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Fast super-resolution with affine motion
usingan adaptive Wiener filter and its

application to airborne imaging
Russell C. Hardie,1,∗ Kenneth J. Barnard,2 and Raul Ordonez1
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Park, Dayton, Ohio 45469-0232, USA

2 Air Force Research Laboratory, AFRL/RYMT, Building 620, 2241 Avionics Circle,
Wright-Patterson AFB, Ohio 45433, USA

∗rhardie@udayton.edu

Abstract: Fast nonuniform interpolation based super-resolution (SR)
has traditionally been limited to applications with translational interframe
motion. This is in part because such methods are based on an underlying
assumption that the warping and blurring components in the observation
model commute. For translational motion this is the case, but it is not
true in general. This presents a problem for applications such as airborne
imaging where translation may be insufficient. Here we present a new
Fourier domain analysis to show that, for many image systems, an affine
warping model with limited zoom and shear approximately commutes with
the point spread function when diffraction effects are modeled. Based on
this important result, we present a new fast adaptive Wiener filter (AWF)
SR algorithm for non-translational motion and study its performance with
affine motion. The fast AWF SR method employs a new smart observation
window that allows us to precompute all the needed filter weights for any
type of motion without sacrificing much of the full performance of the
AWF. We evaluate the proposed algorithm using simulated data and real
infrared airborne imagery that contains a thermal resolution target allowing
for objective resolution analysis.

© 2011 Optical Society of America

OCIS codes: (100.6640) Superresolution; (280.4991) Passive remote sensing; (110.3080) In-
frared imaging.

References and links
1. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE

Signal Processing Mag.20, 21–36 (2003).
2. D. P. Capel, “Image mosaicing and super-resolution,” Ph.D. thesis, University of Oxford (2001).
3. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame super-resolution,” IEEE Trans.

Image Processing13, 1327–1344 (2004).
4. G. Rochefort, F. Champagnat, G. L. Besnerais, and J. franois Giovannelli, “An improved observation model for

super-resolution under affine motion,” IEEE Trans. Image Processing15, 3325–3337 (2006).
5. R. D. Fiete, “Image quality andλ FN/ p for remote sensing systems,” Optical Engineering38, 1229–1240 (1999).
6. B. Narayanan, R. C. Hardie, K. E. Barner, and M. Shao, “A computationally efficient super-resolution algorithm

for video processing using partition filters,” IEEE Trans. Circuits Syst. Video Technol.17, 621–634 (2007).
7. R. C. Hardie, “A fast super-resolution algorithm using an adaptive wiener filter,” IEEE Trans. Image Processing

16, 2953–2964 (2007).
8. F. O. Baxley, K. J. Barnard, R. C. Hardie, and M. A. Bicknell, “Flight test results of a rapid step-stare and

microscan midwave infrared sensor concept for persistent surveillance,” inProceedings of MSS Passive Sensors,
(Orlando, FL, 2010).

9. M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersam-
pled measured images,” IEEE Trans. Image Processing6, 1646–1658 (1997).

#153532 - $15.00 USD Received 29 Aug 2011; revised 18 Oct 2011; accepted 20 Oct 2011; published 8 Dec 2011
(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  26208



10. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High-resolution image recon-
struction from a sequence of rotated and translated frames and its application to an infrared imaging system,”
Optical Engineering37, 247–260 (1998).

11. E. Trucco and A. Verri,Introductory Techniques for 3-D Computer Vision(Prentice Hall, 1998).
12. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in

International Joint Conference on Artificial Intelligence, 674–679 (Vancouver, 1981).
13. J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in

Proceedings of the Second European Conference on Computer Vision, 237–252 (Springer-Verlag, 1992).
14. J. Goodman,Introduction to Fourier Optics(McGraw-Hill, 1968).
15. R. A. Emmert and C. D. McGillem, “Multitemporal geometric distortion correction utilizing the affine transfor-

mation,” LARS Technical Reports, Paper 114 (1973).
16. C. W. Therrian,Discrete Random Signals and Statistical Signal Processing(Prentice Hall, 1992).
17. J. C. Gillette, T. M. Stadtmiller, and R. C. Hardie, “Reduction of aliasing in staring infrared imagers utilizing

subpixel techniques,” Optical Engineering34, 3130–3137 (1995).
18. M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration using multiple transla-

tionally shifted aliased video frames,” IEEE Trans. Instrum. Meas.49, 915–923 (2000).
19. S. Lertrattanapanich and N. K. Bose, “High resolution image formation from low resolution frames using delau-

nay triangulation,” IEEE Trans. Image Processing11, 1427–1441 (2002).

1. Introduction

Multiframe super-resolution (SR) has proven to be an effective post-processing method to re-
duce aliasing and enhance the resolution of images from detector limited imaging systems [1].
Provided that appropriate subpixel motion is present between frames, the sampling diversity
provided by fusing multiple frames helps to overcome undersampling. Consequently, this al-
lows us to apply restoration to reduce the blurring effects of the system point spread func-
tion (PSF). The most computationally simple multiframe SR methods are the interpolation-
restoration methods [1]. These methods generally employ subpixel registration to position the
observed low-resolution (LR) pixel values from multiple frames onto a common high-resolution
(HR) grid. This results in a nonuniformly sampled HR image with sample locations determined
by the interframe motion. Nonuniform interpolation is then employed to create a uniformly
sampled HR image with reduced aliasing and a restoration step is employed to deconvolve
the system PSF. A key assumption that justifies the use of these simple and fast nonuniform
interpolation based SR methods is that the interframe motion model and PSF blurring opera-
tions commute. For translational motion this is known to be the case [2, 3], but it is not true in
general [4]. This presents a potential problem for many applications such as airborne imaging
where a translational warping model may be insufficient to properly account for the imaging
geometry (as we shall show in Section 4.1), but the desire for fast SR processing remains.

Here we present a new Fourier domain analysis that explores the commutation of affine mo-
tion and a PSF that includes both detector integration and diffraction effects. We show that
when diffraction from a circular exit pupil in the optics is considered, the system PSF and
modulation transfer function (MTF) can become very nearly circularly symmetric and smooth.
Consequently, we show that the error in commuting this kind of realistic blurring function
with affine motion having limited zoom and shear is very small. We specifically analyze how
the commutation error is impacted by the f-number of the optics which controls the level of
diffraction effects. We show that the commutation error does tend to increase as the f-number
and corresponding diffraction effects are reduced. However, for the range used in typical imag-
ing system designs [5], we show the commutation error is very small. This novel analysis opens
the door for a more informed, and we believe legitimate, use of fast interpolation-restoration
SR methods on data from many imaging systems with affine motion.

