A New Hierarchical Disk Architecture *

Yiming Hu and Qing Yang
Dept. of Electrical & Computer Engineering
University of Rhode Island
Kingston, RI 02881
e-mail: {hu,qyang}@ele.uri.edu

Abstract

Large RAM caches are generally used to speed up disk ac-
cesses. Such caches more effectively improve read performance
than write performance, since write requests must be frequently
written into disks to protect them from data loss or damage due
to system failures. While Non-volatile RAM (NVRAM) caches
can be used to improve write performance, large NVRAM caches
are too expensive for many applications. This paper presents a
new disk cache architecture called DCD, Disk Caching Disks.
DCD takes the advantage of large data transfer sizes and uses
inexpensive disk space to provide a high-performance, low-cost
and reliable caching solution.
keywords:
Cache, Disk, NVRAM, Storage System, Storage Hierarchy

1 Introduction

Semiconductor technologies have advanced very rapidly for the
past decades. Disk storage (hard disk drives), on the other
hand, have not kept pace with RAM in terms of access speed
because of the mechanical nature of magnetic disks, although
the storage capacity of disks increased drastically. The result
is a wider speed gap between RAM and disks. Such a gap will
eventually become the main obstacle for further development
of computer technology.

1.1

There has been extensive research reported in the literature
in improving disk system performance.
disk performance can generally be classified into two categories:
improving the disk subsystem architecture, and improving the
file system that controls and manages disks.

One of the most important architectural advances in disks is
the RAID (Redundant Array of Inexpensive Disks) architecture
[1]. The main idea of RAID is to use multiple disks in parallel to
increase the total 1/O bandwidth that scales with the number
of disks. Multiple disks in a RAID can serve a single large
1/0 request or support multiple independent 1/Os in parallel.
The most commonly used RAID architecture is RAID-5. While
RAID-5 is an effective approach to high I/O performance, it
suffers from the well-known “small write” problem, that is, its
throughput is penalized by a factor of four over non-redundant
arrays for small writes [1]. The penalty results from parity

Background

Previous studies on

*Will appear in IEEE Micro.

calculation for new data, which involves readings of old data
and parity, and writings of new data and parity.

The RAID architectures are primarily aimed for high through-
put by means of parallelism rather than reducing access la-
tency. For low average throughput workloads such as those
in office/engineering environments, performance enhancement
due to RAID is very limited [1]. Caching is the main mechanism
for reducing access latency. Modern file systems generally use
large RAM caches to speed up disk accesses. Such caches more
effectively reduce read traffic than write traffic, since write re-
quests must be frequently written into disks to protect them
from data loss or damage due to system failures [2, 3, 4]. As the
RAM size increases rapidly and absorbs more read requests, the
proportion of write traffic seen by disk systems will dominate
disk traffic and may potentially become a system bottleneck [4].
While it is possible to improve the write performance by using
Non-volatile RAM (NVRAM) cache [2, 5], the write buffer size
is usually very small compared to disk capacity because of the
high cost of NVRAM!. Such a small buffer gets filled up very
quickly and can hardly catch the locality of large 1/O data.
Large NVRAM caches are cost-prohibitive making it infeasible
for many applications except for large-scale systems such as
banking applications where costs are not a primary concern.

Since attempts in improving the disk subsystem architec-
ture have so far met with limited success for write performance,
extensive research has been reported in improving file systems.
One of the most important work in file systems is the Log-
structured File System (LFS) [4, 3, 6]. The central idea of
LFS is to improve write performance by buffering a sequence
of small writes in a cache to form a large log, and then writing
the large log to a disk in one disk operation when the cache is
full. As a result, many small and random writes of the tradi-
tional file system are converted into a large sequential transfer
in LFS. In this way, LFS eliminates the random seek times
and rotational latencies associated with small write operations
thereby improving the disk performance significantly.

While LFS has a great potential for improving write perfor-
mance of traditional file systems, it has not been commercially
very successful since it was introduced more than ten years ago.
Applications of LFS are mainly limited to academic research
such as Sprite LF'S [3] and BSD-LFS [6] as well as some RAID
systems. This is because LFS requires rewriting the file system
and a host of utility programs [7, page 350], needs a high cost
cleaning algorithm, and is much more sensitive to disk capacity
utilization than traditional file systems [3, 4]. The performance

IFor example, Dallas Semiconductor sells NVRAM with embed-
ded lithium-cell batteries for about $100/MB.

Disk Access Time Breakdown

For each disk access, there are 4 components that contributes to the total access time: Controller Overhead, Seek Time,
Rotational Latency and Data Read/Write Time.

Data on disks are organized in tracks and sectors. When a disk drive receives a read or write request from the host,
the disk controller must spend time to get the request command and data from/to the bus and analyse the request. This
time is called controller overhead which is typically around 1-2 ms. To read or write data on the disk, the controller has to
spend time to move the disk head to the target track, called seek time, which takes 8-12 ms on average. Once the head is
positioned on the desired track, the disk has to wait until the target sector to rotate under the head before it can start to
read or write data. This rotational latency has an average value of the half of the disk rotation time. For a modern disk
with a rotational speed of 7200 revolutions per minute (RPM), the average rotational latency is about 4.2 ms. The data
read/write time is for actually reading or writing data from/to the disk media. Its value depends on the request size as well
as the read/write channel speed, which is the data transfer rate between the disk head and disk media (not to be confused
with the data transfer rate of the interface bus). Many disks nowadays have a read/write channel speed of 20 MB/sec or
higher. For data blocks of 4 KB and 1 MB, it takes 0.2 ms and 51.2 ms, respectively, to transfer the data from/to the disk
media.

