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Ground-based active optical sensors (GBAOS) 
display promising results in their ability to predict crop 
yields. The GBAOS based on red and near-infrared 

(NIR) ratios or normalized difference vegetative index (NDVI), 
which are defined as[ (NIR − red)/(NIR + red)], measure the 
density of leaves on current living vegetation and chlorophyll 
status of the crops before the closure of the canopy. Sensor 
diodes generate modulated light (pulsed at ~40,000 Hz) in 
wavebands that are then absorbed by plant tissues through 
chlorophyll and reflected by its biomass. Algorithms based on 
expected corn yields with both the GreenSeeker (GS) (Trimble, 
Sunnyvale, CA) and Holland Scientific Crop Circle Sensor ACS 
470 (HSCCACS-470) (Holland Scientific, Lincoln, NE) 
measurements obtained early in the growing season have been 
developed (Raun et al., 2001; Lukina et al., 2001; Franzen et 
al., 2015; Holland and Schepers, 2010; Sharma et al., 2015). The 
GreenSeeker algorithm that was developed for corn (Dellinger 
et al., 2008; Raun and Johnson, 1999; Shanahan et al., 2008; 
Sharma et al., 2016a; Raun et al., 2001) correlates the corn yield 
measured in field experiments with the in-season estimate of 
yield (INSEY). The INSEY number is a derivative of the GS 
measurements of NDVI divided by growing degree days (GDD) 
from the date of planting. The algorithm described by the regres-
sion relationship between the INSEY and corn yield is used to 
vary the rate of N to corn, using an estimate of the difference 
in corn yield prediction and the corn yield predicted from an 
N-rich strip within variety and field of interest, multiplied by 
the 1.25% N in corn grain estimate and divided by a N fertilizer 
application efficiency factor (values >0–1).

Plant height also has been used as a metric during the vegeta-
tive growth of corn. The water content (Sharma et al., 2016b), 
soil texture (Sharma et al., 2016a), rate of fertilizer application 
(Sharma et al., 2016c), and cultivation methods (Bu et al., 
2016) influence plant height in the soil. Measurement of plant 
height can be conducted using high-resolution ultra-sound 
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AbstrAct
Ground-based active optical sensors (GBAOS) have been suc-
cessfully used in agriculture to predict crop yield potential (YP) 
early in the season and to improvise N rates for optimal crop 
yield. However, the models were found weak or inconsistent due 
to environmental variation especially rainfall. The objectives of 
the study were to evaluate if GBAOS could predict YP across 
multiple locations, soil types, cultivation systems, and rain-
fall differences. This study was carried from 2011 to 2013 on 
corn (Zea mays L.) in North Dakota, and in 2017 in potatoes 
in Maine. Six N rates were used on 50 sites in North Dakota 
and 12 N rates on two sites, one dryland and one irrigated, in 
Maine. Two active GBAOS used for this study were GreenS-
eeker  and Holland Scientific Crop Circle Sensor  ACS 470 
(HSCCACS-470) and 430 (HSCCACS-430). Rainfall data, 
with or without including crop height, improved the YP mod-
els in term of reliability and consistency. The polynomial model 
was relatively better compared to the exponential model. A sig-
nificant difference in the relationship between sensor reading 
multiplied by rainfall data and crop yield was observed in terms 
of soil type, clay and medium textured, and cultivation system, 
conventional and no-till, respectively, in the North Dakota corn 
study. The two potato sites in Maine, irrigated and dryland, 
performed differently in terms of total yield and rainfall data 
helped to improve sensor YP models. In conclusion, this study 
strongly advocates the use of rainfall data while using sensor-
based N calculator algorithms.
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core Ideas 
•	 Optical sensors are commonly used by the researchers to improve 

yield estimated in commercial crops. 
•	 This study was carried out in two states in two different crops, corn 

and potatoes, 2011–2013 and 2017, respectively. 
•	 The objectives of the study were to evaluate ground based optical 

sensors to predict yield potential across multiple locations, soils 
types, cultivation systems, and rainfall differences.

soIl fertIlIty AnD crop nutrItIon
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distance sensing of the crop canopy (Sharma et al., 2016a, 
2016b]. The canopy height of the sugar beet was multiplied 
times a GS reading in an attempt to estimate leaf N concentra-
tion, sugar beet top N content, and dry matter yield (Bu et al., 
2016). The NDVI measurement is related to leaf area index, 
a two-dimensional representation of crop development and 
growth. In NDVI, saturation of readings causes a weak rela-
tionship in the later stages of corn growth (Franzen et al., 2016, 
2017; Sharma et al., 2017; Sharma, 2014).