Based on the commutation result, we present a new fast adaptive Wiener filter (AWF) SR
method for non-translational motion and study its performance with affine motion. The new
method is based on the interpolation-restoration AWF SR method proposed in [6,7]. Like most
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interpolation-restoration SR methods, the AWF SR method registers a set of LR frames to
a common HR grid. However, unlike standard methods, the AWF then performs nonuniform
interpolation and the restoration simultaneously in a single weighted sum filter step. That is,
each output HR pixel is formed using a weighted sum of neighboring observed pixels on the
HR grid. By combining the nonuniform interpolation and restoration into a single step, com-
putational advantages are achieved. Perhaps more importantly, however, is that the combined
interpolation-restoration approach of the AWF allows the restoration to be optimized for the
specific local spatial arrangement of the pixels on the HR grid. When nonuniform interpola-
tion and restoration are done independently, artifacts from the nonuniform interpolation step
caused by a poor distribution of samples on the HR grid can be amplified by the restoration
step. Without any change in tuning or modeling parameters, the AWF gives a minimum mean
squared error (MSE) result for any spatial arrangement of samples, including that obtained
with no motion at all. Some other nonuniform interpolation methods tend to be more sensitive
to the spatial distribution of samples afforded by the specific interframe motion. This can lead
to highly variable output quality and especially poor results when camera motion stops.

Previous work on the AWF SR method [7] focused on translational motion. In that case, it is
readily possible to precompute all of the needed filter weights because the pattern of observed
pixel values on the HR grid is periodic and the number of unique filter weights is small. For
non-translational motion, however, the full set of AWF weights is generally impractical to pre-
compute. Calculating the AWF weights on-the-fly can be effective but is a big computational
burden. The fast AWF SR method presented here employs a smart partial observation window
designed using a new forward sequential selection procedure based on an MSE metric. In this
way, we choose the most essential subset of pixels within the observation window to use. By
limiting the number of samples, we are then able to precompute all the filter weights for fast
processing. We show that by using the subwindow designed with the proposed method we gain
speed and lose very little performance on the data used.

We study the performance of the new AWF SR method, along with several benchmark meth-
ods that have been adapted for affine motion, using airborne mid-wave infrared (MWIR) video
sequences. These datasets are particularly enlightening as they contain a specially designed
thermal resolution target on the ground [8]. This allows us the rare opportunity to objectively
assess the resolution enhancement of the various SR methods with real airborne imagery. As
far as we are aware, this paper represents the first such experimental study of SR methods for
infrared airborne imaging using a ground resolution target. Here we also use real imagery from
a visible camera as well as simulated data that allow for quantitative error analysis.

This paper proceeds with Section 2 where the observation model is presented. This includes
the new analysis relating to the commutation of the motion and PSF models. The fast AWF SR
algorithm, including the new subwindow selection method, is presented in Section 3. Experi-
mental results are provided in Section 4 and conclusions are presented in Section 5.

2. Observation model

In this section, we begin with the physical observation model that relates a static 2-D ideal scene
image to a set of LR observed frames. This first model will be referred to as the warp-then-blur
model [4]. We then focus on the motion and PSF components of the model. We end with a
subsection addressing the commutation of the motion and PSF components leading to a blur-
then-warp observation model. It is this latter model that is the basis for the fast interpolation-
restoration SR methods including the fast AWF.
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Fig. 1. Warp-then-blur observation model relating a desired 2-D continuous scene,d(x,y),
to a set of corresponding LR frames. This model follows the physical image acquisition
process and is the basis for most of the iterative SR algorithms.

2.1. Warp-then-blur image formation model

The warp-then-blur observation model block diagram, similar to that presented in [7, 9], is
shown in Fig. 1. This model follows the physical image acquisition process and begins with
a desired 2-D continuous scene,d(x,y). Affine warping is used to model the relative motion
between the camera and scene, and the output is denoteddk(x,y). Next, blurring from the sys-
tem PSF yieldsfk(x,y) = dk(x,y)∗ h(x,y), whereh(x,y) is the system PSF and∗ represents
2-D convolution. Here the PSF is modeled like that in [10] and details are provided in Section
2.3. Finally, the image is sampled below the Nyquist rate and corrupted with additive Gaussian
noise. The result is a set of LR frames, represented in lexicographical vector notation asg(k),
for k = 1,2, ...,K. The ideally sampled image with no blur is represented using lexicographical
notation as the vectord. The model in Fig. 1 is often used as part of the more computationally
demanding iterative SR methods including those in [1,9,10].

2.2. Affine motion model and registration

The motion model is an important component of any SR algorithm and its selection is appli-
cation dependent. In depth treatment of the 2-D image motion produced as a result of relative
motion between a 3-D rigid scene and camera can be found in [11]. For terrestrial imaging from
a tripod mounted camera with small pointing angle variations, the image motion is well treated
with a 2-D translational motion model. However, for airborne imaging, translation alone is often
insufficient. The need for a more complex motion model becomes especially critical with lower
frame rates and larger window sizes. An affine model may be a good choice as it allows for ro-
tation, shear, and zoom, in addition to translation, with only 6 parameters. It is also convenient
because multiple sequential affine motions remains affine. Thus, we can register each frame to
the previous and then accumulate these into an affine transformation to relate all the frames to
a common reference. This accumulation property is also helpful if one uses an iterative and/or
multiscale registration method where parameters are updated at successive iterations and/or
scales. Note that the affine motion model assumed here is designed as a background model. For
low frame rates it may not accurately model moving objects or motion parallax effects. These
are important issues that we intend to address in future work, but shall be left outside the scope
of the current paper for the sake of focus and page length.

Let us now define the affine motion model and describe the registration method employed
to estimate the affine model parameters. Let the affine parameters for each frame relative to a
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reference frame be designated

Ak =

[

A1,1(k) A1,2(k)
A2,1(k) A2,2(k)

]

(1)

andtk = [tx(k), ty(k)]T , for k = 1,2, ...,K. Note thattk contains the translational shift parameters
andAk contains information on rotation, zoom and shear. Using the model and notationx =
[x,y]T andx̃(k) = [x̃(k), ỹ(k)]T , we havẽx(k) = Akx+ tk such that

dk(x) = d(x̃(k)) = d(Akx+ tk) . (2)

To estimate the affine parameters we use a gradient-based least-squares algorithm based on that
in [12]. To describe the LS affine registration algorithm, let us begin using a truncated Taylor
series representation ofdk(x) in terms ofd(x) and its gradients,gx(x) andgy(x), as follows

dk(x) ≈ d(x)+(x̃(k)−x)gx(x)+(ỹ(k)−y)gy(x). (3)

Note that we have one such equation for each pixel used and 6 unknowns embedded inx̃(k).
Even though we use the observed LR frames for registration, we can generally estimate the
parameters to provide sufficient subpixel accuracy because we have a highly overdetermined
set of equations. The set of linear equations can be put in matrix form asMkak = bk, where

Mk =











x1gx(x1) y1gx(x1) gx(x1) x1gy(x1) y1gy(x1) gy(x1)
x2gx(x2) y2gx(x2) gx(x2) x2gy(x2) y2gy(x2) gy(x2)

...
...