On average, to write a data block of 4 KB, a typical modern disk has to spend 1 ms on controller overhead, 8 ms on
seek time and 4.2 ms on rotational latency. The total overhead is 13.2 ms. Only about 0.2 ms is needed to actually write
the data to the disk media. The overhead dominates the total disk access time and limits the effective data transfer rate
to about 0.3 MB/Sec (4 KB/13.4 ms.) On the other hand, writing a data block of 1 MB takes 64.4 ms (13.2 ms on total
overhead and 51.2 ms on writing the data to the disk media), translating to an effective data transfer rate of 15.9 MB/Sec
(1 MB/64.4 ms), which is 53 times higher than that of 4 KB writes. This example clearly shows that writing data to disks

in large sizes is much more efficient than in small sizes.

of LFS degrades rapidly when the disk becomes full and gets
worse than the current file system when the disk utilization ap-
proaches 80%. In addition, LFS needs to buffer a large amount
of data for a relatively long period of time (typically 30 to 60
seconds) in order to write into disk later as a log, which may
cause reliability problems. Finally, as pointed out by Stodolsky
et al. [8], the performance of LFS in read-intensive workloads
may be degraded if the read and write access patterns differ
widely, since logically nearby blocks may not be stored physi-
cally nearby in a LFS.

1.2 The Burstiness of Disk I/0

CELLO8

500 4

400 4

Requests/Second
8
o
T
.

200 1

100

o AL ﬂm‘.

U m .mJ. Ml
) 15 20 25
Time (hours)

Figure 1: The Burstiness of Disk 1/O

ing the interval time, the I/O system shows significantly fewer
activities or even becomes idle. Figure 1 shows the changes
of disk request rates over a 24-hour period in a typical of-
fice/engineering workload. While the average request rate of
this trace is only about 10 requests/second, the figure shows
many bursts as high as 100 200 requests/second. The highest
peak in this graph goes over 500 requests/second.

Such burstiness is very common in office/engineering en-
vironments, as observed by Ruemmler and Wilkes [9]. One
possible reason to this bursty pattern is the periodical flushing
of dirty data from the cache by the UNIX operating system.
Another possible reason is that, in a UNIX system, each file
creation/deletion operation causes 5 disk accesses and each file
read takes at least 2 disk accesses. Moreover, users tend to read
or write a group of files, such as copying, moving, deleting or
compiling a group of files. Moving and compiling are especially
file system intensive operations because they involve reading,
creating, writing and deleting files.

Many other systems also demonstrate burstiness. For ex-
ample, Treiber and Menon [5] found that in a database 1/O
trace, the peak read rate is 1250 blocks/second and the peak
write rate is 440 blocks/second, while the average 1/O rate is
only about 3.5 blocks/second/GB of data.

While conventional disk caches and RAID work well with
the “background” requests, the large peaks pose a serious chal-
lenge to them. These large peaks will quickly overflow a RAM
cache, unless the cache size is very large. A normal RAID sys-
tem will not work well either, unless tens of disks are available
in the RAID system to process them in parallel and all the
requests can be distributed into different disks. Furthermore,
a very large RAM or a large number of disks presents a poor

Many disk I/O workloads show the characteristic of burstinessperformance/cost ratio, since most of time the system is idle

that is, requests are often clustered together in a short time
frame. In addition, there is usually a relatively long period

of interval time between two consecutive request bursts. Dur-

or less busy, resulting in very low hardware utilization.

1.3 The DCD Approach

One important characteristic of disks is that writing data to
disks in large sizes is an order of magnitude more efficient than
in small sizes (See side-bar Disk Access Time Breakdown).
Base on this observation, we propose a new disk organization
referred to as Disk Caching Disk, or DCD for short. The funda-
mental idea behind DCD is to use a log disk, called cache-disk,
as an extension of a small RAM buffer on top of a data-disk.
The RAM buffer and the cache-disk together cache write data.
Cached-data are moved to the data-disk afterward when the
system is idle.

In a DCD system, the small RAM buffer captures the “back-
ground” random write requests. When a large write burst
comes in, the RAM buffer is quickly filled. The DCD then
writes all the data blocks in the RAM buffer, in one large data
transfer, into the cache-disk. This large write finishes quickly
since it requires only one seek instead of tens of seeks. As a
result, the RAM buffer is very quickly made available to absorb
additional requests left in the large burst. The two-level cache
appears to the host as a large virtual RAM cache with a size
close to the size of the cache-disk. When the data-disk is idle or
less busy, it performs destaging operations which transfer data
from the cache-disk to the data-disk.

Since the cache is a disk with a capacity much larger than
a normal RAM cache, it can capture the temporal locality of
I/O requests with much less cost. It is also non-volatile thus
highly reliable. In addition, the cache-disk is only a cache that
is transparent to the file system. DCD works at the device or
device driver level. There is no need to change the underly-
ing operating system to apply the new disk architecture. The
large cache-disk enables DCD to achieve very high write per-
formance.

1.4 Orthogonal Architectures

It is interesting to note a surprising similarity between the de-
velopment of memory systems and the recent advances in disk
systems. A few decades ago, computer architects proposed the
concept of memory interleaving to improve memory through-
put. Later, cache memories were introduced to speedup mem-
ory accesses for which interleaved memory systems were not
able to do. We view the RAID systems as being similar to
the interleaved memories while our DC' D system is similar to
multi-level CPU caches. Existing disk caches that use either
part of main memory or dedicated RAM, however, are several
orders of magnitude smaller than disks because of the signifi-
cant cost difference between RAM and disks. Such caches can
hardly capture the locality of I/O transfers and can not reduce
disk traffic as much as a CPU cache can for main memory traf-
fic. Therefore, traditional disk caches are not as successful as
caches for main memories, particularly for writes. Our new
DCD architecture marks a new start of caching disk using a
disk that has a similar cost range as the data-disk making it
possible to have the disk cache large enough to catch the data
locality in I/O transfers. However, it is not easy to make one
disk physically much faster than the other so that the former
can become a cache as done in main memory systems. The
trick is to exploit the temporal locality of I/O transfers and
to make use of the idea of LFS to minimize the seek time and
rotational latency that are the major part of disk access times.