Previous studies have deduced the importance of soil mois-
ture (SM) in estimating grain yield (GY). Humphrey and 
Schupp (2004) concluded that by incorporating soil character-
istics like soil texture and SM, could explain more about the 
growing conditions and thereby enhance the precision of YP 
prediction utilizing the INSEY method. Kumar et al. (2006) 
examined the relationship between seasonal crop water stress 
index (depending on evapotranspiration deficits and NDVI) 
and sorghum GYs and found that by incorporating spectral 
indices (i.e., NDVI) with soil water parameters into a mid-
season model, they could improve GY estimates.

An essential factor affected by SM is the color of the sur-
rounding soil, in turn affecting NDVI values. Eklundh (1998) 
indicated that between 10 and 36% of the variation in NDVI 
values could be attributed to changes in rainfall in 10-d and 
monthly scales, respectively. The author did mention, however, 
that the use of rainfall data to predict vegetative growth could be 
restricted based on the variability in soil characteristics such as 
soil type, soil water holding capacity, and rainfall duration and 
density. Detailed research is necessary for SM-NDVI-yield rela-
tionship (Eklundh, 1998). It has been suggested that changes in 
surface SM significantly contribute to differences in crop canopy 
reflectance and can increase the difficulty in quantifying and 
identifying plant stress (Wilhelm et al., 2000; Haboudan et al., 
2003; Katsvairo et al., 2003a; Daughtry et al., 2000).

Using soil moisture with sensor readings would be a wise 
choice, but it is highly impractical for growers to put a soil 
moisture sensor in each field and get the data unless remotely 
connected to the controller that holds the sensor and fertilizer 
applicator. To solve this problem, we used rainfall data from 
weather stations close to the research sites. The objective of this 
study was to evaluate the sensor-based YP models using rainfall 
data. This study will investigate if the rainfall data from nearby 
weather stations could be used in validating the sensor based 
N calculator algorithms more confidently. The study will also 
examine which duration of rainfall data will be more useful 
considering crop growth period from planting to harvesting. In 
addition, this study will determine whether the rainfall data is 
useful individually, or in combination with crop height.

mAterIAl AnD methoDs
The study was conducted in two states, North Dakota (corn 

sensor study) and Maine (potato sensor study), to confirm 
whether rainfall data successfully helped in YP model.

soil sampling and Analysis

At the North Dakota study site, five soil-sample cores were 
obtained from each site using a 2.5-cm diameter hand probe, to 
a depth of 0–15 cm for P, K, Zn, pH, and organic matter, and 
0–60 cm in depth for residual nitrate. Fertilizer P and K were not 

applied by the cooperator with their pre-plant N requirement. 
Instead, the researchers applied P as mono-ammonium phosphate 
and K as potassium chloride at rates consistent with soil analysis 
based recommendations (Peters et al., 2012). If the site was defi-
cient in Zn, the researchers applied zinc sulfate (36% granules) 
at a rate of 11 kg ha–1 Zn per acre as a broadcast at the time of 
treatment application. If the site proved to be S deficient at V6, 
an application of gypsum at 22 kg ha–1 S (112 kg ha–1 gypsum) 
was applied as granules over the top of the corn. After obtaining 
soil samples, they were air-dried, ground to pass through a 2 mm 
screen, and thoroughly mixed before analysis for soil pH, avail-
able P, K, Zn, and organic matter. Soil pH was analyzed using 
a 1:1 soil/deionized H2O solution method (Frank et al., 1998); 
P by the Olsen method (Warncke and Brown, 2012), and K 
using the 1-N ammonium acetate method (Whitney, 2012). The 
diethylene triamine pentaacetic acid extraction method (Combs 
and Nathan, 2012) coupled with atomic absorption spectroscopy 
detection was used for determination of available Zn. Organic 
matter was measured by loss of ignition method (Whitney, 2012).

In Maine, soil tests were carried out from 0–18 cm depth 
using a regular soil probe. The cooperator did not apply fer-
tilizer P and K. Instead, the researchers applied P as mono-
ammonium phosphate and K as potassium chloride at rates 
consistent with soil analysis based on U. Maine Soil Lab 
recommendations. The soil analysis was carried out using pro-
cedures from “Recommended Soil Testing Procedures for the 
Northeastern United States” (The Northeast Coordinating 
Committee for Soil Testing-1312, http://extension.udel.edu/
lawngarden/soil-health-composting/recommended-soil-test-
ing-procedures-for-the-northeastern-united-states/).