...
...

...
...

xNgx(xN) yNgx(xN) gx(xN) xNgy(xN) yNgy(xN) gy(xN)











, (4)

ak = [A1,1(k),A1,2(k), tx(k),A2,1(k),A2,2(k), ty(k)]T , and

bk =











dk(x1)−d(x1)+x1gx(x1)+y1gy(x1)
dk(x2)−d(x2)+x2gx(x2)+y2gy(x2)

...
dk(xN)−d(xN)+xNgx(xN)+yNgy(xN)











. (5)

Finally, the least squares parameters are given by

âk =
(

MT
k Mk

)−1
MT

k bk. (6)

Because the truncated Taylor series approximation is only accurate for small motions, we
use this method iteratively [12] and at multiple scales [13]. The gradients needed above may be
estimated with a Sobel operator and a smoothing prefilter may be applied prior to registration to
reduce the impact of noise and aliasing [7]. Also, the results are most numerically stable when
the center of the image is defined to bex = y = 0. Note that homogeneous coordinates can be
used to conveniently combine sequential affine transformations or compute an inverse [11].

2.3. PSF model

The blurring in the observation can come from a number of sources. The diffraction from the
optics and spatial integration from the detector elements are the main ever-present components.
Other sources may include optical aberrations, defocus, and atmospheric turbulence. Here we
follow the approach in [10] and model diffraction and detector integration. The optical transfer
function (OTF) is given by

H(u,v) = Hdif(u,v)Hdet(u,v), (7)
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where u and v are the horizontal and vertical spatial frequencies in cycles per millimeter,
Hdif(u,v) is from the diffraction-limited optics, and detector integration is included asHdet(u,v).
Diffraction-limited optics with a circular pupil function gives rise to an OTF [14] given by

Hdi f (u,v) =







2
π

[

cos−1 (ω/ωc)− (ω/ωc)

√

1− (ω/ωc)
2
]

for ω < ωc

0 else
, (8)

whereω =
√

u2 +v2 and ωc = 1/(λN ), andN is the f-number of the optics. Note that
Hdif(u,v) is circularly symmetric and cone shaped. The detector component of the OTF is given
by the Fourier transform of the active area of a single detector on the focal plane array (FPA).
Assuming a rectangular active area,Hdet(u,v) will be a sinc function. The sampling frequency
is given by 1/p, wherep is the detector pitch. Note that the f-number of the optics controls
the cut-off frequency of the overall OTF andp controls the spatial sampling frequency. The
Nyquist sampling theorem requires 1/p > 2ωc = 2/(λN ) to avoid aliasing.

Most optical systems are designed with some aliasing in an attempt to balance undersampling
with a number of factors such as diffraction blurring, noise, field of view, and FPA size [5].
A useful metric for analyzing optical systems isQ = λN /p [5]. When Q = 2, the detector
array is sampling the diffraction blurred image on focal plane at the Nyquist rate. AsQ is
decreased (usually with f-number), the system gets increasingly undersampled. The work in [5]
suggests thatQ≈ 1 or lower may be a good choice, even though such systems are 2×or more
undersampled. It is this design trade-off that continues to give SR a potentially important role
to play in modern imaging systems, even as detector elements and corresponding pixel pitches
get smaller with advancing FPA technology. Another important observation to make is that
asQ is decreased, the diffraction PSF component narrows while the detector integration PSF
component remains the same. Thus, the overall OTF begins to look more like the detector sinc
OTF and correspondingly less circularly symmetric. This symmetry breaking plays a role in
our commutation analysis in Section 2.4

The MWIR imager used in Section 4 has a spectral bandwidth ofλ = 3−5 µm (with the
exception of the CO2 absorption band) and we useλ = 4 µm for our PSF model. The sys-
tem usesF/2.3 optics and has a pixel pitch ofp = 19.5 µm. To modelHdet(u,v) we assume
100% fill factor rectangular detectors. This system is theoretically 4.24×undersampled with a
Q = 0.472. A lower upsampling factor may be used for SR in practice, taking into consider-
ation noise and other non-ideal sensor characteristics. A cross-section of the 2-D modulation
transfer function (MTF) and its components are shown in Fig. 2(a). Note that the folding fre-
quency, 1/(2p), is well below the optical cut-off frequency, allowing for significant aliasing.
The continuous PSF for the same system is shown in Fig. 2(b). The discrete impulse invariant
PSF can be found by sampling the continuous PSF with a sampling period of below 4.6µm.
Note that even with this lowQ, the PSF is still nearly circularly symmetric. As the f-number
is increased, the PSF and OTF become more circularly symmetric. We also present results in
Section 4 using an Imaging Source DMK 21BU04 visible camera. This is a 640× 480 8-bit
grayscale camera with a Sony ICX098BL CCD sensor with 5.6µm detectors. The camera is
fitted with a ComputarF/4 lens with a focal length of 5mm. Considering a central wavelength
of λ = 0.55 µm, the visible system is theoretically 5.09×undersampled withQ = 0.393.

2.4. Blur-then-warp model (nonuniform sampling model)

To develop a justification for the interpolation-restoration SR methods, we wish to begin by
commuting the motion and PSF models in Fig. 1. The motion model and uniform sampling
can then be combined into a nonunifrom sampling process operating on a blurred version of
the desired image. This commuted model is shown in Fig. 3. Note that ifg contains samples
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Fig. 2. (a) Cross-section of the MWIR system MTF and its components. (b) MWIR system
PSF model.

Fig. 3. Blur-then-warp observation model that performs nonuniform sampling of a single
blurredimage. This version of the observation model is valid when the motion model and
PSF blurring commute. The fast interpolation-restoration SR methods (including the AWF)
are based on this model.

of a nonuniformly sampled burred image, it is reasonable to perform nonuniform interpolation
to create uniform sampling and then use restoration to deblur the resulting image. This is the
reasoning behind the fast interpolation-restoration SR approaches. The AWF SR methods does
this, only the nonuniform interpolation and restoration are done jointly in one weighted sum
operation using minimum MSE weights.