2 The DCD Architecture and Op-

erations

Figure 2 shows the structure of DCD. The disk hierarchy con-
sists of 3 levels. At the top of the hierarchy is a small RAM
buffer with the size ranging from hundreds of KB to several
MB. The second level cache is a disk drive with capacity in
the range of a few MB to tens of MB, called cache-disk. The
cache-disk is a small and sequentially accessed disk that stores
data in a log format. Note that the cache-disk can be a sepa-
rate physical disk drive to achieve high performance as shown
in Figure 2(a), or one logical disk partition physically residing
on one disk drive for cost effectiveness as shown in Figure 2(b).
At the bottom level is a normal disk drive, called data-disk,
on which files reside. The data organization on this disk is a
traditional, unmodified, read-optimized file system such as the
UNIX Fast File System or Extended File System.

RAM buffer of DCD

Data Data PBA- Destage|
Cache 1 Cache 2 LBA Buffer
Table

Figure 3: The structure of the DCD RAM buffer

Figure 3 shows the detailed structure of the RAM buffer
of DCD, which consists of 4 components, namely two Data
Caches, a PBA-LBA Table and a Destaging Buffer. The func-
tions of these components will become clear as we discuss the
operations of DCD.

2.1 Writing

Of the two data caches in the RAM buffer, only one is “ac-
tive” at anytime. When a write request comes in, the DCD
system first checks the size of the request. If the request is a
large write, say over 64 KB or more, it is sent directly to the
data-disk. Otherwise, the controller checks the free space of
the active data cache. If there is enough free space to buffer
the request, the controller allocates a cache block and copies
the data into the cache block. As soon as the data is trans-
ferred into the cache, the controller sends an acknowledgment
of “write complete” to the host. We refer to this acknowledg-
ment as immediate report. The write response time in this case
is only the time to transfer the data from the host computer
to the data cache. The case for report after the disk transfer
is complete will be discussed shortly.

If the active data cache is full, the controller turns the other
data cache as active to accept new data. Meanwhile, the con-
troller writes the entire contents of the previous active data
cache into the cache-disk, in one large log format. When the
log write finishes, the whole data cache is freed and ready to
become active again.

Writing a large log into a disk presents significant saving in
disk access time as opposed to writing each request individually.
Consider a situation where the average disk block size is 8 KB
and the cache size is 256 KB. When the whole contents of
the cache are written into the cache-disk as a log, only one

INnterface

RAM Buffer ‘

1l
— =

41

(a) A DCD with a physical cache-disk

|

Cache Disk

Controller

Interface

=
% - :l Cache Disk
e ——
., :| Data Disk
)

(b) A DCD with alogical cache-disk

Figure 2: The Structure of DCD

large write is required, instead of 32 small writes each of which
suffers from expensive seek and rotational latencies. The log
write finishes quickly so that the data cache is available again
to take the following write requests. Therefore the two level
cache appears to the host as a large virtual RAM cache with a
size close to the size of the cache-disk.

In DCD, data do not have to wait in the buffer until the
buffer is full. Rather, they are written into the cache-disk when-
ever the cache-disk is available, even the buffer is only partially
full. In other words, DCD never lets the cache-disk become idle
unless the RAM buffer is empty. This policy has two important
advantages. First, data are guaranteed to be written into the
cache-disk when the current cache-disk access finishes. Thus,
data are stored in a safe storage within tens of milliseconds on
average, resulting in much better reliability than keeping data
in the RAM buffer for a long time. Even in the worst case, the
maximum time that data must stay in the RAM is the time
needed for writing one full log, which takes less than a few
hundreds of milliseconds depending on the RAM size and the
speed of the disk. This situation occurs when a write request
arrives right after the cache-disk starts writing a log. Another
advantage is that, since data are always quickly moved from
the data cache to the cache-disk, the data cache can have more
available room to buffer a large burst of requests that happens
very frequently in office/engineering workloads.

2.2 Reading

When a read request arrives, the DCD controller first searches
the RAM buffer and the cache-disk. If the data is still in the
RAM buffer then the data is immediately ready. If the data is
in the cache-disk, then a read from the cache-disk is needed.
If the data has already been destaged to the data-disk, the
read request is sent to the data-disk. And finally, if the data is
partially in the cache-disk and partially in the data-disk, then
the overlapped data in the cache-disk must be first destaged to
the data-disk before the request can be sent to the data-disk.
We found in our simulation experiments that more than 99%
of read requests are sent to the data disk. Reading from buffer
or cache-disk seldom occurs. This is because most file systems
use a large read cache so that most read requests for the newly
written data are captured by the cache while the least recently
used data are most likely to have a chance to be destaged from

the cache-disk to the data disk. The read performance of the
DCD is therefore similar to and some times better than that
of a traditional disk because of the reduced traffic at the data
disk as evidenced later in this paper.

2.3 Cache-disk Data Organization

When the host sends a request to the disk system to access
a disk block, it provides a Logic Block Address, or LBA, to
indicate the position of that block in the data-disk. In the
case of DCD, however, the data in the request may be phys-
ically cached in the cache-disk with a different block address,
referred to as Physical Block Address or PBA. The DCD sys-
tem maintains a table for the mapping information between
LBA’s and PBA’s for all blocks in the cache-disk. To speed up
searching, all entries in the mapping table are in a hash table
indexed by the LBAs. These entries are also in a doubly linked
list, ordered with their PBA values. Each entry is 12 bytes.
The total table size is about 24 KB for a 16 MB cache-disk
with a cache block size of 8 KB.

Figure 4 shows the data organization in the cache-disk. As
shown in the figure, each block in the cache-disk has a cor-
responding entry in the PBA-LBA mapping table. The holes
in the cache-disk are obsolete blocks caused by invalidations
of overwritten data. The PBA-LBA entries of these obsolete
blocks are removed from the linked list and recycled into a free-
entry list (not shown in the figure) for future use. A special
pointer called Current Log Position, or CLP, is maintained to
indicate the end of the last log.

The cache-disk works in a way similar to a stack. The CLP
acts as the stack pointer. A new log is always “pushed” into
the cache-disk by writing the log to the disk starting from CLP,
and appending the corresponding PBA-LBA mapping entries
for the blocks in the log to the end of the mapping list.

