
A New Hierarchical Disk Architecture �Yiming Hu and Qing YangDept. of Electrical & Computer EngineeringUniversity of Rhode IslandKingston, RI 02881e-mail: fhu,qyangg@ele.uri.eduAbstractLarge RAM caches are generally used to speed up disk ac-cesses. Such caches more e�ectively improve read performancethan write performance, since write requests must be frequentlywritten into disks to protect them from data loss or damage dueto system failures. While Non-volatile RAM (NVRAM) cachescan be used to improve write performance, large NVRAM cachesare too expensive for many applications. This paper presents anew disk cache architecture called DCD, Disk Caching Disks.DCD takes the advantage of large data transfer sizes and usesinexpensive disk space to provide a high-performance, low-costand reliable caching solution.keywords:Cache, Disk, NVRAM, Storage System, Storage Hierarchy1 IntroductionSemiconductor technologies have advanced very rapidly for thepast decades. Disk storage (hard disk drives), on the otherhand, have not kept pace with RAM in terms of access speedbecause of the mechanical nature of magnetic disks, althoughthe storage capacity of disks increased drastically. The resultis a wider speed gap between RAM and disks. Such a gap willeventually become the main obstacle for further developmentof computer technology.1.1 BackgroundThere has been extensive research reported in the literaturein improving disk system performance. Previous studies ondisk performance can generally be classi�ed into two categories:improving the disk subsystem architecture, and improving the�le system that controls and manages disks.One of the most important architectural advances in disks isthe RAID (Redundant Array of Inexpensive Disks) architecture[1]. The main idea of RAID is to use multiple disks in parallel toincrease the total I/O bandwidth that scales with the numberof disks. Multiple disks in a RAID can serve a single largeI/O request or support multiple independent I/Os in parallel.The most commonly used RAID architecture is RAID-5. WhileRAID-5 is an e�ective approach to high I/O performance, itsu�ers from the well-known \small write" problem, that is, itsthroughput is penalized by a factor of four over non-redundantarrays for small writes [1]. The penalty results from parity�Will appear in IEEE Micro.

calculation for new data, which involves readings of old dataand parity, and writings of new data and parity.The RAID architectures are primarily aimed for high through-put by means of parallelism rather than reducing access la-tency. For low average throughput workloads such as thosein o�ce/engineering environments, performance enhancementdue to RAID is very limited [1]. Caching is the main mechanismfor reducing access latency. Modern �le systems generally uselarge RAM caches to speed up disk accesses. Such caches moree�ectively reduce read tra�c than write tra�c, since write re-quests must be frequently written into disks to protect themfrom data loss or damage due to system failures [2, 3, 4]. As theRAM size increases rapidly and absorbs more read requests, theproportion of write tra�c seen by disk systems will dominatedisk tra�c and may potentially become a system bottleneck [4].While it is possible to improve the write performance by usingNon-volatile RAM (NVRAM) cache [2, 5], the write bu�er sizeis usually very small compared to disk capacity because of thehigh cost of NVRAM1. Such a small bu�er gets �lled up veryquickly and can hardly catch the locality of large I/O data.Large NVRAM caches are cost-prohibitive making it infeasiblefor many applications except for large-scale systems such asbanking applications where costs are not a primary concern.Since attempts in improving the disk subsystem architec-ture have so far met with limited success for write performance,extensive research has been reported in improving �le systems.One of the most important work in �le systems is the Log-structured File System (LFS) [4, 3, 6]. The central idea ofLFS is to improve write performance by bu�ering a sequenceof small writes in a cache to form a large log, and then writingthe large log to a disk in one disk operation when the cache isfull. As a result, many small and random writes of the tradi-tional �le system are converted into a large sequential transferin LFS. In this way, LFS eliminates the random seek timesand rotational latencies associated with small write operationsthereby improving the disk performance signi�cantly.While LFS has a great potential for improving write perfor-mance of traditional �le systems, it has not been commerciallyvery successful since it was introduced more than ten years ago.Applications of LFS are mainly limited to academic researchsuch as Sprite LFS [3] and BSD-LFS [6] as well as some RAIDsystems. This is because LFS requires rewriting the �le systemand a host of utility programs [7, page 350], needs a high costcleaning algorithm, and is much more sensitive to disk capacityutilization than traditional �le systems [3, 4]. The performance1For example, Dallas Semiconductor sells NVRAM with embed-ded lithium-cell batteries for about $100/MB.1

Disk Access Time BreakdownFor each disk access, there are 4 components that contributes to the total access time: Controller Overhead, Seek Time,Rotational Latency and Data Read/Write Time.Data on disks are organized in tracks and sectors. When a disk drive receives a read or write request from the host,the disk controller must spend time to get the request command and data from/to the bus and analyse the request. Thistime is called controller overhead which is typically around 1{2 ms. To read or write data on the disk, the controller has tospend time to move the disk head to the target track, called seek time, which takes 8{12 ms on average. Once the head ispositioned on the desired track, the disk has to wait until the target sector to rotate under the head before it can start toread or write data. This rotational latency has an average value of the half of the disk rotation time. For a modern diskwith a rotational speed of 7200 revolutions per minute (RPM), the average rotational latency is about 4.2 ms. The dataread/write time is for actually reading or writing data from/to the disk media. Its value depends on the request size as wellas the read/write channel speed, which is the data transfer rate between the disk head and disk media (not to be confusedwith the data transfer rate of the interface bus). Many disks nowadays have a read/write channel speed of 20 MB/sec orhigher. For data blocks of 4 KB and 1 MB, it takes 0.2 ms and 51.2 ms, respectively, to transfer the data from/to the diskmedia.On average, to write a data block of 4 KB, a typical modern disk has to spend 1 ms on controller overhead, 8 ms onseek time and 4.2 ms on rotational latency. The total overhead is 13.2 ms. Only about 0.2 ms is needed to actually writethe data to the disk media. The overhead dominates the total disk access time and limits the e�ective data transfer rateto about 0.3 MB/Sec (4 KB/13.4 ms.) On the other hand, writing a data block of 1 MB takes 64.4 ms (13.2 ms on totaloverhead and 51.2 ms on writing the data to the disk media), translating to an e�ective data transfer rate of 15.9 MB/Sec(1 MB/64.4 ms), which is 53 times higher than that of 4 KB writes. This example clearly shows that writing data to disksin large sizes is much more e�cient than in small sizes.of LFS degrades rapidly when the disk becomes full and getsworse than the current �le system when the disk utilization ap-proaches 80%. In addition, LFS needs to bu�er a large amountof data for a relatively long period of time (typically 30 to 60seconds) in order to write into disk later as a log, which maycause reliability problems. Finally, as pointed out by Stodolskyet al. [8], the performance of LFS in read-intensive workloadsmay be degraded if the read and write access patterns di�erwidely, since logically nearby blocks may not be stored physi-cally nearby in a LFS.1.2 The Burstiness of Disk I/O
0 5 10 15 20 25