The validity of blur-then-warp nonuniform sampling model relies on the commutation of
the motion model and PSF blurring. The commutation property for translation is noted in [2,
3]. Later in [6, 7] it was noted that the commutation is also valid for rotational motion for a
circularly symmetric PSF, but no analysis was provided. Here we address this important issue
formally with a new Fourier domain analysis based on the affine property of the 2-D Fourier
transform [15]. In particular, let us compare the 2-D Fourier transform offk(x) in Fig. 1 with
that of f̃k(x) in Fig. 3. In the warp-then-blur model in Fig. 1, we have

fk(x) = dk(x)∗h(x) = d(Akx+ tk)∗h(x). (9)

The Fourier transform of Eq. (9) is given byFk(u) = Dk(u)H(u), whereu = [u,v]T contains
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our spatial frequency variables. Using the affine property of the 2-D Fourier transform [15] we
canexpress the Fourier transform of the affine warped image,dk(x), as follows

Dk(u) =
1

|Ak|
ej2πu·Ak

−1tkD(Ak
−Tu), (10)

whereD(u) is the Fourier transform ofd(x). Using Eq. (10), the Fourier transform offk(x) can
be expressed as

Fk(u) =
1

|Ak|
ej2πu·Ak

−1tkD(Ak
−Tu)H(u). (11)

Now, working from the model in Fig. 3, we havẽfk(x) = f (Akx + tk). Also, note that the
Fourier transform off (x) is given byF(u) = D(u)H(u). Thus, again using the affine property
of the Fourier transform we obtain

F̃k(u) =
1

|Ak|
ej2πu·Ak

−1tkF(Ak
−Tu) =

1
|Ak|

ej2πu·Ak
−1tkD(Ak

−Tu)H(Ak
−Tu). (12)

The error between the original and commuted model images can be expressed in the spatial
domain asek(x) = fk(x)− f̃k(x), and in the spatial frequency domain asEk(u) = Fk(u)− F̃k(u).
Substituting Eqs. (11) and (12) and factoring out a commonDk(u) term, we obtain

Ek(u) = Dk(u)
[

H(u)−H(Ak
−Tu)

]

. (13)

The energy spectral density of the error is then given by

ΦEk(u) = |Dk(u)|2
∣

∣

[

H(u)−H(Ak
−Tu)

]∣

∣

2
. (14)

Finally, the error-to-signal energy spectral density ratio (ESR) is given by

Γ(u) =
ΦEk(u)

ΦDk(u)
=

∣

∣

[

H(u)−H(Ak
−Tu)

]∣

∣

2
. (15)

An important observation about the ESR from Eq. (15) is that the commutation error depends
on how much the specific OTF changes when undergoing the inverse of the non-translational
component of the affine warping in question. In particular, ifH(u) has a symmetry such that
H(u) = H(Ak

−Tu), the commutation error is zero. Since the translation parameters are not
involved in Eq. (15), it is clear that translation has no impact on the commutation error energy.
Also, whenH(u) is circularly symmetric and the affine transformation is rotation, we also get
zero commutation error. Commutation error due to zoom and shear depend somewhat on the
smoothness ofH(u). If H(u) varies slowly with frequency, then slight zoom or shear will give
rise to only a small ESR in Eq. (15). Some examples showing the nature of Eq. (15) for our
MWIR imaging system are provided in Fig. 4. The 2-D overall system OTF is shown in Fig.
4(a). The ESR,Γ(u), is shown for a 20 degree rotation, 10% zoom, and 10% horizontal shear
in Figs. 4(b)-4(d), respectively. These surfaces illustrate the exact spatial-frequency dependent
nature of the commutation error for our system. Note that the peak ESR values are relatively
small and the error tends to primarily impact higher spatial frequencies towards the cut-off
frequency (especially for rotation).

To better understand how the ESR varies with affine parameters, we plot the peak ESR for
the MWIR imaging system for a wide range of f-numbers under various rotations, zooms, and
shears in Fig. 5. These curves show how the ESR increases as the affine warping becomes
more extreme. However, for a moderate range of affine parameters, the commutation errors
are relatively low. It is interesting to note that as the f-number is decreased, we tend to see
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Fig. 4. Error-to-signal energy spectral density ratio analysis based on Eq. (15). (a) 2-D
MWIR imaging system OTF,H(u). Γ(u) for the MWIR system with (b) a rotation of 20
degrees (c) zoom of 10%, (d) horizontal shear of 10%.

some increased sensitivity to the affine motion, especially for rotation. As mentioned earlier,
this results from the OTF becoming somewhat less circularly symmetric and more sinc like.
Note that the typical range of f-numbers for MWIR imaging systems is approximately 2−5.
For airborne applications, we expect to see very little zoom and shear over the set of frames
used to create an SR image. Rotation is the primary non-translational component we expect and
this may amount to only a few degrees in practice. For a three degree rotation, the peak ESR
values for commutation error would be approximately 3×10−5. This is likely to fall below the
noise floor of most imaging systems. Based on this analysis, we believe the commutation of
the motion and PSF for imaging systems like the one modeled here is a good approximation.
This powerful conclusion opens the door for a wide variety of fast interpolation-restoration SR
methods to be legitimately extended and applied to affine motion for important applications
such as airborne imaging. This paves the way for the development of the proposed AWF SR
method for non-translational motion, which is the focus of the remainder of this paper.

3. Fast AWF SR for non-translational motion

In this section we describe the fast AWF SR method that is capable of treating arbitrary in-
terframe motion including affine. We begin with an overview of the algorithm and then focus
on computing the AWF filter weights. Next we describe the optimization of the partial obser-
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Fig. 5. Peak ESR value for the MWIR imaging system with various f-numbers (Q values)
for (a) rotation, (b) zoom, and (c) shear. The actual system has an f-number of 2.30
(Q=0.472).

vation window that is the key to allowing this method to be implemented with relatively few
operations. We end the section with a brief discussion on computational complexity.

3.1. Fast AWF SR algorithm overview

A block diagram showing an overview of the proposed fast AWF SR method is provided in
Fig. 6. A group ofK LR frames,g(k) for k = 1,2, ...,K, are first registered to a reference image
with subpixel accuracy. The reference frame is usually the most recent of theK LR images.
The affine registration can be done incrementally frame-to-frame and then accumulated, as
described in Section 2.2, to provide registration parameters relating each frame to the reference
image. The LR pixels from each frame are then placed appropriately onto a common HR grid
that is aligned with the reference frame. Finally, the output for each SR pixel is formed as a
weighed sum of the values in the HR grid falling within the span of a finite local window of size
Wx×Wy HR pixel spacings. The output SR image estimate,d̂ = [d̂1, d̂2, ..., d̂D]T , is computed
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Fig. 6. Fast AWF for non-translational motion block diagram.

with Lx andLy timesthe number of pixels in the horizontal and vertical directions of an LR
frame, respectively.

In the case of translational motion only, addressed in [7], the LR pixels may be positioned on
a continuous HR grid and the filter weights found based on the exact locations of the LR pixels.
The computation of the weights can be done for just one observation window and then applied
throughout the HR grid. This is because the pattern of LR pixels is periodic on the HR grid.
This gives the translation AWF SR method a very low computational complexity [7]. However,
for non-translational motion, the pattern of LR pixels populating the HR grid is not periodic.
The minimum MSE weights can still be computed, but a unique set of weights may be needed
for each observation window. Such on-the-fly processing is possible, but has a much higher
computational complexity.