Similarly, the data blocks are “popped” out from the cache-
disk during the destaging process. The controller reads a chunk
of data backward from the CLP and writes the data into the
data-disk. It then deletes the corresponding entries in the PBA-
LBA mapping list and moves the CLP back to a new position.
We will discuss the destaging process in more detail later.

This stack-like data organization greatly simplifies the data
structures and the related algorithms. The CLP partitions the
cache-disk into two separate areas, one containing log data and

the other a continuous free space. As long as there is free space,
the controller can keep pushing new logs into the cache-disk
without worrying about the placement of the logs. The scheme
also performs well. When a log write finishes, the disk head
is located above the track pointed by the CLP. The next log
write can quickly start without the need of moving the disk
head, unless there are other activities happened between the
two log writes which move the disk head away from the CLP.
Furthermore, when the destaging process starts to pop data
out of the cache-disk, it may find the last log data in the RAM
buffer, thus saves one or several disk read operations.

‘ Hash Table (Indexed by LBA) ‘

» ¥ v LY Ta
LBA:32197] _|LBA67 | _[LBAS200 | _[LBA:l | _|LBA:97301| | gA-PBA

PBA: 0 PBA: 17 PBA: 28 PBA: 52 PBA: 74 :
Szei12 |[<—{Sze'10 |<—|Sze:20 |[<—{Sze:8 [<—|sze:5 | MaPpingTable

obsolete blocks (holes) /

Vel

data block

]

cache-disk

¢ To beread into ¢ Blank areato write new log
|he destage buffer
Start block New CLP CLP
after destage

Figure 4: Data Organization in Cache-Disk

2.4 Destaging

The destaging process, which moves data from the cache-disk
to the data-disk, starts when the system detects an idle period.
The controller first reads a large block of data from the cache-
disk into the destaging buffer. It then reorders the blocks in the
destaging buffer according to their LBA numbers to reduce seek
overheads, and writes the blocks into their original locations in
the data-disk one by one. After a data block in the destag-
ing buffer is written, its corresponding entry in the PBA-LBA
mapping table can be invalidated to indicate that the data is
not in the cache-disk anymore. The process continues until the
cache-disk becomes empty. If a read or a write request comes
during destaging, the destaging process is suspended until the
next idle time is found.

We use a simple algorithm to detect the idle time, that is,
if there is no activity in the disk system for a certain period
of time (we chose a 50 ms threshold in our simulation), we
consider the disk as idle and start destaging. When the cache-
disk utilization approaches 60% of the total cache-disk capacity,
the time threshold reduces as the disk utilization increases. In
other words, the destaging algorithm works “harder” as the
cache-disk fills up to prevent the cache-disk becomes full.

2.5 DCD with Report After Complete

In the previous discussion, we assumed that the DCD sends
an acknowledgment of a write request as soon as the data are
transferred into the RAM buffer. This scheme has excellent
performance as will be shown in our simulation experiments.

With only 512 KB to 1 MB RAM buffer and tens of MB

cache-disk, the DCD can achieve performance close to that
of a solid-state disk. The reliability of the DCD is also fairly
good because data do not stay in the RAM buffer longer than
a few hundreds milliseconds in the worst case, as discussed
previously. If high reliability is essential, the RAM can be im-
plemented using NVRAM for some additional cost, or using
convention RAM but committing a write request as complete
only after it has been actually written into the cache-disk or
the data-disk. We call this a report after complete scheme. The
performance of this configuration would be lower than that of
immediate reporting because a request is reported as complete
only when all requests in its log are written into a disk.

2.6 Enhanced DCD with an NVRAM cache

NVRAM can be used by DCD to improve its reliability. While
the DCD architecture discussed so far works well with both
RAM and NVRAM caches, better performance can be obtained
by exploiting the reliability feature of NVRAM. In this subsec-
tion, we present an enhanced DCD architecture that works with
an NVRAM cache.

Y NVRAM RAM
[I L
[] I
o LRU Stage PBA- 3; Destage| . i
|

o Cache Buffer LBA || |Buffer | .
L Table | o
[| t
L {

|

Figure 5: The RAM buffer structure of an Enhanced DCD

The differences between the enhanced DCD and the “nor-
mal” DCD discussed so far are in the RAM buffer. As shown
in Figure 5, the NVRAM buffer of the enhanced DCD uses an
LRU (Least Recently Used) cache and a staging buffer to re-
place the double data caches in the normal DCD. The size of
the staging buffer is of 64 to 256 KB. The PBA-LBA mapping
table is also located in the NVRAM for easy crash recovery. Be-
cause data in the destaging buffer is read from the cache-disk,
the destaging buffer can use DRAM to reduce costs, without
compromising the reliability.

The write operation of an enhanced DCD is similar to that
of a normal DCD. However, the controller does not flush the
contents of the LRU cache to the cache-disk when the cache-
disk is idle. Instead, dirty data are kept in the LRU cache
as long as possible in order to capture the locality of write
requests. In many 1/O workloads, a major portion of data are
overwritten repeatedly [9], therefore keeping data in the cache
longer helps capturing the overwriting and reducing the disk
traffic. The reliability of the data is not a concern because of
the NVRAM.

When a write request comes in and the LRU cache is full,
the DCD controller copies the LRU blocks to the staging buffer
until the staging buffer is full, or until there is no more LRU
block left in the cache. The spaces in the LRU cache can safely
be released now since the staging buffer is a part of NVRAM.
Now a large portion of the LRU cache is freed so that the
current write request can immediately be satisfied by allocating
a free block in the cache and copying the data into it. At the
same time, the whole contents of the staging buffer are written

into the cache-disk, in one large log format. When the log
write finishes, the staging buffer is freed so it can take other
LRU blocks from the cache if necessary. The size of the staging
buffer is large enough (64 - 256 KB) so the log write is efficient.

The enhanced DCD always works in the immediate report
mode because of the reliability provided by the NVRAM. Its
read and destaging operations are similar to those of a normal

DCD.