locations and treatments

Nitrogen rate trials with field corn were conducted on 50 
sites in North Dakota in 2011, 2012, and 2013 (Table 1). The 
sites were established within larger farm fields with permission 
from farmer cooperators. The cooperators were a mix of farm-
ers that NDSU researchers had worked previously and those 
recommended by county agents and farmers, who volunteered 
after presentations about the project at winter meetings. Each 
experimental area did not receive supplemental N from the 
cooperator, but was planted by the cooperator using corn hybrid 
of their choice, and received herbicide applications at their discre-
tion along with the rest of the field. The experimental design at 
each site was a randomized complete block with four replications 
and six treatments; check (no added N), 45, 90, 134, 179, and 
224 kg N ha–1; applied as ammonium nitrate by hand pre-plant 
within a week of planting. Each experimental unit (plot) was 6.1 
× 3.05 m. Locations were categorized into eastern high clay (soil 
survey description) conventional-till sites and eastern medium-
textured conventional-till sites (soil survey description) soil 
types as well as long-term eastern no-till sites and west-river sites 
(generally no-till) cultivation by using multiple regression analy-
sis. Soil survey data was used to differentiate eastern high clay 
conventional-till sites from eastern medium-textured conven-
tional-till sites. Eastern high clay conventional-till sites had silty 
clay loam textures or higher clay, while eastern medium-textured 
conventional-till sites included fine sandy loams, silt loam, loam, 
and sandy loam textures. Long-term eastern no-till sites were 
defined as sites in continuous no-till sites for at least 6 yr.
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Two research trials were established in Aroostook County, 
Maine: one at MSAD#1 School Farm (dryland) in Presque 
Isle (46°40’47.4”N, 67°59’40.5”W) and one at the farmer field 
(irrigated) in Easton (46°35’27.9”N, 67°51’02.5”W). The N 
was applied at planting. The experimental design at each site 

was a randomized complete block with four replications and 
12 N treatments: (i) C1 (control); (ii) urea (split nitrogen) = 
50 kgha–1 at planting and 90 kgha–1 at 7 leaf stage; (iii) urea 
(split nitrogen) = 50 kgha–1 at planting and 135 kgha–1 at 7 
leaf stage; (iv) split 1 (ammonium sulfate split) = 50 kgha–1 at 

Table 1. GPS coordinates and soil series for field experiments in 2011 through 2013.
Year Location GPS coordinates Soil Series†
2011 Valley City 46°52’49.090” N, 97°54’46.240” W Fine-loamy, mixed, superactive, frigid Calcic Hapludolls

Rutland 45°59’58.051” N, 97°28’43.634” W Fine-loamy, mixed, superactive, frigid Pachic Argiudolls
Havana 45°56’04.266” N, 97°35’54.633” W Fine-silty, mixed, superactive, frigid Pachic Hapludolls
Durbin 46°51’29.495” N, 97°09’26.907” W Fine, smectitic, frigid Typic Epiaquerts

Mooreton 46°12’40.420” N, 96°46’43.259” W Fine, smectitic, frigid Typic Epiaquerts
Great Bend 46°07’54.977” N, 96°43’11.481” W Fine, smectitic, frigid Typic Natraquerts
Fairmount 45°59’39.021” N, 96°35’46.219” W Fine-loamy, mixed, superactive, frigid Aeric Calciaquolls
Christine 46°53’30.423” N, 96°54’05.749” W Fine, smectitic, frigid Typic Epiaquerts
Prosper 46°56’55.978” N, 97°02’48.344” W Fine, smectitic, frigid Typic Calciaquerts
Milnor 46°16’34.108” N, 97°28’02.389” W Sandy, mixed, frigid Oxyaquic Hapludolls
Page 2 47°09’36.755” N, 97°25’48.088” W Fine-loamy, mixed, superactive, frigid Calcic Hapludolls
Buffalo 46°56’51.974” N, 97°28’01.950” W Fine-loamy, mixed, superactive, frigid Calcic Hapludolls
Page 1 47°09’05.282” N, 97°23’21.552” W Coarse-loamy, mixed, superactive, frigid Pachic Hapludolls

Walcott 46°30’02.183” N, 97°02’32.182” W Coarse-loamy, mixed, superactive, frigid Aquic Pachic Hapludolls
Arthur 47°03’43.560” N, 97°08’04.248” W Coarse-silty, mixed, superactive, frigid Aeric Calciaquolls

2012 Rutland East 45°59’36.599” N, 97°27’28.969” W Fine-loamy, mixed, superactive, frigid Pachic Argiudolls
Rutland West 45°59’32.671” N, 97°30’15.115” W Fine-silty, mixed, superactive, frigid Aeric Calciaquolls

Leonard-North 46°42’04.081” N, 97°16’52.371” W Fine-silty, mixed, superactive, frigid Aeric Calciaquolls
Casselton North 46°56’12.417” N, 97°17’00.351”W Fine-silty, mixed, superactive, frigid Aeric Calciaquolls