To address the case of non-translational motion, and maintain a low computational com-
plexity, the novel approach presented here is to precompute all of the filter weights before SR
processing begins. Computation of the filter weights is addressed in Section 3.2. To make pre-
computing all the weights feasible, we use a discrete rather than continuous HR grid, and we
limit the number of samples that are weighted in the observation window using a new subwin-
dow selection method. Selection of samples to be weighted in this partial observation window
is addressed in Section 3.3. To populate the discrete HR grid, we begin by expanding the ref-
erence image byLx andLy in the horizontal and vertical dimensions, respectively, with zero
filling. Subsequent frames are used to further populate the HR grid based on their alignment
relative to the reference frame. This must be done with some form of interpolation. The most
computationally simple method is to quantize the positions of the LR pixels provided by the
registration which amounts to a nearest neighbor interpolation. However, other interpolation
methods may be employed. Unless otherwise specified, we us bicubic interpolation. Regard-
less of the interpolation method, the maximum repositioning is only a fraction of an HR pixel
size, 1/(2Lx) and 1/(2Ly). Multiple samples falling into the same HR position are averaged.
Note that the way in which the HR grid is populated depends on the motion between the other
frames and the reference. The HR grid can go from only the reference pixel positions populated
to having the entire HR grid filled.

To complete the AWF SR processing, an observation window passes across the partially
populated HR grid. Let theGi populated position samples within the window centered at HR
pixel i in the HR grid be designatedgi = [gi,1,gi,2, . . . ,gi,Gi ]

T . The output is simply a weighted
sum of these values with weights tuned for the specific spatial population for the window. As
shown in Fig. 6, the output is given bŷdi = wT

ψ(i)gi , whered̂i is the estimate of thei’th pixel in
the desired image andψ(i) is the population index for windowi. Note that the population index
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designates which set of precomputed weights is to be applied at this spatial location.

3.2. Optimizing the filter weights

To derive the minimum MSE weights, let us begin by expressing the MSE in terms of aGi ×1
weight vectorw for a given observation window

J(w|Ψ = ψ(i)) = E
{

(

di − d̂i
)2|Ψ = ψ(i)

}

= E
{

(

di −wTgi
)2|Ψ = ψ(i)

}

, (16)

whereΨ is a random variable representing population index. Multiplying this out and distribut-
ing the expectation we obtain

J(w|Ψ = ψ(i)) = E{d2
i }−2wTE{digi |Ψ = ψ(i)}+wTE{gigi

T |Ψ = ψ(i)}w. (17)

For a wide sense stationary (WSS) model where the correlations in Eq. (17) are only a function
of the 2-D distance between the samples involved, all the correlations are uniquely specified as
a function of the population index. Thus, letRψ(i) = E{gigT

i |Ψ = ψ(i)} andpψ(i) = E{digi |Ψ =
ψ(i)}, giving rise to

J(w|Ψ = ψ(i)) = E{d2
i }−2wTpψ(i) +wTRψ(i)w. (18)

Taking the gradient of the MSE with respect to the weights and setting this to zero and solving
for the weights leads to the well known solution to the Wiener-Hopf equations [16]

wψ(i) = R−1
ψ(i)pψ(i) . (19)

Substituting the optimum weights into Eq. (18), we get the minimum MSE as

J(wψ(i) |Ψ = ψ(i)) = E{d2
i }−pT

ψ(i)Rψ(i)
−Tpψ(i) . (20)

To obtain the weights for each population index using Eq. (19), we requireRψ(i) andpψ(i) .
These correlations can come from an analytical correlation model as in [7] or can be estimated
empirically from training data as in [6]. Here we shall use the WSS analytical model in [7]
which assumes the underlying correlation model for the desired signal is given by

rdd(x,y) = σ2
d ρ

√
x2+y2

, (21)

wherex andy are conveniently measured in HR pixel spacings,σ2
d is the variance of the desired

signal, andρ is the one HR pixel step correlation value. The cross-correlation function between
d(x,y) and f (x,y), as shown in Fig. 3, can be expressed in terms ofrdd(x,y) [7,16] as

rd f(x,y) = rdd(x,y)∗h(x,y). (22)

Again following the analysis in [7], the autocorrelation off (x,y) is given by

r f f (x,y) = rdd(x,y)∗h(x,y)∗h(−x,−y). (23)

Sampling Eq. (23) atx,y positions corresponding to the displacement between samples ingi

yields E{f i fT
i |Ψ = ψ(i)}, wheref i is the noise-free version ofgi . Assuming independent ad-

ditive white Gaussian noise of varianceσ2
n , the autocorrelation matrix for the corresponding

population index is given byRψ(i) = E{f i fT
i |Ψ = ψ(i)} + σ2

n I. Similarly, evaluating Eq. (22)
based on the displacements between the samples ingi and the desired sample position yields
pψ(i) . A spatially varying statistical model is also presented and applied in [7]. However, we
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have found that this is mainly beneficial in low signal-to-noise ratio environments. Here we fo-
cuson high signal-to-noise ratios and do not use the spatially varying statistical model in order
to reduce computational complexity.

The essential feature of this analysis to note is that the AWF SR weights vary with the spatial
distribution of the available samples in each observation window. For each population index,
we have a unique spatial sample distribution requiring a weight vector designed for that pat-
tern. To illustrate how the weights vary with the spatial distribution of samples Fig. 7 (Media 1)
shows four different sets of computed weights. These weights are for the MWIR imaging sys-
tem model withLx = Ly = 3, ρ = 0.7, σ2

d/σ2
n = 100. Only the samples in the green boxes

are assumed to be available and have a corresponding weight shown as a grayscale, where the
background gray corresponds to a weight of zero. Note how the weights change as the spatial
distribution of available samples varies to provide the minimum MSE estimate for each obser-
vation window. The challenge now is to find a way to limit the number of weight vectors that
need to be computed and stored so that we may be able to practically apply the system in Fig.
6 without excessive memory storage and access requirements.

