix of 
restrictions, where C¢ = U¢G; then it is possible to impose the 
desired predetermined proportional gain restrictions on Eq. [2] 
as M¢b = 0 and maximize  
with respect to b. The solution is the vector

bM = KMb 		   [5],

where KM = [I − QM], QM = P−1M(M¢P−1M)−1M¢, and b = 
P−1Gw; I, 0.5l, and  were defined in Eq. 
[3], respectively. When D = I, bM = bKN (the vector of RPSI), 
and when D = I and U¢ is a null matrix, bM = b (the vector 
of the SPSI). That is, the Mallard (1972) index is more gen-
eral than the Kempthorne and Nordskog (1959) RPSI and is an 
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The number of genotypes was n = 3330, and the vector 
of economic values was . We 
restricted three traits in RPSI and imposed three predetermined 
proportional gains in PPG-PSI, that is, . Then 
matrices U¢ and D¢ for this dataset were 

 and . The d¢ values 

were taken from Lin (2005), who used data from Akbar et al. 
(1984) to illustrate results in his paper. In addition, matrices 

 and M = CD were equal to

 and

 

, respectively.

Dataset 2
This is a CIMMYT maize (Zea mays L.) F2 population compris-
ing four traits: grain yield (GY, t ha−1), plant height (PHT, cm), 
ear height (EHT, cm), and grain moisture content (MOI). The 
estimated phenotypic ( ) and genetic ( ) covariance matrices 
among traits GY, PHT, EHT and MOI were:

 and 

 ,

where the number of genotypes or individuals was n = 250 and 
the vector of economic values was . We 
restricted three traits in RPSI and imposed three predetermined 
proportional gains in the PPG-PSI, that is, . 
Matrices U¢ and D¢ for this dataset were 

 and .

Vector d¢ was obtained from a paper by Itoh and Yamada (1987). 
Then, matrices  and M = CD were equal to

 and 

, respectively.

RESULTS AND DISCUSSION
Expectation and Variance of Vector b

Let B = {bj} ( , t = number of traits) be the 
matrix of the eigenvectors of matrix T = P−1G (Eq. [7]), 
then T = BLB¢, where  is a diagonal matrix 
with T eigenvalues. Suppose that b is in the space gener-
ated by the B eigenvectors, then b can be written as

 [9],

where  is a vector of unknown 
constants (Rao, 2002; Cerón-Rojas et al., 2008b; Crossa 
and Cerón-Rojas, 2011). By Eq. [9], the expectation and 
variance of b can be denoted as

 	 [10] and

 [11], 

respectively, where Var(bj) and Cov(bi,bq) denote the vari-
ance of the jth eigenvector and the covariance between the 
ith and the qth T eigenvectors. In Eq. [10] and [11], the T 
eigenvectors are random, but the  
values are fixed.

Expectation and Variance of Vectors bKN and bM
By Eq. [10] and [11], the expectation and variance of bKN are

E(bKN) = KE(b) 	  		                             [12] and

Var(bKN) = KVar(b)K¢ 	  [13],

respectively, and the expectation and variance of bM are

E(bM) = KME(b) 			                       [14] and 

Var(bM) = KMVar(b)K¢M 		   [15],

where E(b) and Var(b) are the expectation and variance of 
b. This means that for finding the expectations of bKN and 
bM, we need only E(b) and to find the variances of bKN 
and bM, we only need to find Var(b).
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Note that Eq. [20] converges more quickly to the one 
null matrix than Eq. [19] because the latter equation con-
tains more terms than Eq. [20]. Then, when the number 
of traits and genotypes is very high, a good approximation 
to Eq. [18] shall be

 [21].

In Eq. [21] we have written the variance of  only in 
terms of the variances of the eigenvectors of Eq. [8]. In 
practice, Eq. [21] is a good option for obtaining  
because it is a symmetric matrix, while Eq. [18] can be  

an asymmetric matrix because 

is generally an asymmetric matrix. When the number of  

genotypes is low, this can substantially affect ,

then  will be an asymmetric matrix, that is, it will 
not be a covariance matrix.

Expectation and Variance of the Estimator  
of Vectors bKN and bM
The estimators of bKN and bM were denoted by  
and , respectively, and their expectation and 
variance as

 and  	   [22]

 and

 and         [23],

where  and  are the expectation and variance 
of . In Eq. [22] and [23],  is random, but 
matrices K and KM are fixed. Note that because  is 
divided by n (Eq. [19] and [20]),  and  
have minimum variance in the asymptotic context; when 
n tends to infinity,  and  tend to the 
null matrix.