3 Baseline Systems

We will compare the performance of the DCD with two tradi-
tional disk systems as baseline systems. One is a disk with a
built-in RAM cache, the other is a disk with a built-in RAM
cache and an external NVRAM LRU cache.

3.1 Traditional Disks with Built-in Caches

The performance of “normal” DCDs with RAM buffers will be
compared to traditional disks with a built-in RAM cache in the
A DCD and its traditional disk counterpart
work in the same report mode — that is, they either both
use the immediate report mode, or both use the report-after-
complete mode. The size of the built-in RAM cache of the
traditional disk is fixed at 4 MB, while the size of the RAM
buffer of DCD is fixed at 512 KB.

disk controller.

3.2 Traditional Disks with NVRAM LRU
caches

For the enhanced DCD with an NVRAM cache, we will com-
pare its performance with a baseline system that has a built-in
cache and an external NVRAM cache. The NVRAM cache uses
an LRU (Least Recently Used) algorithm to manage its data. If
the cache is full, the controller destages the least recently used
data block to the data-disk to make room for the incoming
request. We refer to this baseline system as an LRU cached-
disk. When the system is idle, a destaging process moves dirty
LRU data from the RAM cache to the disk to make room for
future incoming requests. The LRU cached-disk always uses
immediate-report mode because of the use of NVRAM.

We vary the NVRAM cache sizes of both DCD and the
traditional LRU cached disks from 256 KB to 4 MB. For DCD,
the staging buffer size is 256 KB and the destaging buffer size
64 KB, except for the case of 256 KB total NVRAM size. In
the later case the sizes of the staging buffer and the destaging
buffer are 96 KB and 32 KB, respectively, to leave more space
for the LRU cache.

4 Performance Evaluation Method-

ology
4.1 Workload Characteristics

We use a set of real-world traces to carry out the simulation.
The trace files are obtained from Hewlett-Packard. The traces
contain all disk I/O requests made by 3 different HP-UX sys-
tems during a four-month period, and are described in detail in
[9]. The three systems represent 3 typical configurations of the

office/engineering environment. Among them, cello is a time-
sharing system used by a small group of researchers (about 20)
at HP laboratories to do simulation, compilation, editing and
mail. Snake is a file server of nine client workstations with 200
users at the University of California, Berkeley. And hplajw is
a personal workstation at HP laboratory for editing and mail.

In order to find a range of workloads with different inten-
sities that is suitable for DCD, we overlaid multiple trace files
corresponding to different days. By mixing more trace files
into one new trace, we can have a higher traffic I/O workload.
Similar approach has been used by Varma et. al. [10] to study
the destaging algorithms for RAID caches. They overlaid up
to 6 days of cello traces. In this study, we selected up to 9 days
of the trace data for each system and overlaid them together
to get a very wide variation of 1/O traffic. We tried to look for
a group of trace files with roughly similar file lengths (which
means that they contain similar numbers of requests). In this
way when we overlay 2 trace files we can double the I/O traffic.
The particular traces we chose are from April 18 - 24, 1992 for
cello and May 11 - 19, 1992 for snake. For hplajw, we are not
able to find consecutive days during which all trace files have
roughly similar lengths. Instead, the trace files for hplajw are
picked from: 92-04-29; 92-04-30, 92-05-11, 92-05-15, 92-05-17,
92-05-18, 92-06-09, 92-06-10 and 92-06-12.

Overlaying multiple traces to form a single trace enables
us to obtain a much greater range of workloads with differ-
ent traffic rates than what can be provided by a single trace
file. The lightest workload we can get now is a single day of
hplajw which has only about 12000 requests and 63 MB of to-
tal requested data size. When we mix 9 days of snake traces
together, however, we get a workload of over 1,030,000 requests
and 7000 MB of total requested data size, which is quite busy
for a single disk, especially when the burstiness is taken into
account.

Using 3 different set of traces from 3 quite different systems
also makes it possible for us to test the system under different
1/0O workloads with different characteristics such as burstiness
and read/write ratio. For example, write requests dominate
the hplajw and snake traces, accounting for about 67% and
60% of total requests, respectively. Cello, on the other hand, is
a read-dominated workload, and write requests take only 37%
of the total requests.

4.2

We developed a trace-driven simulation program for our per-
formance evaluation purpose. In our previous study [11, 12]
we used one of our own disk simulator which simulates an old
HP C2200A. In this study we use a disk simulator developed
by Kotz et. al. [13]. The simulator models an HP 97560 disk
drive, which is a 5.25-inch, 1.26 GB disk with 128 KB built-in
cache. HP 97560 has an average access time of 23 ms for an 8
KB data block. The disk model provides accurate and detailed
simulation, including SCSI bus contention, built-in cache read-
ahead and write-behind, head-skewing, etc. We have made
some modifications to the simulator so it can easily simulate
multiple disks simultaneously.

For physical DCDs, the program simulates two physical
disk drives at the same time, one for the cache-disk and the
other for the data-disk. For logical DCDs, two logical disk

drives are simulated by using two disk partitions on a single

Trace-Driven Simulator

physical drive. The simulator charges a controller overhead of

0.3 ms for the baseline system with an LRU cache to simulate
the time of cache management. The controller overhead is set
to be 0.5 ms for DCD.

The cache-disk size is assumed to be 10 MB for Aplajw and
30 MB for cello and snake. The cache-disk sizes are determined
by observing the maximum disk space needed for caching data
during our simulations.

5 Numerical Results

We present the simulation results in this section. We choose the
response time as the performance metrics because we believe
it is one of the most important I/O performance parameters
for office/engineering environment and other interactive envi-
ronments. Users in these computing environments are more
concerned with the response time than with the 1/O through-
put. A system here must provide a fairly short response time
to its users.

5.1 Normal DCD with Immediate Report

Figures 6, 7 and 8 show the average I/O response times of DCD
and the traditional disk. Both DCD and the traditional disk
use the immediate-report mode. For easy comparison, we draw
the write response times in solid lines and the read response
times in dotted lines. In addition, the response times of the
baseline systems are in thick lines while those of the DCDs are
in thin lines.