0

100

200

300

400

500

600

Time (hours)

Re
qu

es
ts

/S
ec

on
d

CELLO8

Figure 1: The Burstiness of Disk I/OMany disk I/O workloads show the characteristic of burstiness|that is, requests are often clustered together in a short timeframe. In addition, there is usually a relatively long periodof interval time between two consecutive request bursts. Dur-

ing the interval time, the I/O system shows signi�cantly feweractivities or even becomes idle. Figure 1 shows the changesof disk request rates over a 24-hour period in a typical of-�ce/engineering workload. While the average request rate ofthis trace is only about 10 requests/second, the �gure showsmany bursts as high as 100{200 requests/second. The highestpeak in this graph goes over 500 requests/second.Such burstiness is very common in o�ce/engineering en-vironments, as observed by Ruemmler and Wilkes [9]. Onepossible reason to this bursty pattern is the periodical ushingof dirty data from the cache by the UNIX operating system.Another possible reason is that, in a UNIX system, each �lecreation/deletion operation causes 5 disk accesses and each �leread takes at least 2 disk accesses. Moreover, users tend to reador write a group of �les, such as copying, moving, deleting orcompiling a group of �les. Moving and compiling are especially�le system intensive operations because they involve reading,creating, writing and deleting �les.Many other systems also demonstrate burstiness. For ex-ample, Treiber and Menon [5] found that in a database I/Otrace, the peak read rate is 1250 blocks/second and the peakwrite rate is 440 blocks/second, while the average I/O rate isonly about 3.5 blocks/second/GB of data.While conventional disk caches and RAID work well withthe \background" requests, the large peaks pose a serious chal-lenge to them. These large peaks will quickly overow a RAMcache, unless the cache size is very large. A normal RAID sys-tem will not work well either, unless tens of disks are availablein the RAID system to process them in parallel and all therequests can be distributed into di�erent disks. Furthermore,a very large RAM or a large number of disks presents a poorperformance/cost ratio, since most of time the system is idleor less busy, resulting in very low hardware utilization.2

1.3 The DCD ApproachOne important characteristic of disks is that writing data todisks in large sizes is an order of magnitude more e�cient thanin small sizes (See side-bar Disk Access Time Breakdown).Base on this observation, we propose a new disk organizationreferred to as Disk Caching Disk, or DCD for short. The funda-mental idea behind DCD is to use a log disk, called cache-disk,as an extension of a small RAM bu�er on top of a data-disk.The RAM bu�er and the cache-disk together cache write data.Cached-data are moved to the data-disk afterward when thesystem is idle.In a DCD system, the small RAM bu�er captures the \back-ground" random write requests. When a large write burstcomes in, the RAM bu�er is quickly �lled. The DCD thenwrites all the data blocks in the RAM bu�er, in one large datatransfer, into the cache-disk. This large write �nishes quicklysince it requires only one seek instead of tens of seeks. As aresult, the RAM bu�er is very quickly made available to absorbadditional requests left in the large burst. The two-level cacheappears to the host as a large virtual RAM cache with a sizeclose to the size of the cache-disk. When the data-disk is idle orless busy, it performs destaging operations which transfer datafrom the cache-disk to the data-disk.Since the cache is a disk with a capacity much larger thana normal RAM cache, it can capture the temporal locality ofI/O requests with much less cost. It is also non-volatile thushighly reliable. In addition, the cache-disk is only a cache thatis transparent to the �le system. DCD works at the device ordevice driver level. There is no need to change the underly-ing operating system to apply the new disk architecture. Thelarge cache-disk enables DCD to achieve very high write per-formance.1.4 Orthogonal ArchitecturesIt is interesting to note a surprising similarity between the de-velopment of memory systems and the recent advances in disksystems. A few decades ago, computer architects proposed theconcept of memory interleaving to improve memory through-put. Later, cache memories were introduced to speedup mem-ory accesses for which interleaved memory systems were notable to do. We view the RAID systems as being similar tothe interleaved memories while our DCD system is similar tomulti-level CPU caches. Existing disk caches that use eitherpart of main memory or dedicated RAM, however, are severalorders of magnitude smaller than disks because of the signi�-cant cost di�erence between RAM and disks. Such caches canhardly capture the locality of I/O transfers and can not reducedisk tra�c as much as a CPU cache can for main memory traf-�c. Therefore, traditional disk caches are not as successful ascaches for main memories, particularly for writes. Our newDCD architecture marks a new start of caching disk using adisk that has a similar cost range as the data-disk making itpossible to have the disk cache large enough to catch the datalocality in I/O transfers. However, it is not easy to make onedisk physically much faster than the other so that the formercan become a cache as done in main memory systems. Thetrick is to exploit the temporal locality of I/O transfers andto make use of the idea of LFS to minimize the seek time androtational latency that are the major part of disk access times.