3.3. Optimizing the partial observation window

An observation window that is an integer multiple ofLx and Ly in size is guaranteed to be
populated by(WxWy)/(LxLy) pixels from the reference image. However, the remaining po-
sitions within the window may or may not be populated depending on the interframe mo-
tion. The number of unique ways that the window could be populated is given by 2W, where
W = WxWy− WxWy

LxLy
. A unique set of weights would ideally be precomputed for each of these

population patterns to allow for fast processing. However, as the window size grows, the expo-
nential growth in population patterns for the full window quickly approaches an unmanageable
size. We wish to limit the number of filter weights while obtaining a high level of performance.
To do so, we propose using a specially selected subset of the full observation window that is
made up of the reference pixel positions andM additional positions, where 0≤ M ≤ W. This
gives rise to a totalLxLy2M filter weight vectors that are precomputed and stored. The factor
of LxLy comes into play because we have this many unique window positions relative to the
reference grid, and each requires its own weights. The population index for a given position
relative to the reference grid is found by simply converting the populations into anM-bit bi-
nary number, with a one for a present sample and zero for a missing sample. Converting this to
decimal provides a unique and convenient population index.

The question now is how to find the most salientM positions to add to the reference samples
to generate the desired subwindow. Our selection method is based on the expected MSE for a
candidate subwindow given by

J = E{J(wψ |Ψ)} =
2M

∑
ψ=1

J(wψ |Ψ = ψ)Pr{Ψ = ψ}, (24)

wherePr{Ψ = ψ} is the probability that we observe population indexψ andJ(wψ |Ψ = ψ)
is the minimum MSE for this population index, as defined in Eq. (20). The goal is to find the
subwindow withM samples plus the reference samples that minimizesJ in Eq. (24). For a typ-
ical window size, an exhaustive search is impractical since it would involve searching among
(W

M

)

= W!
M!(W−M)! subwindows. Thus, we propose a novel application of a forward sequential

selection procedure to choose a highly salient subwindow. Using this method, the partial obser-
vation window begins with just the fixed reference samples. Next, the one non-reference pixel
position that minimizesJ in Eq. (24) is found by exhaustive search. We continue in the fashion,
adding one sample at a time until the desired window size is reached. While this method does
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Fig. 7. Minimum MSE weights for estimating the position shown with the red plus sign for
four different population patterns (Media 1). Only samples in the green boxes are assumed
to be available and the grayscale value represents the weight with background gray corre-
sponding to zero. The pattern in (a) is the case of no motion or a single frame (the reference
frame).

not guarantee a global minimum expected MSE, we believe it yields a useful and computable
local minimum solution.

To compute the probability for each population index, let us assume the probability that
any non-reference HR grid position is filled is independent and denotedp1. The probability a
non-reference HR grid position is empty is given byp0 = 1− p1. The probability of a given
population pattern occurring within a candidate subwindow is a function of how many of the
subwindow positions are filled and how many are empty. For a candidate subwindow withM
non-reference positions, the probability of any patten withM f filled andMe = M−M f empty

positions is given byp
M f
1 pMe

0 . Let us now further assume that each frame provides on average
one sample for eachLx×Ly superpixel on the HR grid and these are distributed uniformly. Thus,
we are neglecting the cases where no pixels or multiple pixels from one frame populate the same
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Fig. 8. Expected fraction of the HR grid populated as a function of the number of frames
with uniform motion.

Lx×Ly superpixel on the HR grid. These cases are only likely with high levels of zoom. Based
on these assumptions it can be shown that the probability that a non-reference sample is empty
after populating the HR grid withK frames is given byp0 = ((LxLy−1)/(LxLy))

K−1. The
number of non-reference grid positions populated in each superpixel is described by a binomial
probability mass function with an expected value of(LxLy − 1)p1. Therefore, the expected
fraction of the HR grid that is populated is((LxLy−1)p1 +1)/(LxLy). This fraction is plotted
as a function of the number of framesK for different values ofLx = Ly in Fig. 8. This plot shows
thatK impacts the likely population density when uniform motion is present. It is interesting to
note that a significant number of frames is needed to get close to a fully populated grid, even
with uniform motion. This highlights the potential benefit of the AWF approach that adapts to
the spatial distribution of the available and missing samples on the HR grid.

Subwindows for the MWIR imaging system designed with the forward sequential method
are shown in Fig. 9. These are designed for the case whereLx = Ly = 3, ρ = 0.7, σ2

d/σ2
n = 100,

K = 10 andM = 16. Four of the nine different estimation positions relative to the reference grid
are shown. The estimation position is shown with a red plus sign and the reference grid samples
are shown in green. TheM = 16 selected positions are shown with blue numbers, indicating
the order in which they were selected. The grayscale value is proportional to the expected MSE
obtained when adding the corresponding sample. Note that the selection sometimes follows a
non-obvious path, influenced by the locations of the reference grid samples and prior selections.
The specifics of the PSF, correlation models, and HR grid density (determined byK) all play a
role in which samples are selected. Note that the weights shown in Fig. 7 (Media 1) are for the
subwindow in Fig. 9(d).

The theoretical expected MSE values from Eq. (24) are shown in Fig. 10 as a function ofM
for the subwindows in Figs. 9(a), 9(b), and 9(d). The values are normalized byσ2

d to provide a
type of error-to-signal ratio. The expected MSEs clearly decline as we increase the size of the
subwindow. The “knee” in the curve occurs early, suggesting that a relatively smallM can be
effective. The error for the Position 1 starts low, because for that position, the sampled being
estimated is on the reference grid giving this position a big advantage. On the other hand, for
Position 5, the guaranteed reference grid sample is farthest away from the estimation position,
putting it initially at a disadvantage. However, it is this position that benefits most from adding
samples to the subwindow to compensate for its distance to the reference grid.
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Fig. 9. Subwindows designed using the forward sequential selection method forLx = Ly =
3, ρ = 0.7, σ2

d/σ2
n = 100,K = 10 andM = 16. The estimation position is shown with a

red plus sign and the reference grid samples are shown in green. The selected positions are
shown with blue numbers in order of selection.

3.4. Computational complexity

Let us briefly consider the computational complexity of the proposed AWF SR method with
subwindow processing. With the weights precomputed, the entire filtering operation consists of
computing the weighted sum̂di = wT

ψ(i)gi . This means that the number of floating point opera-
tions (flops) for outputi is Gi ≤M+WxWy/(LxLy). Note that a flop represents one floating point
multiply and add operation. If the weights were not precomputed and we could not count on
translational motion, it may be necessary to also solveRψ(i)wψ(i) = pψ(i) for each observation
window. The weights can be computed using Cholesky factorization which requiresG3

i /3 flops
to perform LU decomposition on the autocorrelation matrix. Solving for the weights using for-
ward and backward substitution requires an additional 2G2

i flops [6,7]. Note that in [6,7], some
computational saving is achieved by estimating several output pixels for each observation win-
dow. This reduces the number of LU decompositions needed. However, precomputing all the
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weights is clearly the most significant way to reduce runtime computations. Other operations
that should be considered include registration and population of the HR grid. Using incremen-
tal registration, only one frame-to-frame registration is done per output frame. Populating the
HR grid by simple spatial quantization has a very low computational cost. If other interpolation
methods are used, the number of flops per output increases accordingly. The memory require-
ments are another important consideration with the proposed method. The number of non-zero
precomputed filter weight values that must be stored is(LxLy2M)× (WxWy/(LxLy)+M/2).