Although the traditional disk has a built-in cache of 4
MB and uses the immediate-report mode, its performance is
far from satisfactory. The average write response times are
hundreds of milliseconds most of time, implying long waiting
queues. One reason for the poor performance is that the built-
in cache of HP 97560 uses a simple non-LRU algorithm to man-
age write data. Since the cache is made of RAM, dirty data
should be written into the disk as soon as possible therefore
the LRU algorithm can not be used.

The DCD systems, on the other hand, show significantly
better write performance. For hplajw and snake, the average
write performance of a DCD is 1 to 2 orders of magnitudes bet-
ter than that of a traditional disk. The average write response
times of a DCD are close to those of a solid-state disk (about
1-2 ms). Their write response time curves are very close to
the X-axis. For cello, which is a read-intensive workload, the
performance improvement of DCD is relatively small because
the system is busy for reads most of time. Still, a logical DCD
are about 2 5 times faster than a traditional disk for writes. A
physical DCD performs even better.

While the main purpose of DCD is to improve the write
performance, the simulation results show that a DCD also has
better read performance. The improvement in read perfor-
mance of a DCD becomes greater as the workload increases.
For example, a DCD has similar or slightly better read per-
formance than a baseline system for a single trace. For 2 9
overlaid traces, a DCD shows 2 10 times better performance.
Such a performance improvement can mainly be attributed to
the reduction of write traffic at the data-disk. Since most write
requests are removed from the critical path and will not be writ-
ten into the data disk until the system is idle, the data-disk has
more available time for processing read requests. The improve-
ment of read performance is important to the overall system

performance, since most read requests are synchronized.

5.2 Normal DCD with Report After Com-
plete

DCD with report after complete has good reliability because
a write is guaranteed to be stored in a disk before the CPU
is acknowledged. If the RAM buffer is a volatile memory,
this scheme is much more reliable than the immediate report
scheme, but it may not perform as well because a request is
acknowledged as complete only after all requests in its group
(i.e., the log) are written into a disk. Nevertheless, the DCD
still demonstrates superb performance as shown in Figures 9,
10 and 11.

For hplajw and cello, a logical DCD is about 2 times faster
than a traditional disk for most workloads in terms of average
write times. A physical DCD has even better performance,
especially for high workloads. DCD also shows faster read re-
sponse times than a traditional disk.

For snake, a DCD performs slightly better than a tradi-
tional disk for the single trace workload. When the number
of overlaid traces increases, the performance of the traditional
disk degrades rapidly because of the increased contention for
the disk bandwidth between read and write requests. The
DCD, on the other hand, shows much better performance at
high workloads, because write requests are removed from the
critical path and processed only when the system is idle. For
example, for the workload of 9 overlaid traces, a logical DCD
shows an average write response time 4 times shorter than that
of a traditional disk, and an average read response time 6 times
shorter. A physical DCD shows 20 times better performance in
terms of write response time and 14 times better performance
in terms of read response time.

5.3 Enhanced DCD with NVRAM
When NVRAM is used as caches, data reliability in the cache

is not a problem anymore. As a result, more sophisticated data
management algorithms such as LRU can be used in both DCD
and the traditional disk system to manage write data for better
performance. Figures 12 to 17 compare the average write and
read times of enhanced DCD with that of LRU-cached baseline
systems. We varied the RAM buffer sizes between 256 KB and
4 MB. Because of the space limitation, we show only the results
of 1, 3, 6 and 9 overlaid traces for each workload.

Compared to a baseline disk with a large built-in non-LRU
RAM cache, the baseline disk with an LRU NVRAM cache
shows much better performance. The improvement mainly
comes from the LRU algorithm that is much more efficient than
the simple algorithm used by the disk built-in cache. However,
a DCD system still does a much better job than a baseline disk
with an LRU NVRAM cache. The average write response times
of DCD are significantly lower than those of the baseline sys-
tem — 2 to 20 times less for small RAM sizes (256 — 1024KB).
Increasing the RAM size for the baseline system always notably
improves its performance. Conversely, for hplajw and snake,
increasing the amount of RAM for DCD beyond a threshold,
which is between 512 KB and 1024 KB, has almost no effect on
the write performance. A DCD with a RAM size around the
threshold performs close to or better than an LRU cached disk
with 4 MB of RAM. Thus we believe DCD utilizes the RAM

space very efficiently. For cello, which has a large percentage

of read requests, there is no such a clear threshold. Still, the
DCD performs significantly better than the LRU-cached disk
with the same RAM size.

All three traces used in our simulation are relatively lightly-
loaded, even when we overlaid multiple traces together. A DCD
with a RAM cache of 512 KB to 1 MB can absorb almost all
write requests. A LRU cached disk with a 4 MB cache can also
absorb almost all writes. As a result, if both the DCD and the
LRU cached disk have a cache of 4 MB, they perform almost
equally well. In such a case a DCD system does not show
obvious advantages over a traditional system. The exception
is cello, for which the write response time of a DCD with a
4 MB cache is only 50% of that of a LRU cached disk with a
same-size cache.

An enhanced DCD uses the LRU algorithm to keep active
data in the NVRAM to capture data overwriting. Compared
to a “normal DCD”, disk traffic in an enhanced DCD is re-
duced, resulting in better write and especially better read per-
formance. Occasionally a normal DCD slightly outperforms
the enhanced DCD for writes for the following reasons. Since
an enhanced DCD keeps active data in the NVRAM, the RAM
buffer is seldom empty. When a large write burst comes, the
NVRAM cache may not have enough space, and the DCD has
to evict data from the NVRAM cache to the cache-disk before
accepting new data. However, on average, an enhanced DCD
does a better job for the same RAM size than a normal DCD.

5.4 Overhead of DCD

While DCD shows superb performance, for each data write,
DCD has to do extra work compared to a traditional disk. It
has to write the data into the cache-disk first and read it back
from the cache-disk later. In a logical DCD these extra opera-
tions compete with normal data reads and writes for the disk
bandwidth. Therefore one would expect performance degra-
dation at high loads. However, we found that while a logical
DCD does show some performance degradation at high loads,
it still performs much better than a baseline system.