Numerical Examples
Dataset 1
The estimated phenotypic ( ) and genetic ( ) covari-
ance matrix values were presented in the materials and 
methods section. In that section, we presented two matri-
ces,  and M = CD, the vector of economic 
weight (w) and the vector of predetermined restrictions 
(d). From these data, 

,

, and

. 

Estimator of Vector b
We denoted the estimators of b by , where  
and  are estimators of the inverse phenotypic covariance 
matrix (P−1), and of the covariance matrix of true breed-
ing values (G), both defined in Eq. [1]; w is the vector of 
economic values. According to Eq. [9],  can 
be written as

  [16],

where  is the jth element of the vector , which 
is a least square estimator (unbiased and with minimum 
variance) of  (Crossa and Cerón-
Rojas, 2011), and  (Eq. [8]) is a maximum likelihood 
estimator (asymptotically unbiased) of the eigenvector bj 
of Eq. [7].

Expectation and Variance of the Estimator  
of Vector b
Suppose that vectors  and  are independent, then the 
expectation of  can be written as

 [17],

where t = number of traits. That is,  is an 
asymptotic unbiased estimator of b.

In the asymptotic context, the variance of  can be 
written as

 [18],

where, by the results obtained by Anderson (1999) in the 
context of canonical correlations, the right terms of Eq. [18] 
associated with the eigenvectors of Eq. [8] can be written as

 [19]

and, for i ≠ q,

 [20],

where n is the number of individuals or genotypes. Then, 
because Eq. [19] and [20] are divided by n, the estima-
tor  has minimum variance in the asymptotic 
context, and when n tends to infinity,  (Eq. [18]) 
tends to the null matrix. So  is a good estimator of b, 
which implies that the SPSI is a good predictor of the net 
genetic merit of plants and animals.
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Suppose that the selection intensity is 10% (k = 1.75), then 
the estimated values of Eq. [2], [4], and [6] are

,

, and 

, respectively.

Estimates of the Expectation and Variance  
of the Estimators of Vectors b, bKN, and bM

For Dataset 1, the values of vector  were 
, and the estimated expec-

tations of ,  and  were

, 

, and

, respectively.

 The estimated variances of ,  and  were

 ,

	
, and

 .

Dataset 2

The estimated phenotypic ( ) and genetic ( ) covari-
ance matrix values and the matrices  and M = 
CD for Dataset 2 were presented in the Materials and 
methods section along with the vector of economic weight 
(w) and the vector of predetermined restrictions (d). The 
estimated coefficient vector values were

 , 

, and

 .

The selection intensity was 10% (k = 1.75) and the esti-
mated values of Eq. [2], [4], and [6] were 

, 

, and

 , respectively.

Estimates of the Expectation and Variance  
of the Estimators of Vectors b, bKN, and bM

The vector values of  were 
, and the estimated expec-

tation values of , , and  were

, 

, and 

, respectively. 

The estimated variances of , , and  were

, 

,

 and

,

respectively.

Why are Matrices K and KM Fixed?
In Eq. [21] and [22], we assumed that matrices K and KM 
were fixed. We made this assumption because matrices 
K and KM are projectors. First, note that matrices K = 
[I – Q] and Q = P−1C(C¢P−1C)−1C¢ are idempotent (K 
= K2 and Q = Q2) and unique (Searle, 1966); they are 
also orthogonal, that is, KQ = QK = 0. Matrix Q proj-
ects vector b into a space generated by the columns of 
matrix C because of the restriction C¢b = 0 used when 
Y is maximized with respect to b. Matrix K projects b 
into a space perpendicular to the space generated by the 
C matrix columns (Rao, 2002). Furthermore, because of 
the restriction C¢b = 0, matrix K projects b to a space 
smaller than the original space of b. The space reduction 
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a good approximation to the values of , , 
and .

Importance of the Sampling Properties  
of Vectors ,  and 
The method we proposed for finding the sampling proper-
ties of , , and  is very simple, very general, and easy 
to program. The variances of , , and  are useful 
because they can be used to construct confidence intervals 
or confidence regions for , , and , which is impor-
tant to complete the analysis of a selection process. However, 
because the formulas were developed in the asymptotic con-
text, they require a large number of genotypes.

