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DIGITAL TWIN BASED SYNCHRONISED CONTROL AND SIMULATION  

OF THE INDUSTRIAL ROBOTIC CELL USING VIRTUAL REALITY 

During the years common understanding of the possibilities and perspectives of Virtual Reality (VR) usage has 

been changed. It is thought that VR is mainly used in entertainment purposes, but it is being used already for 

many years in different industries, and now with easier access to the hardware it became a helpful and accessible 

tool that could be used and developed in any field of human activities. In manufacturing, immersive technologies 

are mainly used nowadays for the visualisation of processes and products combining those visuals into  

the factory Digital Twin (DT) which is possible to view from the inside look. This feature is already being used 

in several manufacturing simulation tools, which enable to view onto industrial line / robotic cells via Virtual 

Reality glasses. However, the potential of using simulations with VR in manufacturing is not fully uncovered. 

The main aim of this, industrial robotics targeted research is to enable besides simulation also universal control 

algorithms through Virtual Reality experience, produced by game engine Unity3D, which can be easily modified 

for a wide range of industrial equipment. The primary outcome of this work is the development of the synchro-

nisation model of real and virtual industrial robots and experimental testing the developed model in Virtual 

Reality and shop floor labs 

1. INTRODUCTION 

 Years ago, most people thought that Virtual Reality (VR) could be used only for 

gaming and another type of entertainment purposes, but actually, it is being used in research 

already few decades. Now VR could be used in any sphere of human activities. For 

example, it can be used in architecture or design, where people can firstly try their projects 

in a digital environment before going to real projects. This way can prevent dozens  

of mistakes and errors without any loss. Also, VR can be a good helper for education in 

schools and universities. Students will be able to see how theoretical knowledge from 

lessons could be implemented in real life. One more approach is professional work power 
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training. VR technologies will be the proper apparatus to simulate working environments 

for medical, military or aviation purposes. To be more precise – there are different research 

areas, where control and improvement of how to better use and visualise different 

information, about the VR and Augmented Reality (AR). VR simulation could also be used 

in manufacturing, robotics and control systems [1–4] by simulating different algorithms and 

control methods. Manufacturing, robotics, and control Architecture [5] of varying scale 

rooms and buildings, for finding the most efficient way of design. Audio [6] – to use VR as 

a sound visualisation tool for the artist or blind people. Moreover, smart racks and 

simulations are done with force feedback [7, 8] for a better haptic feeling of tested in VR 

joysticks, devices or manipulators. So of course entertainment and education [9, 10] area for 

precise training simulations for different level workers and students.  

From the other side, some issues may arise. First of them is the lack of people familiar 

to the VR field. As this technology is new and not so widely known, there is still  

a lack of developers, who have enough experience to create a ready-to-go project, because 

the production process of VR environment is hard work. In comparison to mobile 

applications, where one programmer or artist can do all the stuff, as pixel graphics and 

writing the code, VR requires high-quality 3D models, as well as, an understanding  

of human feelings - motion sickness. Also, it is essential to have a team, because developing 

in VR means testing application alongside with programming and doing it alone may be 

very time-consuming. The last, but not the least, it is hardware. Technologies such as VR 

requires very powerful newest personal computers (PC) with headsets and stations, such as 

HTC Vive or Oculus Rift, which can be very costly for small and medium enterprises 

(SME-s) and stand-alone developers. This entire means that integration of VR technologies 

to the SME-s is still complicated because of the lack of workforce or knowledge about  

the possibilities. 

The practical aim of the research is to create Industrial Digital Twin (DT) – a digital 

copy of the real manufacturing system, which can be controlled and programmed in real-

time directly from the computer application model of the industrial robot. It includes  

the creation of the precise model of the robot and developing a software package to control 

and program it directly from VR. The work also analyses how creating the DT can improve 

workspace awareness of the real robot without using any additional physical equipment, but 

an only accurate computer simulation. Moreover, our tool, developed during this research, 

with the usage of immersive technologies, is able to visualize in real scale manufacturing 

lines and robotics cells not only in a purpose of simulation and demo, but also for control  

of the actual work process – interactive online tools, which gives ability to re-program line 

in real-time. With it, downtime is reduced to the minimum, as all optimisations and new 

product production are being done in DT and then via network transferred to middle layer 

controller in seconds, allowing using the new program from a new loop of the process in 

reality. Thus, reduces downtime and money waste on re-programming and it increases  

the overall efficiency of the manufacturing process. Moreover, the aim of this project is  

a creation of the very flexible, user-friendly and modular environment, which can be easily 

modified, connected to the real manufacturing assets, and accessible by the broad public.  