In DCD, all writes to and reads from the cache-disk are
performed in large sizes — typically up to 32 requests can be
written into the cache-disk from the buffer, and 8 requests can
be read from the cache disk into the destaging buffer, both
in one disk access. Therefore the overhead per write access
increases only slightly. Moreover, this small overhead can be
compensated by the fact that data can stay in the cache-disk
longer because the cache-disk is larger than the RAM cache.
As a result, the data in the cache-disk has a better chance
to be overwritten giving less number of destaging operations.
Our simulation shows that the disk in a logical DCD system
sees slightly lower write traffic and slightly higher read traffic
compared to a LRU-cached disk. The overall disk traffic in the
logical DCD is slightly lower (about 1 percent) than in the
baseline system for hplajw and snake, and is only about 0.6%
higher for cello.

5.5 Cost Considerations

Although the DCD architecture improves I/O performance, it
also introduces an additional cost to the traditional disk sys-
tem. One immediate question is whether such additional cost
is justified.

Currently the cost of 1 MB disk space is about 5 cents. As
a result, the additional 10 to 50 MB of disk space used by a
logical DCD is a very small fraction of a modern disk drive,
which is typically around several GB or larger. On the other
hand, we have shown that DCD uses a significant less amount
of NVRAM than a baseline disk needs for similar performance.
This represents significant cost reductions because NVRAM is
extremely expensive.

If a physical cache-disk is to be implemented for high traffic
disk systems such as file servers, the cost will be high because
the smallest hard drive that is available in the market has a
few hundreds MB capacity and the cost is around a couple
of hundreds dollars. However, the cost can be amortized if a
cache-disk is used to serve several data-disks. Moreover, many
systems have two or more disks. Typically not all disks in a
system are busy at the same time. We can divide each disk in a
system into a cache-partition and a data-partition. When the
system accesses a data-disk, the DCD chooses a cache-partition
in another disk that is idle or less busy to act as a logical cache-
disk. Such a system should perform closely to a physical DCD,
while its cost is close to that of a logical DCD.

6 Conclusions

We have proposed a new disk architecture called Disk Caching
Disk, or DCD for short, for the purpose of improving write
performance in the most-widely-used office/engineering envi-
ronment. The basic idea of the new architecture is to exploit
the temporal locality of disk accesses and the dramatic differ-
ence in data transfer rate between large and small disk transfer
sizes. The DCD is a hierarchical architecture consisting of three
levels: a RAM buffer, a cache-disk which stores data in a log
format, and a data-disk that stores data in the same way as
traditional disks. The disk cache including the RAM and the
cache-disk is transparent to the operating system so that there
is no need to change the operating system to incorporate this
new disk architecture.

We studied several architectural variations of DCD. In a
logical DCD, the cache-disk is implemented as a logical par-
tition of the data disk for low cost. In a physical DCD, the
cache-disk is a dedicated small disk drive for better perfor-
mance. For a DCD with a RAM cache, it can use either the
immediate report mode for higher performance, or use report
after complete mode for higher reliability. We also proposed
an enhanced DCD organization that uses an LRU algorithm to
manage its NVRAM buffer.

Extensive simulation experiments have been carried out by
using traces representing 3 typical office/engineering workload
environments. Multiple traces are overlaid together to form
a single workload to test the systems under different 1/O in-
tensities. Numerical results have shown that the new DCD
architecture is very promising in improving write performance
across a great range of workloads. With immediate report,
the DC'D improves write performance by one to two orders of
magnitude over the traditional disk systems with a large built-
in RAM cache. A factor of 2 to 20 performance improvements
over traditional disks are observed for the DCD with the report-
after-complete scheme. An enhanced DCD with an NVRAM
cache of 512 1024 KB also outperforms a traditional disk
with an external NVRAM cache of 4096 KB most of time. Tt is
noted that the DCD also improves read performance in many

cases. The additional cost introduced by the DCD is a small
fraction of the disk system cost. DCD can be implemented
as a device-driver in the host system, as a stand-along system
including the controller, the cache-disk and the data-disk. It is
also possible to implement a logical DCD at the disk-controller
level.

As future work, we are currently implementing the DCD
concept on two platforms, one is a device driver for Solaris
2.6, and the other is a DCD SCSI drive controlled by a PC.
Both systems are functioning. Measured performance results
are very promising. For example, when running real-world pro-
grams that are I/O intensive, our Solaris DCD device driver
outperforms the traditional disk device driver by a factor of 2—
5 in terms of program execution times. Further measurement
and optimization are underway.

Acknowledgments

This research is supported in part by NSF under grants MIP-
9505601 and MIP-9714370. The authors would like to thank
Dr. Wilkes of Hewlett-Packard for providing trace files to us,
and thank Dr. Kotz of Dartmouth College for letting us use
Mr. Changsheng Xie suggested the idea
of using a cache-partition in another disk as a logical cache-
disk for better performance. Tycho Nightingale implemented
the Solaris DCD device driver, and Jason Lu implemented the
prototype hardware system.

his disk simulator.

References

[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,
and D. A. Patterson, “RAID : High-performance, reliable
secondary storage,” ACM Computing Surveys, vol. 26,
pp. 145 188, June 1994.

[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and
M. Seltzer, “Non-volatile memory for fast, reliable file sys-
tems,” in Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and
Operating System (ASPLOS), (Boston, MA), pp. 10-22,
ACM Press , New York, NY , USA, Oct. 1992.

[3] M. Rosenblum and J. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Transac-
tions on Computer Systems, pp. 26 — 52, Feb. 1992.

[4] J. Ousterhout and F. Douglis, “Beating the I/O bottle-
neck: A case for log-structured file systems,” tech. rep.,
Computer Science Division, Electrical Engineering and
Computer Sciences, University of California at Berkeley,

Oct. 1988.

[6] K. Treiber and J. Menon, “Simulation study of cached
RAID5 designs,” in Proceedings of Int’l Symposium
on High Performance Computer Architectures, (Raleigh,
North Carolina), pp. 186 197, Jan. 1995.