2 The DCD Architecture and Op-erationsFigure 2 shows the structure of DCD. The disk hierarchy con-sists of 3 levels. At the top of the hierarchy is a small RAMbu�er with the size ranging from hundreds of KB to severalMB. The second level cache is a disk drive with capacity inthe range of a few MB to tens of MB, called cache-disk. Thecache-disk is a small and sequentially accessed disk that storesdata in a log format. Note that the cache-disk can be a sepa-rate physical disk drive to achieve high performance as shownin Figure 2(a), or one logical disk partition physically residingon one disk drive for cost e�ectiveness as shown in Figure 2(b).At the bottom level is a normal disk drive, called data-disk,on which �les reside. The data organization on this disk is atraditional, unmodi�ed, read-optimized �le system such as theUNIX Fast File System or Extended File System.
RAM buffer of DCD

Cache 1

Data
Buffer

Data
Cache 2

PBA-

LBA

Table

DestageFigure 3: The structure of the DCD RAM bu�erFigure 3 shows the detailed structure of the RAM bu�erof DCD, which consists of 4 components, namely two DataCaches, a PBA-LBA Table and a Destaging Bu�er. The func-tions of these components will become clear as we discuss theoperations of DCD.2.1 WritingOf the two data caches in the RAM bu�er, only one is \ac-tive" at anytime. When a write request comes in, the DCDsystem �rst checks the size of the request. If the request is alarge write, say over 64 KB or more, it is sent directly to thedata-disk. Otherwise, the controller checks the free space ofthe active data cache. If there is enough free space to bu�erthe request, the controller allocates a cache block and copiesthe data into the cache block. As soon as the data is trans-ferred into the cache, the controller sends an acknowledgmentof \write complete" to the host. We refer to this acknowledg-ment as immediate report. The write response time in this caseis only the time to transfer the data from the host computerto the data cache. The case for report after the disk transferis complete will be discussed shortly.If the active data cache is full, the controller turns the otherdata cache as active to accept new data. Meanwhile, the con-troller writes the entire contents of the previous active datacache into the cache-disk, in one large log format. When thelog write �nishes, the whole data cache is freed and ready tobecome active again.Writing a large log into a disk presents signi�cant saving indisk access time as opposed to writing each request individually.Consider a situation where the average disk block size is 8 KBand the cache size is 256 KB. When the whole contents ofthe cache are written into the cache-disk as a log, only one3

Interface

Data Disk

Cache Disk

RAM Buffer

Con
trol

ler

(a) A DCD with a physical cache-disk

Data Disk

Interface

Cache Disk

RAM Buffer

Co
ntr

oll
er

(b) A DCD with a logical cache-diskFigure 2: The Structure of DCDlarge write is required, instead of 32 small writes each of whichsu�ers from expensive seek and rotational latencies. The logwrite �nishes quickly so that the data cache is available againto take the following write requests. Therefore the two levelcache appears to the host as a large virtual RAM cache with asize close to the size of the cache-disk.In DCD, data do not have to wait in the bu�er until thebu�er is full. Rather, they are written into the cache-disk when-ever the cache-disk is available, even the bu�er is only partiallyfull. In other words, DCD never lets the cache-disk become idleunless the RAM bu�er is empty. This policy has two importantadvantages. First, data are guaranteed to be written into thecache-disk when the current cache-disk access �nishes. Thus,data are stored in a safe storage within tens of milliseconds onaverage, resulting in much better reliability than keeping datain the RAM bu�er for a long time. Even in the worst case, themaximum time that data must stay in the RAM is the timeneeded for writing one full log, which takes less than a fewhundreds of milliseconds depending on the RAM size and thespeed of the disk. This situation occurs when a write requestarrives right after the cache-disk starts writing a log. Anotheradvantage is that, since data are always quickly moved fromthe data cache to the cache-disk, the data cache can have moreavailable room to bu�er a large burst of requests that happensvery frequently in o�ce/engineering workloads.2.2 ReadingWhen a read request arrives, the DCD controller �rst searchesthe RAM bu�er and the cache-disk. If the data is still in theRAM bu�er then the data is immediately ready. If the data isin the cache-disk, then a read from the cache-disk is needed.If the data has already been destaged to the data-disk, theread request is sent to the data-disk. And �nally, if the data ispartially in the cache-disk and partially in the data-disk, thenthe overlapped data in the cache-disk must be �rst destaged tothe data-disk before the request can be sent to the data-disk.We found in our simulation experiments that more than 99%of read requests are sent to the data disk. Reading from bu�eror cache-disk seldom occurs. This is because most �le systemsuse a large read cache so that most read requests for the newlywritten data are captured by the cache while the least recentlyused data are most likely to have a chance to be destaged from