Toward this research, an experimental approach to the development of the metho-

dology is being introduced. Both method, how-to and a use-case are combined into the main 
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section. The outcomes of this work were tested and validated as a part of a more significant 

project in Tallinn University of Technology – a recreation of the Industrial Virtual and 

Augmented Reality Laboratory (TalTech IVAR laboratory) in VR. 

2. DEVELOPMENT OF THE EXPERIMENTAL ENVIRONMENT 

This part of the research describes the main development steps that were taken to 

implement the DT of industrial robot – Motoman GP8 in VR. Each of the steps, which 

include model preparation, programming and optimising for VR, their challenges and 

outcomes are analysed in detail in the corresponding sections. The primary software tool 

selected for the experimental research realisation is the Unity3D game engine. This 

approach can be developed in various similar engines, for example, Unreal Engine (UE), but 

because of the previous author's experience was chosen Unity, not to spend time on  

re-learning. Unity provides a simple but powerful development environment with a modular 

approach to programming and also offers integration with all commercially available VR 

systems, which is perfect for the defined task. 3DS Max and Maya from Autodesk were 

used as 3D modelling software for this project. All development cycles mentioned above are 

thoroughly explained in the corresponding sections of this paper. Also, the project described 

above was initially designed to work with the specific hardware: HTC Vive headset for VR 

capabilities and Yaskawa Motoman GP8 industrial robot for testing the DT concept. 

However, the software was developed with a modular programming approach in mind and, 

as a result, it can be easily extended to support other current VR platforms and to control 

DT of many different models of industrial robots and other equipment. Mainly, immersive 

technologies and tools of how to make those are being used for visualization and just  

a simulation of production processes [11], but more and more research is done on 

integration of different control inputs like Robot Operation System (ROS) to the different 

layers of simulations and modelling a test environment [12–15]. In the methodology 

described below, we intend to combine all mentioned above together and propose  

an alternative to the ROS environment. 

2.1. PREPARATION OF THE ROBOT MODEL 

The simulation required both models of an industrial robot and its training station. 

Digital models of the robots can be taken from the manufacturer website or related software 

libraries. Though the models imported, were built in proportions exactly corresponding to 

their real-world counterparts, there were several important issues to address before 

importing them to Unity3D game engine: 

 Robot model had to be rigged. Rigging in related context means defining the location 

of pivot points in the models so that the program can get the axes around which 

robot's links are rotated. This operation had to be done precisely to keep the quality 

of the simulation.  
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 The robot stand model had to be simplified for VR because the original geometry 

was too “heavy” to be rendered in real time. 

 Both models had the correct proportions when exported from manufacturer website 

or software, but their scale had to be checked and adjusted manually after importing 

to Unity3D. 

Rigging of the robot model can be done using Blender, Autodesk 3DS Max or other 

similar software which can convert CAD models into .fbx file format – for this research 

3DS Max were used. The process of rigging consisted of defining the correct coordinates  

of the model’s pivot points (robot’s axes) and aligning robot meshes (3D geometry) to them. 

Besides, it was essential to set up all links and joints of the robot into the correct hierarchy. 

Hierarchy allows the model to be controlled by game engine in the desired manner: when 

the parent geometry is moved (for example, the first joint of the robot is rotating), all child 

geometry follows along (part of the arm located above the actuated joint is rotating too). 

The hierarchy was set up in such a way that the robot's rig (relative locations of the pivot 

points) is not affected when adding and scaling link meshes to it. That is useful because  

the exported geometry itself consists of polygons, and never can correctly copy  

the dimensions of the real object. However, it is possible to give exact coordinates to  

the model's pivot points and maintain an ideal accuracy between the real robot and model in 

joints and end-effector positions. 