[6] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin,
“An implementation of a log-structured file system for
UNIX,” in Proceedings of Winter 1993 USENIX, (San
Diego, CA), pp. 307 326, Jan. 1993.

[7] U. Vahalia, UNIX Internals = The New Frontiers. Pren-
tice Hall, 1996.

[8] D. Stodolsky, M. Holland, W. V. Courtright II, , and G. A.
Gibson, “Parity logging disk arrays,” in ACM Transaction
of Computer Systems, pp. 206 235, Aug. 1994.

[9] C. Ruemmler and J. Wilkes, “UNIX disk access patterns,”
in Proceedings of Winter 1993 USENIX, (San Diego, CA),
pp. 405-420, Jan. 1993.

[10] A. Varma and Q. Jacobson, “Destage algorithms for disk
arrays with non-volatile caches,” in Proceedings of the
22nd Annual International Symposium on Computer Ar-
chitecture, (Santa Margherita Ligure, Ttaly), pp. 83-95,

June 22 24, 1995.
Y. Hu and Q. Yang, “DCD disk caching disk: A new

approach for boosting I/O performance,” in Proceedings
of the 23rd International Symposium on Computer Archi-
tecture, pp. 169 178, May 1996.

[11]

[12] Q. Yang and Y. Hu, “System for destaging data during
idle time by transferring to destage buffer, marking seg-
ment blank, reordering data in buffer, and transferring to
beginning of segment.” U.S. Patent No. 5,754,888, May

1998.

D. Kotz, S. B. Toh, and S. Radhakrishnan, “A detailed
simulation model of the HP 97560 disk drive,” Tech. Rep.
PCS-TR94-220, Department of Computer Science, Dart-
mouth College, July 1994.

[13]

250 7000
—+—Logic BCD (write) - —+—Logic BCD (write)
—O— Physical DCD (write) 6000 H —O— Physical DCD (write)
200 L —tr— Baseline (write) . —tr— Baseline (write)
-- m-- Logic DCD (read) - - - Logic DCD (read)
. - - - Physical DCD (read) . — 5000 H - - - Physical DCD (read)
2 - @ Baseline (read) . 2 - @ Baseline (read)
@ 150 . £ 4000
= =
b 3
2 2 3000
S 100 | =,
8 B
o & 2000
50
1000
PR e
0 o= o o o—o—r—2 | o

1 2 3 4 5 6 7 8 9

8

3 a 5 6 7
Number of Overlaid Traces Number of Overlaid Traces

Figure 6: Normal DCD vs Traditional Disk for Aplajw (Imme- Figure 8: Normal DCD vs Traditional Disk for cello (Immedi-
diate Report) ate Report)
DCD buffer = 512 KB; Baseline cache = 4 MB DCD buffer = 512 KB; Baseline cache = 4 MB

250
900
'Y —&— Logic DCD (write)
—<— Logic DCD (write) —o— Physical DCD (write)
800 - —o— Physical DCD (write) 200 e Baseline (write)
—ae—Baseline (write) - - Logic DCD (read)
700 -- m-- Logic DCD (read) — - Physical DCD (read)
— - - Physical DCD (read) g - Baseline (read)
2 600 Baseline (read) < 150
@ £
.§ 500 b
@ 2
2 400 S 100
S 2
2 8
g soo &
200 S0
100
o T T T
o

1 2

8

3 4 5 6 7
Number of Overlaid Traces

Number of Overlaid Traces

Figure 9: Normal DCD vs Traditional Disk for hAplajw (Report
After Complete)
DCD buffer = 512 KB; Baseline cache = 4 MB

Figure 7: Normal DCD vs Traditional Disk for snake (Imme-
diate Report)
DCD buffer = 512 KB; Baseline cache = 4 MB

10

1200

Response Time (ms)
]
o
o

—e— Logic DCD (write)
—o— Physical DCD (write)
[| =—ae—Baseline (write)
- - Logic DCD (read)
- Physical DCD (read)
Baseline (read)

4 5 6 7
Number of Overlaid Traces

8 9

Figure 10: Normal DCD vs Traditional Disk for snake (Report
After Complete)

DCD buffer = 512 KB, Baseline cache = 4, MB

8000

7000

6000

5000

4000

3000

Response Time (ms)

2000

1000

—e— Logic DCD (write)

= —o— Physical DCD (write)
—te— Baseline (write)

- Logic DCD (read)

- - Physical DCD (read)
- ® Baseline (read)

a 5

3
Number of Overlaid Traces

Figure 11: Normal DCD vs Traditional Disk for cello (Report
After Complete)

DCD buffer = 512 KB; Baseline cache = 4 MB

11

(stw) au] asuodsay

Number of Overlaid Traces

Baseline

Logical
DCD

Physical
DCD

System

)

isk

LRU Cached D

Figure 12: HPLAJW Write Response Time (Enhanced DCD vs

(stw) a1 asuodsay

Number of Overlaid Traces

Baseline

Logical
DCco

Physical
DCco

System

)

Enhanced DCD vs LRU Cached Disk

(

Figure 13: SNAKFE Write Response Time

(su) au| 3suodsay

Baseline
System

Logical
DCcD

Number of Overlaid Traces

Physical
DCD

)

Enhanced DCD vs LRU Cached Disk

(

Figure 14: CELLO Write Response Time

12

(stw) aui] asuodsay

Number of Overlaid Traces

Baseline
System

g
20
a0

Physical
DCcD

)

LRU Cached Disk

Figure 15: HPLAJW Read Response Time (Enhanced DCD vs

(o) au| suodsay

Baseline
System

Logical
DCcD

Number of Overlaid Traces

Physical
DCcD

)

Enhanced DCD vs LRU Cached Disk

Figure 16: SNAKE Read Response Time (

() 3w asuodsay

Number of Overlaid Traces

Baseline
System

i
20
a0

Physical
[=YS1a

)

Enhanced DCD vs LRU Cached Disk

Figure 17: CELLO Read Response Time (

13