the cache-disk to the data disk. The read performance of theDCD is therefore similar to and some times better than thatof a traditional disk because of the reduced tra�c at the datadisk as evidenced later in this paper.2.3 Cache-disk Data OrganizationWhen the host sends a request to the disk system to accessa disk block, it provides a Logic Block Address, or LBA, toindicate the position of that block in the data-disk. In thecase of DCD, however, the data in the request may be phys-ically cached in the cache-disk with a di�erent block address,referred to as Physical Block Address or PBA. The DCD sys-tem maintains a table for the mapping information betweenLBA's and PBA's for all blocks in the cache-disk. To speed upsearching, all entries in the mapping table are in a hash tableindexed by the LBAs. These entries are also in a doubly linkedlist, ordered with their PBA values. Each entry is 12 bytes.The total table size is about 24 KB for a 16 MB cache-diskwith a cache block size of 8 KB.Figure 4 shows the data organization in the cache-disk. Asshown in the �gure, each block in the cache-disk has a cor-responding entry in the PBA-LBA mapping table. The holesin the cache-disk are obsolete blocks caused by invalidationsof overwritten data. The PBA-LBA entries of these obsoleteblocks are removed from the linked list and recycled into a free-entry list (not shown in the �gure) for future use. A specialpointer called Current Log Position, or CLP, is maintained toindicate the end of the last log.The cache-disk works in a way similar to a stack. The CLPacts as the stack pointer. A new log is always \pushed" intothe cache-disk by writing the log to the disk starting from CLP,and appending the corresponding PBA-LBA mapping entriesfor the blocks in the log to the end of the mapping list.Similarly, the data blocks are \popped" out from the cache-disk during the destaging process. The controller reads a chunkof data backward from the CLP and writes the data into thedata-disk. It then deletes the corresponding entries in the PBA-LBA mapping list and moves the CLP back to a new position.We will discuss the destaging process in more detail later.This stack-like data organization greatly simpli�es the datastructures and the related algorithms. The CLP partitions thecache-disk into two separate areas, one containing log data and4

the other a continuous free space. As long as there is free space,the controller can keep pushing new logs into the cache-diskwithout worrying about the placement of the logs. The schemealso performs well. When a log write �nishes, the disk headis located above the track pointed by the CLP. The next logwrite can quickly start without the need of moving the diskhead, unless there are other activities happened between thetwo log writes which move the disk head away from the CLP.Furthermore, when the destaging process starts to pop dataout of the cache-disk, it may �nd the last log data in the RAMbu�er, thus saves one or several disk read operations.
LBA:32197
PBA: 0
Size : 12

LBA:67
PBA: 17
Size : 10

LBA:5200
PBA: 28
Size : 20

LBA:1
PBA: 52
Size : 8

LBA:97301
PBA: 74
Size : 5

Mapping Table

cache-disk

LBA-PBA

Start block New CLP
after destage

data blocks

obsolete blocks (holes)

Blank area to write new log

CLP

the destage buffer

To be read into

Hash Table (Indexed by LBA)

Figure 4: Data Organization in Cache-Disk2.4 DestagingThe destaging process, which moves data from the cache-diskto the data-disk, starts when the system detects an idle period.The controller �rst reads a large block of data from the cache-disk into the destaging bu�er. It then reorders the blocks in thedestaging bu�er according to their LBA numbers to reduce seekoverheads, and writes the blocks into their original locations inthe data-disk one by one. After a data block in the destag-ing bu�er is written, its corresponding entry in the PBA-LBAmapping table can be invalidated to indicate that the data isnot in the cache-disk anymore. The process continues until thecache-disk becomes empty. If a read or a write request comesduring destaging, the destaging process is suspended until thenext idle time is found.We use a simple algorithm to detect the idle time, that is,if there is no activity in the disk system for a certain periodof time (we chose a 50 ms threshold in our simulation), weconsider the disk as idle and start destaging. When the cache-disk utilization approaches 60% of the total cache-disk capacity,the time threshold reduces as the disk utilization increases. Inother words, the destaging algorithm works \harder" as thecache-disk �lls up to prevent the cache-disk becomes full.2.5 DCD with Report After CompleteIn the previous discussion, we assumed that the DCD sendsan acknowledgment of a write request as soon as the data aretransferred into the RAM bu�er. This scheme has excellentperformance as will be shown in our simulation experiments.With only 512 KB to 1 MB RAM bu�er and tens of MB

cache-disk, the DCD can achieve performance close to thatof a solid-state disk. The reliability of the DCD is also fairlygood because data do not stay in the RAM bu�er longer thana few hundreds milliseconds in the worst case, as discussedpreviously. If high reliability is essential, the RAM can be im-plemented using NVRAM for some additional cost, or usingconvention RAM but committing a write request as completeonly after it has been actually written into the cache-disk orthe data-disk. We call this a report after complete scheme. Theperformance of this con�guration would be lower than that ofimmediate reporting because a request is reported as completeonly when all requests in its log are written into a disk.2.6 Enhanced DCDwith an NVRAM cacheNVRAM can be used by DCD to improve its reliability. Whilethe DCD architecture discussed so far works well with bothRAM and NVRAM caches, better performance can be obtainedby exploiting the reliability feature of NVRAM. In this subsec-tion, we present an enhanced DCD architecture that works withan NVRAM cache.
PBA-

LBA

Table

Stage Destage
Buffer

NVRAM RAM

RAM buffer of enhanced DCD

LRU

Cache BufferFigure 5: The RAM bu�er structure of an Enhanced DCDThe di�erences between the enhanced DCD and the \nor-mal" DCD discussed so far are in the RAM bu�er. As shownin Figure 5, the NVRAM bu�er of the enhanced DCD uses anLRU (Least Recently Used) cache and a staging bu�er to re-place the double data caches in the normal DCD. The size ofthe staging bu�er is of 64 to 256 KB. The PBA-LBA mappingtable is also located in the NVRAM for easy crash recovery. Be-cause data in the destaging bu�er is read from the cache-disk,the destaging bu�er can use DRAM to reduce costs, withoutcompromising the reliability.The write operation of an enhanced DCD is similar to thatof a normal DCD. However, the controller does not ush thecontents of the LRU cache to the cache-disk when the cache-disk is idle. Instead, dirty data are kept in the LRU cacheas long as possible in order to capture the locality of writerequests. In many I/O workloads, a major portion of data areoverwritten repeatedly [9], therefore keeping data in the cachelonger helps capturing the overwriting and reducing the disktra�c. The reliability of the data is not a concern because ofthe NVRAM.When a write request comes in and the LRU cache is full,the DCD controller copies the LRU blocks to the staging bu�eruntil the staging bu�er is full, or until there is no more LRUblock left in the cache. The spaces in the LRU cache can safelybe released now since the staging bu�er is a part of NVRAM.Now a large portion of the LRU cache is freed so that thecurrent write request can immediately be satis�ed by allocatinga free block in the cache and copying the data into it. At thesame time, the whole contents of the staging bu�er are written5