Figure 1 demonstrates how pivot points of the model in 3D modelling software copy 

the robot’s geometry from the mechanical drawing. 

 

Fig. 1. Comparison of the robot’s mechanical drawing and its pivot point representation in 3DS Max 

Optimising of the industrial robot stand model was done in Autodesk Maya. It was 

chosen with reason as this 3D modelling software simplifies work with high-polygonal 

models and provides tools to simplify their geometry. The first part of optimisation was 

reducing the polygon count of the model, which, as a result, has decreased from more than 

1.000.000 faces to around 80.000 without losing dimensional precision of the model.  

The second part of the optimisation process was minimising the count of materials used in 

the model after importing it to Unity3D. Materials of the model define the way it looks in  

a 3D application (i.e., colour, surface texture). The problem was in the number of materials 

generated for the model when it was exported from manufacturer software – several 
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thousands of materials were created and added to the model because the program produced 

new material for each model's mesh. As a result, the model was unsuitable for real-time 

rendering, especially in VR. The solution was .to remove the generated materials and create 

several new ones to replace them. Achieved result is the model, which is ready to use in  

the simulation and without the significant loss of visual quality  

Scaling the models was the last part of geometry preparation before the actual 

programming of DT. To represent the real robot station in the correct size in VR, both  

the stand and the robot models had to be downscaled to the right dimensions and positioned 

correctly relative to each other. The operation was non-complex due to the dimension 

system of Unity, where 1 unit of distance in the game scene equals 1 meter in the real world. 

This dimensioning is being preserved when inside a VR simulation, so the user can 

experience the robot’s model in 1:1 scale stereo environment, which gives to person very 

precise presence feeling. 

2.2. ROBOT CONTROL SCRIPTS 

To power the Digital Twin system created in this project, some scripts in C Sharp (C#) 

language was designed and tested in the Unity3D game engine. Unity3D uses  

a modular approach to application development, which is implemented as Game Objects 

(models, geometry, effects, etc.) and Components (C# scripts which control Game Object 

behaviour) attached to them. To make further future developments simpler was decided to 

maintain this modular approach when developing the project’s programming base as well. 

The scripts used in the experiment can be separated into three major parts according to 

their functions: 

 Control scripts family, which provides methods to control a generic industrial arm 

robot model. DT controller belongs here as well. 

 Programming scripts, which allow creating simple systematic programs, which can 

be later, run on the robot models managed by Control scripts. 

 Collision detection scripts, which monitor the position of the robots led by Control 

scripts to check for potential collisions with environment objects and stop when  

a possible collision is detected. These scripts are intended to be used with virtual 

robot models inside Unity3D. 

Robot control scripts are built in a hierarchy structure, which can be seen in Fig. 2. 

The functions of each script are described in the following sections. 

Base control script 

RobotController is an abstract base class, which means that it contains no actual code 

to be run, but the definitions of methods and logic, which has to be implemented by any 

class inheriting from it.  

RobotController class is the core of all application structure because it is an element, 

which enables the universality and consistency among the interfaces of all other Controller 

classes. Due to it any other script, for example, RobotProgrammer can send commands to 

the controlled robots (whether real or virtual) without the risk of producing an error because 

of a non-existing method called.  
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Here is the list of public (which can be accessed by any other scripts) methods and 

properties defined in base RobotController class: 

 public bool isMoving – returns true if the controlled robot is currently moving, 

 public void SetSpeed() – sets the speed of the robot (0 to 100%), 

 public float GetJointAngle(int jointNumber) – returns the angle of the given robot 

joint, 

 public List<float> GetJointsAngles() – returns the list with all current joint angle 

values of the robot, 

 public void MoveJointToAngle(int jointNumber, float angle) – moves given robot's 

joint to a given angle with the currently set speed,  

 public void MoveJointsToAngles(List<float> targetAngles) – accepts a list of angle 

values, and then moves all joints of the robot to these corresponding angles with  

the currently set speed,  

 public abstract void MoveToEndpoint(Transform endPoint) – accepts Transform 

(Unity’s representation of position in 3D space), then moves robot’s end-effector to 

this point using Inverse Kinematics (IK) with the currently set speed,  

 public abstract void MoveRobotToZero() – a shortcut command to move all robot’s 

joints to their zero positions,  

 public abstract void Stop(bool emergency = false) – stops the current robot move-

ment as a default; if the given emergency parameter is true, stops the robot urgently 

(i.e., disables servos when controlling the real robot). 