4. Experimental results

We present experimental results using MWIR flight data, video from a visible camera, and sim-
ulated data generated from a still frame aerial image degraded according to the model in Fig. 1.
Results using several SR methods are presented. Fast AWF SR refers to the proposed method
using precomputed weights and partial observation window. The weighted nearest neighbor
(WNN) method is presented in [17,18]. Nonuniform interpolation is done using an inverse dis-
tance based weighting of the nearest 4 neighbors and restoration is done with an FFT based
Wiener filter with a constant noise-to-signal ratio (NSR) tuning parameter. The Delaunay tri-
angulation method is based on the method in [19] and also uses a Wiener filter for restoration.
The regularized least squares (RLS) iterative method is described in [10]. Note that the RLS
method does not assume the PSF blurring and motion models commute. All of these benchmark
methods have been extended here for affine motion.

4.1. Infrared flight data

The details of the MWIR imaging system used to acquire the fight data are provided in Section
2.3 and further details about the data collection can be found in [8]. The scene imaged includes a
thermal resolution target composed of 13 pairs of 4-bar groups orthogonally oriented. The bars
have a 7:1 aspect ratio and range in width (same as spacing) from 1.0m to 0.25m. The scaling
factor between bar groups is designed to be 2(1/6) [8]. We process two image sequences of flight
data here. The first has a frame rate of 50Hz. In this mode, a group of 10 frames is acquired and
then a step-stare mirror repositions the field of view. The second sequence is acquired at 16Hz
with no step-stare. The region of interest (ROI) that is processed for each sequence is shown in
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Fig. 11. Flight data regions of interest processed. (a) 50Hz sequence frame (b) 16Hz se-
quence frame. The thermal resolution target area is boxed in each image.

Fig. 11.
The SR results using the 50Hz sequence are shown in Fig. 12 forLx = Ly = 3 andK = 10

frames. Although an upsampling factor of 3 is below that theoretically required to ensure no
aliasing for this sensor, we have found essentially no noticeable improvement for these data
using a higher value and the lower value reduces processing time. The output using bicubic
interpolation for the ROI immediately around the resolution target is shown in Fig. 12(a). Note
that aliasing makes all of the more horizontally oriented bars appear unresolvable. In fact, the
lowest resolution 4-bar group incorrectly appears like three diagonal bars. The more vertical bar
groups can be resolved only up to Group 2 (0.89m bar width). The partially populated HR grid
used for the AWF SR method is shown in Fig. 12(b). The fraction of populated pixels is 0.686
and that predicted using the analysis in Section 3.3 is 0.692. The fast AWF SR output is shown
in Fig. 12(c) forWx =Wy = 15,M = 16,ρ = 0.7, andσ2

d/σ2
n = 100. Here the more horizontally

oriented bar groups are resolvable up to and including Group 3 (0.79m bar width), while the
more vertically oriented ones are resolvable up to Group 5 (0.63m bar width). For comparison
the outputs for WNN (NSR=0.04), Delaunay (NSR=0.02), and RLS (with 20 iterations and
regularization parameter of 0.1 [10]) are shown in Figs. 12(d)-12(f), respectively. The selection
of the tuning parameters is based on subjective evaluation of the results and an analysis of the
quantitative simulation results. Note that the maximum estimated rotation over the 10 frames is
0.49 degrees and the maximum translational shift is 0.97 LR pixels. The maximum zoom and
shear parameters are estimated to be 1.00068 and 0.0038, respectively.

To illustrate the robustness of the various algorithms to interframe motion, outputs are shown
in Fig. 13 for the case of no interframe motion. Here one frame is repeated to simulate lack of
camera motion. This represents a worst case of sampling diversity that SR methods may en-
counter. The tuning parameters for all the algorithms are kept as they were in Fig. 12. It is
interesting to note that AWF SR method handles this case gracefully, as does the more com-
putationally demanding RLS method. However, the the WNN and Delaunay SR methods that
perform the nonuniform interpolation and restoration steps independently have significant arti-
facts. These artifacts result from the fixed Wiener filter, optimized for diverse motion, amplify-
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Fig. 12. SR results for 50Hz MWIR flight sequence forLx = Ly = 3 andK = 10. (a)
Bicubic interpolation, (b) partially populated HR grid, (c) fast AWF SR method (d) WNN,
(e) Delaunay, (f) RLS (20 interations).
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Fig.13. SR results for 50Hz MWIR data simulating no camera motion by repeating a single
frameK = 10 times. Algorithm tuning parameters are the same as in Fig. 12. The results
are for (a) fast AWF SR method, (b) WNN, (c) Delaunay, (d) RLS (20 interations).

ing the artifacts from a poor nonuniform interpolation step. This result highlights the potential
importance of jointly performing nonuniform interpolation and restoration, which is a key asset
of the AWF approach.

The final MWIR flight data results are shown in Fig. 14 (Media 2). Here we evaluate the
performanceof the fast AWF SR method usingK = 10 frames of the 16Hz sequence and
investigate the impact of different motion models. The reference frame withLx = Ly = 3 bicubic
interpolation is shown in Fig. 14(a) (Media 2, left). It appears that the horizontal bar groups are
resolvable to Group 2 (0.89m) and the vertical to perhaps Group 6 (0.56m). The SR result using
the fast AWF SR method with an affine motion model is shown in Fig. 14(b) (Media 2, right),
usingthe same parameters as before. Here the horizontal bars are resolvable to perhaps Group 7
(0.50m), and the vertical bars to Group 10 (0.35m). The result using the same method but with
a rotation and translation motion model (no zoom or shear) is shown in Fig. 14(c). The result
using a translational only motion model is shown in Fig. 14(d). Note that translation alone is
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Fig. 14. SR results forK = 10 frames of the 16Hz MWIR sequence using the fast AWF
SR method with different motion models. Algorithm parameters are the same as in Fig. 12.
The results are for (a) bicubic interpolation (Media 2, left), (b) the fast AWF SR with affine
motionmodel (Media 2, right), (c) rotation and translation, (d) translation only.

clearly not able to accurately represent the true motion. Some artifacts are still present when
allowing for rotation, but they are greatly reduced. The affine motion model clearly produces
the best results here, illustrating the potential importance of using this motion model for SR
in airborne imaging applications. The maximum rotation over the 10 frames in this set is 1.79
degrees, and the maximum translational shift is 2.28 LR pixels. The maximum zoom and shear
parameters are estimated to be 1.0064 and 0.0097, respectively. While Fig. 14 makes it clear
that these non-translational affine values are important from a sample placement perspective,
the analysis in Section 2.4 shows that such a small departure from translation produces only
negligible levels of blur/motion commutation error.
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(a) (b)

Fig. 15. Single-frame excerpts from video results using the proposed fast AWF SR method
with data from the visible grayscale camera described in Section 2.3. (a) 2-D chirp sequence
(Media 3). (b) bookshelf sequence (Media 4).