into the cache-disk, in one large log format. When the logwrite �nishes, the staging bu�er is freed so it can take otherLRU blocks from the cache if necessary. The size of the stagingbu�er is large enough (64 - 256 KB) so the log write is e�cient.The enhanced DCD always works in the immediate reportmode because of the reliability provided by the NVRAM. Itsread and destaging operations are similar to those of a normalDCD.3 Baseline SystemsWe will compare the performance of the DCD with two tradi-tional disk systems as baseline systems. One is a disk with abuilt-in RAM cache, the other is a disk with a built-in RAMcache and an external NVRAM LRU cache.3.1 Traditional Disks with Built-in CachesThe performance of \normal" DCDs with RAM bu�ers will becompared to traditional disks with a built-in RAM cache in thedisk controller. A DCD and its traditional disk counterpartwork in the same report mode | that is, they either bothuse the immediate report mode, or both use the report-after-complete mode. The size of the built-in RAM cache of thetraditional disk is �xed at 4 MB, while the size of the RAMbu�er of DCD is �xed at 512 KB.3.2 Traditional Disks with NVRAM LRUcachesFor the enhanced DCD with an NVRAM cache, we will com-pare its performance with a baseline system that has a built-incache and an external NVRAM cache. The NVRAM cache usesan LRU (Least Recently Used) algorithm to manage its data. Ifthe cache is full, the controller destages the least recently useddata block to the data-disk to make room for the incomingrequest. We refer to this baseline system as an LRU cached-disk. When the system is idle, a destaging process moves dirtyLRU data from the RAM cache to the disk to make room forfuture incoming requests. The LRU cached-disk always usesimmediate-report mode because of the use of NVRAM.We vary the NVRAM cache sizes of both DCD and thetraditional LRU cached disks from 256 KB to 4 MB. For DCD,the staging bu�er size is 256 KB and the destaging bu�er size64 KB, except for the case of 256 KB total NVRAM size. Inthe later case the sizes of the staging bu�er and the destagingbu�er are 96 KB and 32 KB, respectively, to leave more spacefor the LRU cache.4 Performance Evaluation Method-ology4.1 Workload CharacteristicsWe use a set of real-world traces to carry out the simulation.The trace �les are obtained from Hewlett-Packard. The tracescontain all disk I/O requests made by 3 di�erent HP-UX sys-tems during a four-month period, and are described in detail in[9]. The three systems represent 3 typical con�gurations of the

o�ce/engineering environment. Among them, cello is a time-sharing system used by a small group of researchers (about 20)at HP laboratories to do simulation, compilation, editing andmail. Snake is a �le server of nine client workstations with 200users at the University of California, Berkeley. And hplajw isa personal workstation at HP laboratory for editing and mail.In order to �nd a range of workloads with di�erent inten-sities that is suitable for DCD, we overlaid multiple trace �lescorresponding to di�erent days. By mixing more trace �lesinto one new trace, we can have a higher tra�c I/O workload.Similar approach has been used by Varma et. al. [10] to studythe destaging algorithms for RAID caches. They overlaid upto 6 days of cello traces. In this study, we selected up to 9 daysof the trace data for each system and overlaid them togetherto get a very wide variation of I/O tra�c. We tried to look fora group of trace �les with roughly similar �le lengths (whichmeans that they contain similar numbers of requests). In thisway when we overlay 2 trace �les we can double the I/O tra�c.The particular traces we chose are from April 18 - 24, 1992 forcello and May 11 - 19, 1992 for snake. For hplajw, we are notable to �nd consecutive days during which all trace �les haveroughly similar lengths. Instead, the trace �les for hplajw arepicked from: 92-04-29, 92-04-30, 92-05-11, 92-05-15, 92-05-17,92-05-18, 92-06-09, 92-06-10 and 92-06-12.Overlaying multiple traces to form a single trace enablesus to obtain a much greater range of workloads with di�er-ent tra�c rates than what can be provided by a single trace�le. The lightest workload we can get now is a single day ofhplajw which has only about 12000 requests and 63 MB of to-tal requested data size. When we mix 9 days of snake tracestogether, however, we get a workload of over 1,030,000 requestsand 7000 MB of total requested data size, which is quite busyfor a single disk, especially when the burstiness is taken intoaccount.Using 3 di�erent set of traces from 3 quite di�erent systemsalso makes it possible for us to test the system under di�erentI/O workloads with di�erent characteristics such as burstinessand read/write ratio. For example, write requests dominatethe hplajw and snake traces, accounting for about 67% and60% of total requests, respectively. Cello, on the other hand, isa read-dominated workload, and write requests take only 37%of the total requests.4.2 Trace-Driven SimulatorWe developed a trace-driven simulation program for our per-formance evaluation purpose. In our previous study [11, 12]we used one of our own disk simulator which simulates an oldHP C2200A. In this study we use a disk simulator developedby Kotz et. al. [13]. The simulator models an HP 97560 diskdrive, which is a 5.25-inch, 1.26 GB disk with 128 KB built-incache. HP 97560 has an average access time of 23 ms for an 8KB data block. The disk model provides accurate and detailedsimulation, including SCSI bus contention, built-in cache read-ahead and write-behind, head-skewing, etc. We have madesome modi�cations to the simulator so it can easily simulatemultiple disks simultaneously.For physical DCDs, the program simulates two physicaldisk drives at the same time, one for the cache-disk and theother for the data-disk. For logical DCDs, two logical diskdrives are simulated by using two disk partitions on a singlephysical drive. The simulator charges a controller overhead of6