 

Fig. 2. Robot control scripts hierarchy 

Also, RobotController defines some protected methods to be used only inside  

the deriving classes: 

 protected abstract void InitializeRobot() – this method is run internally when  

the control script loads; intended for setting references and initialising all required 

parameters of the robot, 

 protected abstract void MoveRobotJoints(List<float> targetJointAngles) – moves all 

joints of the robot to the corresponding angles set in targetAngles list; this function is 
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executed internally each time MoveJointToAngle(…), MoveJointsToAngles(…), 

MoveToEndpoint(…) or MoveRobotToZero () methods are called on the robot, 

 protected IEnumerator RobotMovement_Coroutine(List<float> targetJointAngles) – 

an internal Coroutine (the method that is run in a loop over multiple game frames) 

which implements joints' movement process to the given angles with set speed,  

 protected IEnumerator RobotMovement_Coroutine(Transform targetPoint) – an in-

ternal Coroutine, an analogue of the previous one, but is used for movement  

using IK. 

Again, these methods are implemented in each class inheriting from RobotController. 

The code that is run inside these methods for each class can be different depending on  

the type of robot being controlled; however, the input and output parameters always follow 

the same pattern. Given this, if somebody creates a new controller script for a new robot 

model, it is going to work with this application – thus simplifying the development of new 

DT controllers. 

Virtual robot control 

VirtualRobotController is created to control a generic virtual industrial robot model 

inside Unity3D. It uses a supplementary VirtualRobotJoint script to manipulate its joints 

and can also connect to Inverse Kinematics solver to support MoveToEndpoint(...) 

command.  

To set up a new virtual industrial robot for control in Unity using this script, a deve-

loper needs to execute several steps: 

 Import a correctly rigged model of the desired robot to Unity. 

 Add VirtualRobotJoint script to each joint of the robot model and define the joint’s 

rotation limits in this script’s Component interface. 

 Add VirtualRobotController script to the root of the robot model hierarchy. 

 (Optional) Add Inverse Kinematics solver script if MoveToEndpoint(...) command 

needs to be implemented. 

The virtual robot has a default maximum speed, which can be set by the developer 

inside Unity; actual robot speed is set inside the application as a per cent of this maximum 

value. If at some point the speed of the VirtualRobotController is set to zero, it does not stop 

moving but instead moves immediately to the given joint angles or endpoint. This feature is 

implemented for the cases when a virtual robot needs to immediately synchronize its 

position according to some values (in case of DT application, sync with the real robot). 

Real robot control 

Regarding this work the control, Application Programming Interface (API) created 

by the industrial robot manufacturer was used to control the robot over the local network. 

Because the API itself is distributed under the Non-Disclosure Agreement (NDA), the code 

samples using it and the explanations of its inside functionality cannot be published in this 

work. However, it is sufficient to explain the underlying logic of how the real robot control 

is implemented in this DT project to understand the principle and apply it in other 

experiments. 

The RealRobotController script is intended to be used for real industrial robot control 

over the network. It inherits directly from RobotController but is also declared as an abstract 
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class, because it contains a couple of extra properties and methods which are dictated by  

the necessity to connect and continuously monitor the state of the linked real robot. These 

consist of the following:  

 public bool isConnected – returns true if the connection with the robot is successfully 

established, returns false otherwise,  

 Protected IEnumerator RobotStateMonitor_Coroutine() – an internal Coroutine 

which manages the link to the robot and periodically updates the status information 

about it (i.e., joint positions, system status, error messages). 

These small additions create a base for writing scripts, which can be used to control 

and monitor real industrial robots from Unity3D. While the interface stays the same 

(RobotController), class methods can now utilise an internal protocol for communication 

with the real robot controller over the network, and the script can act following the state 

data received from the actual controller, creating a closed feedback loop with the robot.  