Relationship of Vectors b and bKN to the 
Restrictive Eigen Selection Index Method
The statistical sampling properties of coefficients b and 
bKN are related to the coefficient of the restricted eigen 
selection index (RESIM) developed by Cerón-Rojas et 
al. (2008b) in the canonical correlation theory context. 
The authors showed that b is in the space of the T = 
P−1G eigenvectors (Eq. [7]) and can be written as in Eq. 
[16]. Cerón-Rojas et al. (2008b) also showed that, under 
certain assumptions, bKN could be equal to the RESIM 
vector of coefficient. The basic theory of RESIM was 
developed within the framework of the canonical corre-
lation theory, and that is why the statistical properties of 
its coefficient are known. The RESIM uses the elements 
of the first eigenvector for determining the proportion 
of each trait contributing to the selection index, and the 
square root of the first eigenvalue (singular value) is the 
selection response. The original ideas presented in this 
article were inspired by the theory developed in RESIM.

In addition to the relationships of b and bKN with the 
RESIM presented in this paper, we would like to point out 
the relationship of two indices developed in the molecu-
lar marker-assisted selection (MAS) context: the Lande and 
Thompson (1990) and Dekkers (2007) selection indices 
with the molecular eigen selection index method (MESIM) 
of Cerón-Rojas et al. (2008a) which, besides the pheno-
typic information, also uses molecular information to pre-
dict the net genetic merit. In theory, MESIM is very similar 
to RESIM. Because the indices of Lande and Thompson 
(1990) and Dekkers (2007) are a direct application of the 
SPSI to MAS, and the MESIM was developed within the 
canonical correlation theory context, it is possible to use 
the method developed in this paper for determining the 
statistical sampling properties of the estimator of the coef-
ficients of the Lande and Thompson (1990) and Dekkers 
(2007) selection index using the MESIM theory in a similar 
manner as we did it for , , and  using the RESIM 
and the canonical correlation theory. This shows that, in 
effect, the method we proposed for finding the sampling 
properties of , , and  is general.

where matrix K projects b is equal to the number of zeros 
that appear in Eq. [4]. In the two numerical examples, 
we found that , for Dataset 1, 
and , for Dataset 2, because we 
imposed three restrictions on both datasets.

Additionally, note that matrices QM = 
P−1M(M¢P−1M)−1M¢ and KM = [I – QM] of Eq. [5] had 
the same function as matrices Q = P−1C(C¢P−1C)−1C¢ and 
K = [I – Q]. However, in this case, matrix QM projects 
b into a space generated by the columns of matrix M 
because of the restriction M¢b = 0 that is introduced when 
YM is maximized with respect to b. Matrix KM projects b 
to a space that is perpendicular to the space generated by 
the columns of matrix M. Then, matrices QM and KM are 
both projectors, that is, they are idempotent (KM = KM

2 
and QM = QM

2) and unique (KMQM = QMKM = 0).
Then, as K and KM are projectors, their main function 

is to transform vector b into vectors bKN and bM, and to 
determine the sampling statistical properties of  and 

, we can assume that K and KM are fixed.

Statistical Sampling Properties of  
The sampling properties of  were derived 
directly, and the only condition is that  can be written 
as Eq. [16], that is, assuming that  is in the space gener-
ated by the eigenvectors of matrix  (Eq. [8]). When 
this is the case, the sampling properties of the estimator 
of eigenvalues and eigenvectors of matrix  can be 
applied to find the sampling properties of .

In both datasets, we used Eq. [21] to obtain ,
, and  because the estimated values of 

matrix 
 
for Datasets 1 and 2 were

 and

,

respectively. In Dataset 2, the values 0.1515, −0.2856, and 
−0.1585 were relatively high; however, the rest of the 
values were low. In Dataset 1, all the values were very low. 

The values of  will be similar to 

those in Dataset 1 if the numbers of traits and genotypes 
are very large; in this case, we can assume that Eq. [21] is 
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As for the economic weights, these should be deter-
mined by the breeder or by some mathematical estima-
tion. When the economic weights are known, there is 
no problem. Furthermore, so far there is no mathemati-
cal method for determining the economic weights for the 
three selection indices described in this paper; a possible 
solution would be to use selection indices such as RESIM 
and the eigen selection index method (Cerón-Rojas et al., 
2008a,b), which do not require economic weights.

CONCLUSIONS
Using the canonical correlation theory, we developed an 
asymptotic method for determining the statistical sam-
pling properties of the estimator of the coefficients of the 
Smith phenotypic selection index. Also, under certain 
assumptions applied to the Smith phenotypic selection 
index coefficient estimator, we obtained the sampling 
properties of the estimator of the restricted phenotypic 
selection index, and the predetermined proportional gains 
phenotypic selection index. The method indicated that 
when the number of genotypes is large, the estimators 
of the coefficients of the three indices were unbiased and 
with minimal variance. We concluded that this method 
could be used to obtain the sampling properties of the 
estimator of the coefficients of the three indices.