0.3 ms for the baseline system with an LRU cache to simulatethe time of cache management. The controller overhead is setto be 0.5 ms for DCD.The cache-disk size is assumed to be 10 MB for hplajw and30 MB for cello and snake. The cache-disk sizes are determinedby observing the maximum disk space needed for caching dataduring our simulations.5 Numerical ResultsWe present the simulation results in this section. We choose theresponse time as the performance metrics because we believeit is one of the most important I/O performance parametersfor o�ce/engineering environment and other interactive envi-ronments. Users in these computing environments are moreconcerned with the response time than with the I/O through-put. A system here must provide a fairly short response timeto its users.5.1 Normal DCD with Immediate ReportFigures 6, 7 and 8 show the average I/O response times of DCDand the traditional disk. Both DCD and the traditional diskuse the immediate-report mode. For easy comparison, we drawthe write response times in solid lines and the read responsetimes in dotted lines. In addition, the response times of thebaseline systems are in thick lines while those of the DCDs arein thin lines.Although the traditional disk has a built-in cache of 4MB and uses the immediate-report mode, its performance isfar from satisfactory. The average write response times arehundreds of milliseconds most of time, implying long waitingqueues. One reason for the poor performance is that the built-in cache of HP 97560 uses a simple non-LRU algorithm to man-age write data. Since the cache is made of RAM, dirty datashould be written into the disk as soon as possible thereforethe LRU algorithm can not be used.The DCD systems, on the other hand, show signi�cantlybetter write performance. For hplajw and snake, the averagewrite performance of a DCD is 1 to 2 orders of magnitudes bet-ter than that of a traditional disk. The average write responsetimes of a DCD are close to those of a solid-state disk (about1{2 ms). Their write response time curves are very close tothe X-axis. For cello, which is a read-intensive workload, theperformance improvement of DCD is relatively small becausethe system is busy for reads most of time. Still, a logical DCDare about 2{5 times faster than a traditional disk for writes. Aphysical DCD performs even better.While the main purpose of DCD is to improve the writeperformance, the simulation results show that a DCD also hasbetter read performance. The improvement in read perfor-mance of a DCD becomes greater as the workload increases.For example, a DCD has similar or slightly better read per-formance than a baseline system for a single trace. For 2{9overlaid traces, a DCD shows 2{10 times better performance.Such a performance improvement can mainly be attributed tothe reduction of write tra�c at the data-disk. Since most writerequests are removed from the critical path and will not be writ-ten into the data disk until the system is idle, the data-disk hasmore available time for processing read requests. The improve-ment of read performance is important to the overall system

performance, since most read requests are synchronized.5.2 Normal DCD with Report After Com-pleteDCD with report after complete has good reliability becausea write is guaranteed to be stored in a disk before the CPUis acknowledged. If the RAM bu�er is a volatile memory,this scheme is much more reliable than the immediate reportscheme, but it may not perform as well because a request isacknowledged as complete only after all requests in its group(i.e., the log) are written into a disk. Nevertheless, the DCDstill demonstrates superb performance as shown in Figures 9,10 and 11.For hplajw and cello, a logical DCD is about 2 times fasterthan a traditional disk for most workloads in terms of averagewrite times. A physical DCD has even better performance,especially for high workloads. DCD also shows faster read re-sponse times than a traditional disk.For snake, a DCD performs slightly better than a tradi-tional disk for the single trace workload. When the numberof overlaid traces increases, the performance of the traditionaldisk degrades rapidly because of the increased contention forthe disk bandwidth between read and write requests. TheDCD, on the other hand, shows much better performance athigh workloads, because write requests are removed from thecritical path and processed only when the system is idle. Forexample, for the workload of 9 overlaid traces, a logical DCDshows an average write response time 4 times shorter than thatof a traditional disk, and an average read response time 6 timesshorter. A physical DCD shows 20 times better performance interms of write response time and 14 times better performancein terms of read response time.5.3 Enhanced DCD with NVRAMWhen NVRAM is used as caches, data reliability in the cacheis not a problem anymore. As a result, more sophisticated datamanagement algorithms such as LRU can be used in both DCDand the traditional disk system to manage write data for betterperformance. Figures 12 to 17 compare the average write andread times of enhanced DCD with that of LRU-cached baselinesystems. We varied the RAM bu�er sizes between 256 KB and4 MB. Because of the space limitation, we show only the resultsof 1, 3, 6 and 9 overlaid traces for each workload.Compared to a baseline disk with a large built-in non-LRURAM cache, the baseline disk with an LRU NVRAM cacheshows much better performance. The improvement mainlycomes from the LRU algorithm that is much more e�cient thanthe simple algorithm used by the disk built-in cache. However,a DCD system still does a much better job than a baseline diskwith an LRU NVRAM cache. The average write response timesof DCD are signi�cantly lower than those of the baseline sys-tem | 2 to 20 times less for small RAM sizes (256 { 1024KB).Increasing the RAM size for the baseline system always notablyimproves its performance. Conversely, for hplajw and snake,increasing the amount of RAM for DCD beyond a threshold,which is between 512 KB and 1024 KB, has almost no e�ect onthe write performance. A DCD with a RAM size around thethreshold performs close to or better than an LRU cached diskwith 4 MB of RAM. Thus we believe DCD utilizes the RAMspace very e�ciently. For cello, which has a large percentage7