The protocol implementation depends solely on the company, which has produced the robot 

and can be integrated into the solution as a new script inheriting from RealRobotController. 

The control of researched robot was implemented in the form of MotomanGP8Controller 

class, which is inherited from RealRobotController and implements its methods. 

It is also important to note that in the controller script it was managed to achieve  

the joint angle setting accuracy which is identical to the actual precision of the robot – 

which is as high as 0.001°. That means that any time the robot's joint angles are set from  

the simulation, the real robot moves to the target angles with the same precision. 

Digital Twin system 

With the programming basis of the project implemented inside RobotController family 

of scripts, namely VirtualRobotController and RealRobotController, creating a Digital 

TwinController script, which would enable Digital Twin functionality in the developed 

application, was near to a “plug-and-play” process. DT solution for industrial robots 

developed concerning this research work according to the following logic: 

 DigitalTwinController script acts as a coordinator between two scripts in Unity: 

VirtualRobotController and MotomanGP8Controller. 

 MotomanGP8Controller connects to Motoman GP8 robot over the local network and 

continuously monitors its state.  

 DigitalTwinController reads position data received by MotomanGP8Controller and 

redirects it to VirtualRobotController script. 

 VirtualRobotController synchronises the virtual robot’s joints’ positions according to 

received values, and, as a result, copies all movements of the real robot. 

When a movement command is sent to DigitalTwinController (for example, 

MoveRobotToZero()), the script first sends this command to the real robot, and in the next 

update loop virtual robot gets synchronised with the real one again, creating a smooth DT 

experience. Moreover, if the teach pendant, which is the control panel attached to the real 

robot, overrides the real robot program control, the twin is still going to mimic the 

movements of its real counterpart. The solution also remains safe, because even when 

somebody is manipulating the robot from VR environment, the proximity sensor built into 

the experimental stand continues monitoring surroundings, and stops the robot if someone 
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comes dangerously close in the real world. A schematic representation of the Digital Twin 

system can be seen in Fig. 3. 

 

Fig. 3. Digital Twin system diagram 

2.3. ROBOT CONTROL SCRIPTS 

Robot programming scripts family contains three classes, which are responsible for 

providing robot programming and testing functionality as well as methods to simplify these 

processes. These scripts are: 

 RobotProgrammer. 

 RobotTester. 

 VirtualRobotProgrammingClone.  

Main programming script 

The programming functionality for Control scripts is added using the Robot 

Programmer Component. It is a simple programming manager, which was created to 

demonstrate how it is possible to program robot directly from Unity without using the native 

commands, which can be different depending on the robot’s model and implementation. 

The script contains methods to create new programs for robot controllers and store 

them for later use. RobotProgrammer must be connected to a specific RobotController 

inside Unity to make it possible to run the created application. Currently, three types  

of commands can be added to the program using the following methods: 

 public void AddPointToProgram(List<float> jointAngles) – adds a point the robot 

should move to; the point is given as the list of similar joints' angles, 

 public void AddWaitToProgram(float waitTime) – adds pause which lasts for  

the number of seconds specified in the waitTime parameter, 

 public void AddGripperAction (bool action) – adds gripper action to the program  

(if the given action parameter is true, the robot will close the gripper, if false open it).  
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These three simple command types allow creating demonstrative which can be run on 

all robot controllers, from virtual to DT. 

Internally, RobotProgrammer stores the programs as RobotProgram objects (a utility 

class declared inside RobotProgrammer script), which, in turn, contain the lists  

of ProgramAction objects (another utility class inside RobotProgrammer, which is 

responsible for storing and interpreting the steps added to the algorithm utilising methods 

described above.  

To run the currently selected program in RobotProgrammer, one has to call  

a RunProgram(...) method from it. RunProgram(...) will automatically parse the currently 

selected program and send the corresponding commands to the connected robot using  

the same RobotController API, with a 32,875 ms of average delay between each command 

to ensure stability. 

Robot testing script 

A script called RobotTester was created to speed up the development cycle by 

providing a simple tool, which can be used to test the newly written RobotController scripts. 

It contains methods, which call the usual position and movement functions from 

RobotController, but provides a Unity3D interface, which helps to quickly switch between 

these methods, as, can be seen in Fig. 4. 