Acknowledgments
The authors are grateful to México’s Consejo Nacional de Ciencia 
y Tecnología (CONACYT) for partially funding this research.

References
Akbar, M.K., C.Y. Lin, N.R. Gyles, J.S. Gavora, and C.J. Brown. 

1984. Some aspects of selection indices with constraints. Poult. 
Sci. 63:1899–1905. doi:10.3382/ps.0631899

Anderson, T.W. 1999. Asymptotic theory for canonical corre-
lation analysis. J. Multivariate Anal. 70:1–29. doi:10.1006/
jmva.1999.1810

Anderson, T.W. 2003. An introduction to multivariate statistical 
analysis. 3rd ed. John Wiley & Sons, New Jersey.

Baker, R.J. 1974. Selection indexes without economic weights for ani-
mal breeding. Can. J. Anim. Sci. 54:1–8. doi:10.4141/cjas74-001

Bulmer, M.G. 1980. The mathematical theory of quantitative genet-
ics. Lectures in biomathematics. University of Oxford, Claren-
don Press, England.

Cerón-Rojas, J.J., J. Sahagún-Castellanos, F. Castillo-González, A. 
Santacruz-Varela, I. Benítez-Riquelme, and J. Crossa. 2008a. A 
molecular selection index method based on eigenanalysis. Genet-
ics 180:547–557. doi:10.1534/genetics.108.087387

Cerón-Rojas, J.J., J. Sahagún-Castellanos, F. Castillo-González, 
A. Santacruz-Varela, and J. Crossa. 2008b. A restricted selection 
index method based on eigenanalysis. J. Agric. Biol. Environ. 
Stat. 13:421–438. doi:10.1198/108571108X378911

Crossa, J., and J.J. Cerón-Rojas. 2011. Multi-trait multi-environment 
genome-wide molecular marker selection indices. J. Indian Soc. 
Agric. Stat. 62:125–142.

Dekkers, J.C.M. 2007. Prediction of response to marker-assisted and 
genomic selection using selection index theory. J. Anim. Breed. 
Genet. 124:331–341. doi:10.1111/j.1439-0388.2007.00701.x

Harris, D.L. 1964. Expected and predicted progress from index 
selection involving estimates of population parameters. Biomet-
rics 20:46–72. doi:10.2307/2527617

Harville, D.A. 1975. Index selection with proportionality con-
strains. Biometrics 31:223–225. doi:10.2307/2529722

Hayes, J.F., and W.G. Hill. 1980. A reparameterization of a genetic 
selection index to locate its sampling properties. Biometrics 
36:237–248. doi:10.2307/2529975

Itoh, Y., and Y. Yamada. 1987. Comparisons of selection indices 
achieving predetermined proportional gains. Genet. Sel. Evol. 
19:69–82. doi:10.1186/1297-9686-19-1-69

Kempthorne, O., and A.W. Nordskog. 1959. Restricted selection 
indices. Biometrics 15:10–19. doi:10.2307/2527598

Lande, R., and R. Thompson. 1990. Efficiency of marker-assisted 
selection in the improvement of quantitative traits. Genetics 
124:743–756.

Lin, C.Y. 2005. A simultaneous procedure for deriving selection 
indexes with multiple restrictions. J. Anim. Sci. 83:531–536.

Mallard, J. 1972. The theory and computation of selection indi-
ces with constraints: A critical synthesis. Biometrics 28:713–735. 
doi:10.2307/2528758

Rao, C.R. 2002. Linear statistical inference and its applications. 2nd 
ed. John Wiley & Sons, New York.

Searle, S.R. 1966. Matrix algebra for the biological sciences. John 
Wiley & Sons, New York.

Smith, H.F. 1936. A discriminant function for plant selection In: 
Papers on quantitative genetics and related topics. Department of 
Genetics, North Carolina State College, Raleigh, NC. p. 466–476.

Tallis, G.M. 1960. The sampling errors of estimated genetic regres-
sion coefficients and the error of predicted genetic gains. Aust. J. 
Stat. 2:66–77. doi:10.1111/j.1467-842X.1960.tb00127.x

Tallis, G.M. 1962. A selection index for optimum genotype. Bio-
metrics 18:120–122. doi:10.2307/2527716

Tallis, G.M. 1985. Constrained selection. Jap. J. Genet. 60:151–155. 
doi:10.1266/jjg.60.151

Williams, J.S. 1962. Some statistical properties of a genetic selection 
index. Biometrika 9:325–337. doi:10.1093/biomet/49.3-4.325