of read requests, there is no such a clear threshold. Still, theDCD performs signi�cantly better than the LRU-cached diskwith the same RAM size.All three traces used in our simulation are relatively lightly-loaded, even when we overlaid multiple traces together. A DCDwith a RAM cache of 512 KB to 1 MB can absorb almost allwrite requests. A LRU cached disk with a 4 MB cache can alsoabsorb almost all writes. As a result, if both the DCD and theLRU cached disk have a cache of 4 MB, they perform almostequally well. In such a case a DCD system does not showobvious advantages over a traditional system. The exceptionis cello, for which the write response time of a DCD with a4 MB cache is only 50% of that of a LRU cached disk with asame-size cache.An enhanced DCD uses the LRU algorithm to keep activedata in the NVRAM to capture data overwriting. Comparedto a \normal DCD", disk tra�c in an enhanced DCD is re-duced, resulting in better write and especially better read per-formance. Occasionally a normal DCD slightly outperformsthe enhanced DCD for writes for the following reasons. Sincean enhanced DCD keeps active data in the NVRAM, the RAMbu�er is seldom empty. When a large write burst comes, theNVRAM cache may not have enough space, and the DCD hasto evict data from the NVRAM cache to the cache-disk beforeaccepting new data. However, on average, an enhanced DCDdoes a better job for the same RAM size than a normal DCD.5.4 Overhead of DCDWhile DCD shows superb performance, for each data write,DCD has to do extra work compared to a traditional disk. Ithas to write the data into the cache-disk �rst and read it backfrom the cache-disk later. In a logical DCD these extra opera-tions compete with normal data reads and writes for the diskbandwidth. Therefore one would expect performance degra-dation at high loads. However, we found that while a logicalDCD does show some performance degradation at high loads,it still performs much better than a baseline system.In DCD, all writes to and reads from the cache-disk areperformed in large sizes | typically up to 32 requests can bewritten into the cache-disk from the bu�er, and 8 requests canbe read from the cache disk into the destaging bu�er, bothin one disk access. Therefore the overhead per write accessincreases only slightly. Moreover, this small overhead can becompensated by the fact that data can stay in the cache-disklonger because the cache-disk is larger than the RAM cache.As a result, the data in the cache-disk has a better chanceto be overwritten giving less number of destaging operations.Our simulation shows that the disk in a logical DCD systemsees slightly lower write tra�c and slightly higher read tra�ccompared to a LRU-cached disk. The overall disk tra�c in thelogical DCD is slightly lower (about 1 percent) than in thebaseline system for hplajw and snake, and is only about 0.6%higher for cello.5.5 Cost ConsiderationsAlthough the DCD architecture improves I/O performance, italso introduces an additional cost to the traditional disk sys-tem. One immediate question is whether such additional costis justi�ed.

Currently the cost of 1 MB disk space is about 5 cents. Asa result, the additional 10 to 50 MB of disk space used by alogical DCD is a very small fraction of a modern disk drive,which is typically around several GB or larger. On the otherhand, we have shown that DCD uses a signi�cant less amountof NVRAM than a baseline disk needs for similar performance.This represents signi�cant cost reductions because NVRAM isextremely expensive.If a physical cache-disk is to be implemented for high tra�cdisk systems such as �le servers, the cost will be high becausethe smallest hard drive that is available in the market has afew hundreds MB capacity and the cost is around a coupleof hundreds dollars. However, the cost can be amortized if acache-disk is used to serve several data-disks. Moreover, manysystems have two or more disks. Typically not all disks in asystem are busy at the same time. We can divide each disk in asystem into a cache-partition and a data-partition. When thesystem accesses a data-disk, the DCD chooses a cache-partitionin another disk that is idle or less busy to act as a logical cache-disk. Such a system should perform closely to a physical DCD,while its cost is close to that of a logical DCD.6 ConclusionsWe have proposed a new disk architecture called Disk CachingDisk, or DCD for short, for the purpose of improving writeperformance in the most-widely-used o�ce/engineering envi-ronment. The basic idea of the new architecture is to exploitthe temporal locality of disk accesses and the dramatic di�er-ence in data transfer rate between large and small disk transfersizes. The DCD is a hierarchical architecture consisting of threelevels: a RAM bu�er, a cache-disk which stores data in a logformat, and a data-disk that stores data in the same way astraditional disks. The disk cache including the RAM and thecache-disk is transparent to the operating system so that thereis no need to change the operating system to incorporate thisnew disk architecture.We studied several architectural variations of DCD. In alogical DCD, the cache-disk is implemented as a logical par-tition of the data disk for low cost. In a physical DCD, thecache-disk is a dedicated small disk drive for better perfor-mance. For a DCD with a RAM cache, it can use either theimmediate report mode for higher performance, or use reportafter complete mode for higher reliability. We also proposedan enhanced DCD organization that uses an LRU algorithm tomanage its NVRAM bu�er.Extensive simulation experiments have been carried out byusing traces representing 3 typical o�ce/engineering workloadenvironments. Multiple traces are overlaid together to forma single workload to test the systems under di�erent I/O in-tensities. Numerical results have shown that the new DCDarchitecture is very promising in improving write performanceacross a great range of workloads. With immediate report,the DCD improves write performance by one to two orders ofmagnitude over the traditional disk systems with a large built-in RAM cache. A factor of 2 to 20 performance improvementsover traditional disks are observed for the DCD with the report-after-complete scheme. An enhanced DCD with an NVRAMcache of 512 { 1024 KB also outperforms a traditional diskwith an external NVRAM cache of 4096 KB most of time. It isnoted that the DCD also improves read performance in many8