 

Fig. 4.  RobotTester script Component interface 

As can be seen from Fig. 4, this component provides a simple interface where  

the developer can define the input parameters and select the tested method. Action to be 

tested is selected using a drop-down menu, which provides the next options: “Print Joints”, 

“Move Joint”, “Move Joints” and “Move To Endpoint”. Input parameters for each of these 

commands can be given further in the interface (joint number and angle for “Move Joint” 
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command, joints’ angles list for “Move Joints” and target Transform for “Move To 

Endpoint”). After the necessary action type and parameters are selected, the test can be 

performed by merely calling Test() method of this RobotTester script. This script has 

dramatically simplified the development and testing of new RobotController scripts during 

this research. 

Robot programming virtual representation (digital clone) 

The final goal in the development of robot programming system was to implement  

the way to make the programming process itself more understandable and straightforward 

for the user. It resulted in the creation of the VirtualRobotProgrammingClone script.  

This script is inherited from the VirtualRobotController, and its purpose is to create a copy 

of the programmed virtual robot with the same parameters placed in the same position as  

the original. This digital clone can be used to visually set the target points when 

programming the robot, with the need to move the original – this feature is especially useful 

when programming a real robot controller (see Fig. 5). 

 

Fig. 5.  Digital Twin robot (left) and its digital programming clone with IK endpoint target (right) 

VitrualRobotProgrammingClone allows setting the positions of the joints as well as 

endpoints using steps, which makes it simpler to set the points from an interface. While 

joints are actuated the same way as it is done in other RobotController scripts, digital 

programming clone in this project also uses IK solver, which allows setting the robot 

position by moving its endpoint target. There was no need to develop the IK solver from 

scratch, as the Unity engine already provides different ready-to-go IK options.  

The first available option is to use the built-in Unity IK system called Mecanim, but 

another tool was selected for this project – Final IK Unity plugin. Final IK is a full-packed 

IK system developed in Estonia specifically for Unity game engine. Though this plugin is 

not free, the license has to be purchased only one time, and it is more flexible and user-

friendly than the Unity's built-in Mecanim system. Final IK also allows creating custom IK 

chains and can be used in the industrial robot model. So, Final IK solver was used to 

calculate the joints’ positions of the digital programming clone when controlling it in IK 

mode. A schematic of the robot programming system can be seen in Fig. 6. 
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Fig. 6. Robot programming system diagram 

Programming User Interface (UI) 

As a final goal, the DT system developed in this project was integrated into the full-

scale simulation of the University’s IVAR Laboratory. To the projected were implemented 

the User Interface (UI) for robot control and programming using APIs of the scripts created 

concerning this use-case development. It created a possibility to test the developed scripts 

right from VR, using HTC Vive headset, resulting in positive outcomes. The visual look  

of the UI is presented here for the reference of what can be done using the scripts developed 

concerning this project (see Figs 7 and 8). 

  

Fig. 7. Digital Twin control menu 
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Fig. 8. Digital Twin programming menu (the virtual robot is replaced with its digital programming clone) 

2.4. COLLISION DETECTION SCRIPTS 

One additional goal of this research was to develop a method, which can improve  

the workspace awareness of the real robot by using its DT. As a result, two scripts were 

developed: RobotCollisionRollback and RobotCollisionAware. Both scripts have the same 

basic idea implemented in them: a DT is an exact digital copy of the real robot; given this, it 

should be possible to use the DT's geometry to monitor the position of the robot in its 

workspace and prevent it from accidental collisions with the environment using Unity 

physics system. If the models of both the robot and its working cell are made precisely 

(which is the case for this project), they can be used with a quite high certainty for collision 

prevention. Of course, the joint limits can always be set on the real-world robot itself, but 

this process takes time and requires thorough planning, and never guarantees that all 

possible collision scenarios are eliminated. Another option is to supplement the real-world 

robot with proximity sensors on each of its links and monitor collisions using these sensors 

– but this method is very costly and even more time-consuming. The DT collision detection 

approach, proposed in this work, provides almost the same level of reliability but does not 

require any extra physical equipment or significant setup time (given that the DT model is 

already made and has correct dimensions set). All that is needed for this approach to work is 

to generate colliders for the robot’s model in Unity3D and attach one of the collision 

detection scripts described below.  