4.2. Visible camera video

To further illustrate the performance of the proposed fast AWF SR method, we show SR results
using for data from the visible grayscale camera described in Section 2.3. The frames are ac-
quired at 30 frames per second and the camera is moved by hand to produce significant amounts
of rotation and translation, with some small amounts of zoom and shear possible as well. The
imagery are from an indoor scene with a 2-D chirp pattern shown in Fig. 15(a) (Media 3) and
a bookshelf in Fig. 15(b) (Media 4). The left side of each displayed frame showsLx = Ly = 3
bicubic interpolation and the right side shows theK = 10 fast AWF SR output using the same
algorithm parameters as before with the appropriate camera PSF model. Note that like the flight
data, the input imagery is taken directly from the camera with no artificial degradation. Like the
bar target in the flight data, the chirp pattern clearly shows the aliasing when single frame inter-
polation is used. The corrected concentric circles are fully visible in the SR result in Fig. 15(a)
(Media 3). Similarly, the writing on the book spines is far more legible after SR processing in
Fig. 15(b) (Media 4).

4.3. Simulated data error analysis

The final set of results are using a simulated image sequence derived from the still 8-bit aerial
image of size 434×491, shown in Fig. 9(b) in [7]. The image is put through the observation
model in Fig. 1 to generate a set ofK = 10 LR frames with affine motion. The PSF for the
MWIR imaging system is used with a noise variance ofσ2

n = 4. This simulation is done to
allow for quantitative error analysis, since we have knowledge of the true desired image. The
MSE results and average run times are shown in Table 1. Note that that method labeled Fast
AWF (Q) populates the HR grid using the simple quantization, as compared with the standard
method which uses bicubic interpolation. Full AWF SR refers to computing weights for the
full observation window on-the-fly (also using a discrete HR grid). The run times were gen-
erated using MATLAB on an Intel Core i7 64 bit CPU with a clock speed of 3.07 GHz. The
multiscale affine registration uses 3 levels with 5 iterations at each level and employs bicubic
interpolation. The run time for the registration of all 10 frames is 0.76 seconds. The affine mo-
tion considered here includes translation, rotation, shear, zoom, a combination of all of these,
and the no motion case. The translation parameters have a normal distribution ofN(0,22) LR
pixel spacings, the rotation angle isN(0,102) degrees, the shear is horizontal with parameter

#153532 - $15.00 USD Received 29 Aug 2011; revised 18 Oct 2011; accepted 20 Oct 2011; published 8 Dec 2011
(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  26229

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-3
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-4
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-4
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-3
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-3
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-27-26208-4


Table 1. MSE for SR with affine motion for aerial image (Lx = Ly = 3 andK = 10).

Method No Motion Trans. Rot. Shear Zoom All Time (s)
Bicubic 470.03 470.03 470.03 470.03 470.03 470.030.088
Fast AWF (Q) 384.24 185.13 222.49 303.12 224.32 218.390.165
Fast AWF 384.24 168.98 195.05 299.42 199.35 191.640.284
Full AWF 384.24 164.41 184.92 295.68 190.66 183.9514.862
WNN 711.59 203.18 256.85 481.97 267.84 270.620.390
Delaunay 514.74 166.33 198.44 336.94 215.00 232.073.711
RLS (20 Its.) 389.73 132.60 156.67 282.62 157.30 160.7664.066
RLS (5 Its.) 391.55 191.78 217.62 309.44 219.20 219.9016.114

distributionN(0,0.12), and the zoom parameter isN(1,0.12). The NSRs that provide the lowest
MSE in the “All” column are used for each method. The AWF SR outputs use an NSR of 0.005.
The NSR for the WNN and Delaunay SR methods are 0.04 and 0.02, respectively. The RLS
uses a regularization parameter of 0.01 [10]. The other processing parameters are the same as
before.

Note that the 20 iteration RLS generally produces the best results but has a much longer run
time than the other methods. The fast AWF SR method has the shortest run time and MSE values
that are generally better than all but the 20 iteration RLS and full AWF. The MSE results show
that the full AWF does outperform the fast AWF, however by using the subwindow selection
method described in Section 3.3, the difference is relatively small. Also, one can see in Table 1
that populating the HR grid with simple quantization is faster than using bicubic interpolation,
but the MSEs are consistently higher. This comparison highlights one of the implementation
tradeoffs for the AWF SR method. Simple quantization provides a shorter run time but with a
modest increase in MSE. Another interesting thing to note is how the methods perform in the
no motion case. In a manner consistent with what we see in Section 4.1, the SR methods that
do independent restoration are most exposed here, actually increasing the error compared with
bicubic interpolation. The AWF performs relatively well with all motions because of its ability
to adapt to the sampling distribution. Finally, note that the error for shear motion is the highest
for all the methods because horizontal shear alone provides no vertical sampling diversity.

5. Conclusions

In this paper, we have presented a novel analysis showing that for many imaging systems, the
commutation error for the PSF blur and modest amounts of affine motion is relatively small.
This opens the way for the use of fast interpolation-restoration SR methods, that are based
on this commutation, for applications such as airborne imaging where an affine motion model
may be needed. Building on this finding, we have proposed a new fast version of the AWF
SR method that can accommodate affine motion using entirely precomputed filter weights. The
weights are designed to jointly perform nonuniform interpolation and restoration for minimum
MSE. These weights vary with the spatial pattern of the observed LR pixels which depends on
the particular motion in the video sequence. Precomputing the weights for all possible popula-
tions of a full observation window is impractical. However, we have developed a new forward
sequential selection procedure to pick a highly salient subset of pixels from the full observation
window for which weights are computed. This brings the number of weights that are computed
and stored down to a manageable size, without much loss in performance. Because the weights
are computed prior to video processing, the computational complexity during processing is rel-
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atively low. With suitable hardware, the proposed AWF SR method could operate in real-time.
UsingMWIR flight data with a thermal resolution target we have demonstrated objective res-

olution enhancement and aliasing reduction using the new method. The flight data also clearly
show the potential need for a non-translational motion model, such as affine, when using an air-
borne platform. This is especially true for lower frame rate data like the 16Hz flight data. Here
we also demonstrate the benefit of the AWF in adapting to different sample distributions, most
dramatically shown in the worst case when there is no motion at all. In the quantitative error
analysis, the Fast AWF method has the lowest run time of the SR methods tested and the MSE
values generated are generally better than all but the 20 iteration RLS and full AWF, which are
significantly more computationally demanding.
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