cases. The additional cost introduced by the DCD is a smallfraction of the disk system cost. DCD can be implementedas a device-driver in the host system, as a stand-along systemincluding the controller, the cache-disk and the data-disk. It isalso possible to implement a logical DCD at the disk-controllerlevel.As future work, we are currently implementing the DCDconcept on two platforms, one is a device driver for Solaris2.6, and the other is a DCD SCSI drive controlled by a PC.Both systems are functioning. Measured performance resultsare very promising. For example, when running real-world pro-grams that are I/O intensive, our Solaris DCD device driveroutperforms the traditional disk device driver by a factor of 2{5 in terms of program execution times. Further measurementand optimization are underway.AcknowledgmentsThis research is supported in part by NSF under grants MIP-9505601 and MIP-9714370. The authors would like to thankDr. Wilkes of Hewlett-Packard for providing trace �les to us,and thank Dr. Kotz of Dartmouth College for letting us usehis disk simulator. Mr. Changsheng Xie suggested the ideaof using a cache-partition in another disk as a logical cache-disk for better performance. Tycho Nightingale implementedthe Solaris DCD device driver, and Jason Lu implemented theprototype hardware system.References[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,and D. A. Patterson, \RAID : High-performance, reliablesecondary storage," ACM Computing Surveys, vol. 26,pp. 145{188, June 1994.[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, andM. Seltzer, \Non-volatile memory for fast, reliable �le sys-tems," in Proceedings of the 5th International Conferenceon Architectural Support for Programming Languages andOperating System (ASPLOS), (Boston, MA), pp. 10{22,ACM Press , New York, NY , USA, Oct. 1992.[3] M. Rosenblum and J. Ousterhout, \The design and imple-mentation of a log-structured �le system," ACM Transac-tions on Computer Systems, pp. 26 { 52, Feb. 1992.[4] J. Ousterhout and F. Douglis, \Beating the I/O bottle-neck: A case for log-structured �le systems," tech. rep.,Computer Science Division, Electrical Engineering andComputer Sciences, University of California at Berkeley,Oct. 1988.[5] K. Treiber and J. Menon, \Simulation study of cachedRAID5 designs," in Proceedings of Int'l Symposiumon High Performance Computer Architectures, (Raleigh,North Carolina), pp. 186{197, Jan. 1995.[6] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin,\An implementation of a log-structured �le system forUNIX," in Proceedings of Winter 1993 USENIX, (SanDiego, CA), pp. 307{326, Jan. 1993.[7] U. Vahalia, UNIX Internals | The New Frontiers. Pren-tice Hall, 1996.

[8] D. Stodolsky, M. Holland, W. V. Courtright II, , and G. A.Gibson, \Parity logging disk arrays," in ACM Transactionof Computer Systems, pp. 206{235, Aug. 1994.[9] C. Ruemmler and J. Wilkes, \UNIX disk access patterns,"in Proceedings of Winter 1993 USENIX, (San Diego, CA),pp. 405{420, Jan. 1993.[10] A. Varma and Q. Jacobson, \Destage algorithms for diskarrays with non-volatile caches," in Proceedings of the22nd Annual International Symposium on Computer Ar-chitecture, (Santa Margherita Ligure, Italy), pp. 83{95,June 22{24, 1995.[11] Y. Hu and Q. Yang, \DCD|disk caching disk: A newapproach for boosting I/O performance," in Proceedingsof the 23rd International Symposium on Computer Archi-tecture, pp. 169{178, May 1996.[12] Q. Yang and Y. Hu, \System for destaging data duringidle time by transferring to destage bu�er, marking seg-ment blank, reordering data in bu�er, and transferring tobeginning of segment." U.S. Patent No. 5,754,888, May1998.[13] D. Kotz, S. B. Toh, and S. Radhakrishnan, \A detailedsimulation model of the HP 97560 disk drive," Tech. Rep.PCS-TR94-220, Department of Computer Science, Dart-mouth College, July 1994.

9

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 6: Normal DCD vs Traditional Disk for hplajw (Imme-diate Report)DCD bu�er = 512 KB; Baseline cache = 4 MB
0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 7: Normal DCD vs Traditional Disk for snake (Imme-diate Report)DCD bu�er = 512 KB; Baseline cache = 4 MB

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 8: Normal DCD vs Traditional Disk for cello (Immedi-ate Report)DCD bu�er = 512 KB; Baseline cache = 4 MB
0

50

100

150

200

250

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 9: Normal DCD vs Traditional Disk for hplajw (ReportAfter Complete)DCD bu�er = 512 KB; Baseline cache = 4 MB

10

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 10: Normal DCD vs Traditional Disk for snake (ReportAfter Complete)DCD bu�er = 512 KB; Baseline cache = 4 MB

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9
Number of Overlaid Traces

Re
sp

on
se

 Ti
me

 (m
s)

Logic DCD (write)
Physical DCD (write)
Baseline (write)
Logic DCD (read)
Physical DCD (read)
Baseline (read)

Figure 11: Normal DCD vs Traditional Disk for cello (ReportAfter Complete)DCD bu�er = 512 KB; Baseline cache = 4 MB
11

256

204
8 1

3

6

9

0

5

10

15

20

25

30

35

40

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 12: HPLAJW Write Response Time (Enhanced DCD vs LRU Cached Disk)

256

204
8 1

3

6

9

0

5

10

15

20

25

30

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 13: SNAKE Write Response Time (Enhanced DCD vs LRU Cached Disk)

256

204
8 1

3

6

9

0

50

100

150

200

250

300

350

400

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 14: CELLO Write Response Time (Enhanced DCD vs LRU Cached Disk)12

256

204
8 1

3

6

9

0

20

40

60

80

100

120

140

160

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 15: HPLAJW Read Response Time (Enhanced DCD vs LRU Cached Disk)

256

204
8 1

3

6

9

0

50

100

150

200

250

300

350

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 16: SNAKE Read Response Time (Enhanced DCD vs LRU Cached Disk)

256

204
8 1

3

6

9

0

1000

2000

3000

4000

5000

6000

7000

Res
pon

se
Tim

e (m
s)

RAM
Sizes
(KB)

Number of Overlaid Traces

Physical
DCD

Logical
DCD

Baseline
SystemFigure 17: CELLO Read Response Time (Enhanced DCD vs LRU Cached Disk)13