The RobotCollisionAware script uses Unity physics system to detect collisions of the 

robot with the environment. Trigger colliders attached to the robot's model can detect 

collisions with other objects before the robot’s geometry is going actually to encounter 
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them. That can be used for example for prohibiting certain positions when using a digital 

programming clone and trying to add points, which can cause collisions to the program. 

RobotCollisionRollback is used for the DT model itself. It is an enhanced version  

of RobotCollisionAware script, which is intended to prevent the real robot from colliding 

with its stand during direct control. In a case when the robot is about to bump into the stand, 

this script will call an emergency stop command, and then automatically move it back to  

the previous safe position. This method makes controlling the robot from VR safe for both 

the robot and its surroundings. 

2.5. PROJECT OPTIMISATION FOR VIRTUAL REALITY 

To enable the VR capabilities in the developed Unity project, Virtual Reality Toolkit 

(VRTK) Unity script library was used. VRTK is an exceptional example of open-source 

software. This library contains scripts, which simplify the process of building VR 

applications for Unity to a great extent, and furthermore, the applications developed using 

VRTK are elementary to modify and add support of different platforms. The project of this 

research was initially built to be used with the HTC Vive headset, but thanks to its VRTK 

basis it can be ported to all common VR platforms, including Oculus Rift and Microsoft 

Mixed Reality (MR). 

During the DT control scripts tests in VR, it appeared that the code was causing  

a significant framerate drops when sending the commands to the connected robot. Framerate 

is the speed at which the application is rendered, measured in frames per second (FPS).  

The stable framerate of 90 FPS is crucial for good VR experience because framerate drops 

to the numbers lower than this are immediately causing discomfort or even nausea to  

the user of the application. 

After the problem investigation, it was revealed that the problem was caused by 

industrial robot API used in MotomanGP8Controller to send commands to the robot – while 

the commands had to be sent asynchronously to avoid affecting framerate; API sent 

synchronous calls to the robot. Because of this, an application had to wait for the command 

to be successfully transmitted over the network and confirmed, causing it to freeze in  

the same frame until the command is executed. This effect caused the framerate to drop  

the framerate below 20 FPS – making the application practically unusable for VR. This 

problem had to be overcome to finish the experiment successfully. 

The solution was to add multithreading functionality to the application. Unity API 

itself is single-threaded, so the multithreading solution had to be implemented indepen-

dently of Unity scripts. After some experimental research, the solution was found – to create 

a ThreadedJob class, which can be extended into separate job classes, which run their code 

in parallel threads. With the usage of these classes as a base, the calls to the robot were 

moved into separate job classes called MotomanMonitorJob, MotomanMoveJointsJob, and 

MotomanStopJob. Because of such architecture change, all framerate problems cause by the 

robot API were eliminated – what made application to be able to run smoothly, and its 

performance does not depend on the commands sent to the robot. 
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3. EXPERIMENT/USE-CASE 

As it was mentioned earlier in this paper, the VR environment for the robot's Digital 

Twin was created concerning the project of digitalisation of TalTech IVAR Laboratory. 

Thus said, before the system could be used for the demonstrations and educational purposes 

in the Laboratory, it had to undergo testing for safety and working stability.  

The most critical part of the DT simulation was collision detection, as the safety  

of the real robot and its surroundings directly depended on this feature. After subsequent 

control tests, it was determined that the DT collision prevention system, described in section 

2.4 of this article, was capable of timely stopping both virtual and real robots if  

the upcoming collision with the surrounding geometry was detected. It is important to note 

here, that the effectiveness of this system depends on the precision of the robot work 

cell/environment reproduced in VR simulation. If it is represented incorrectly, there is  

a chance of robot hitting objects in the real world. On the contrary, this hazard can be 

quickly eliminated by careful planning and dimensioning when reproducing the robot 

system in 3D. 

Another essential feature of the system confirmed during testing was the possibility to 

override control over the system from inside the real world – whether by the teach pendant 

or by the proximity sensors installed in the robot's stand. In the first case, the robot could be 

set to manual control mode and manipulated directly from it's taught pendant, while the DT 

inside the running VR simulation would continue reproducing all movements of its real 

counterpart. In the second case, if some person approached too close, it would trigger  

the proximity sensor, automatically stopping the real robot from moving and thus 

guaranteeing safety to the people around the machine; again, the DT would stop as well, 

staying synchronised with the real robot. From the point of practical usability, the system 

has proven itself an excellent tool for DT technology demonstration and education, 

confirmed by the university's robotics specialist. DT makes interaction with the robot much 

safer, simpler and more engaging by utilising all the unique features the VR has to offer, 

i.e., real-size stereo picture, highly flexible 3D interfaces, etc. The system was also operated 

by numerous students and was said to be easier to understand and control for people 

unacquainted with robotics. Currently, it is being used in the TalTech IVAR Laboratory 

demo centre for research projects and demonstration purposes daily. 

With certain improvements in stability and added features, such as support for custom 

industrial robot tools control, the developed concept can with the most certainty be used for 

industrial control and production purposes. 

4. RESULTS AND FUTURE WORK 

The simulation system developed in this work, which consists from the full 

synchronisation between real and virtual industrial robot, implements a universal software 

base, which can be extended to control and program DT of different industrial robots by  

the usage of the Unity3D game engine. It also presents an idea of how DT can improve  
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the workspace awareness of its real-world counterpart using the collision prediction system 

inside the simulation – a viable alternative to cost- and time-consuming physical sensor 

solutions.  

Overall developed DT system provides the following advantages for the manufac-

turing lines and robotic cells: 

 Enlargement of equipment functionality with smaller cost – virtual sensors can 

control real machines, as with collision detection case, described in above sections. 

 Flexible – modularity and universal and user-friendly UI adjustable for various type 

of equipment. 

 Production monitoring – data visualisation from sensors, fast optimisation of produc-

tion, preliminary maintenance – based on data received from DT. 

 Historical data in real time – saved into log kinematics data allow to “travel back” in 

VR headset and check what went wrong or how processes could be optimised better 

for a previously produced product. 

 Safety systems tests – human-machine interaction scenarios tested in the digital 

environment. 

 Personnel training – training on the machine without interfering with real one, not 

causing loose of production time of it. 

 Machines are not stopped while re-programming, which lead to a decrease  

of downtime, which reduces cost on re-programming. 

This project, however, can be extended and improved to fit a much higher usability 

scale. The Unity3D script base of the project is built in a modular manner, which can allow 

industrial robot manufacturers and researchers to extend the current program and add 

support of their machines without exposing the internal control protocols, and still leaving 

the solution compatible with the interfaces used in this application. The project code 

development is being continued to improve stability and add new useful features. 

Next step in the development is also the analysis of the connection and exploiting 

manufacturing equipment and virtual model telemetry [16, 17] data to find a most effective 

and precise way of the dual-way communication and create the framework for most 

effective connection between real and virtual environments. 

5. CONCLUSION 

Virtual and augmented reality technologies are indeed becoming the practical tools  

of Industry 4.0 and rapidly expanding their markets. While AR enhances the way industry 

workers can interact with the real-world equipment, VR presents another breakthrough 

concept – DT, a technology that allows overseeing and controlling existing manufacturing 

systems from a safe yet highly intuitive and interactive real-size stereo simulation. The goal 

of this research was to implement such a system on the example of a real industrial robot, 

and it was fulfilled successfully. 

The DT robot created is the central framework part of the TalTech IVAR laboratory 

digitalisation project, where it works in tandem with the real industrial robot located in  

the actual laboratory. The solution was already assessed and tested by several students and 
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robotics specialists, who confirmed its applicability for industrial demo and educational 

purposes. 

As a conclusion, it can be stated that Digital Twin concept is a practically viable 

industrial solution, which can start driving control and management systems of enterprises 

in the nearest future. As for future development, the done environment will be redefined for 

the modular approach and will be continued work towards optimisation of synchronisation 

framework between two worlds, what is a part of ongoing research on existing DT model 

optimisation.  
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