Amenia 47°00’ 13.913” N, 97°12’57.025” W Coarse-silty, mixed, superactive, frigid Aeric Calciaquolls
Casselton South 46°56’26.922” N, 97°17’00.351” W Fine, smectitic, frigid Typic Epiaquerts

Galchutt 46°23’00.519” N, 96°43’48.576” W Fine, smectitic, frigid Typic Natraquerts
Fairmount North 45°59’38.268” N, 96°38’18.155” W Coarse-silty, mixed, superactive, frigid Aeric Calciaquolls
Fairmount South 45°57’23.964” N, 96°34’35.244” W Fine-loamy, mixed, superactive, frigid Aeric Calciaquolls

Great Bend 46°08’20.469” N, 96°44’09.026” W Fine, smectitic, frigid Typic Natraquerts
Prosper 46°58’10.307” N, 96°59’20.466” W Fine, smectitic, frigid Typic Epiaquerts
Barney 46°10’58.074” N, 96°55’43.331” W Fine, smectitic, frigid Typic Epiaquerts

Mooreton 46°18’13.407” N, 96°51’40.672” W Coarse-loamy, mixed, superactive, frigid Aeric Calciaquolls
Gardner 47°09’57.820” N, 97°02’59.152” W Fine, smectitic, frigid Vertic Argialbolls
Arthur 47°06’25.800” N, 97°14’36.562” W Fine, smectitic, frigid Vertic Argialbolls

Wheatland 46°55’06.854” N, 97°23’14.391” W Fine-loamy, mixed, superactive, frigid Aeric Calciaquolls
Milnor 46°13’11.317” N, 97°25’31.110” W Fine-loamy, mixed, superactive, frigid Pachic Argiudolls

Leonard South 46°40’32.061” N, 97°17’02.579” W Sandy, mixed, frigid Typic Endoaquolls
Walcott west 46°30’29.560” N, 97°03’00.760” W Coarse-loamy, mixed, superactive, frigid Aeric Calciaquolls
Walcott east 46°29’44.107” N, 96°53’04.456” W Coarse-silty over clayey, mixed over smectitic, superactive, frigid Aeric Calciaquolls

2013 Casselton 46°52’41.973” N, 97°14’55.894” W Fine-silty, mixed, superactive, frigid Typic Endoaquolls
Durbin 46°51’22.072” N, 97°09’28.366” W Fine, smectitic, frigid Typic Epiaquerts
Barney 46°15’07.560” N, 96°59’28.627” W Coarse-loamy, mixed, superactive, frigid Aquic Pachic Hapludolls
Dwight 46°18’39.335” N, 96°47’12.237” W Fine, smectitic, frigid Vertic Argialbolls
Gardner 47°10’28.482” N, 96°54’02.138” W Fine, smectitic, frigid Typic Epiaquerts

Leonard-North 46°52’57.807” N, 97°17’44.945” W Fine, smectitic, frigid Typic Epiaquerts
Walcott 46°30’02.359” N, 97°02’39.660” W Coarse-loamy, mixed, superactive, frigid Aeric Calciaquolls

Leonard West 46°39’10.750” N, 97°18’12.980” W Coarse-loamy, mixed, superactive, frigid Pachic Hapludolls
Arthur 47°06’50.963” N, 97°57’55.219” W Coarse-silty, mixed, superactive, frigid Pachic Hapludolls
Rutland 45°57’50.176” N, 97°31’44.205” W Fine, smectitic, frigid Pachic Vertic Argiudolls

Jamestown 46o45’58.571” N, 98°47’55.930” W Fine-loamy, mixed, superactive, frigid Calcic Hapludolls
Mott 46°56’43.583” N, –02°19’10.919” W Fine-loamy, mixed, superactive, frigid Typic Haplustolls

Richardton 46°35’0.095” N, –102°21’41.364” W Fine-loamy, mixed, superactive, frigid Typic Haplustolls
Beach 46°49’3.0354” N, –03°59’40.451” W Fine-silty, mixed, superactive, frigid Typic Haplustolls

New Leipzig 46°26’44.051” N, –01°56’31.379” W Fine, smectitic, frigid Vertic Natrustolls
† Information collected from Soil Survey Staff, 2013.
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planting and 90 kgha–1 at 7 leaf stage; (v) AS (ammonium sul-
fate) = 180 kgha–1 at planting; (vi) urea = 180 kgha–1 at plant-
ing; (vii) Ag (agrotain=slow release nitrogen) = 180 kgha–1 at 
planting; (viii) DAP (diammonium phosphate) = 180 kgha–1 
at planting; (ix) NK1 (slow release nitrogen) = 180 kgha–1 at 
planting; (x) CAN (calcium ammonium nitrate) = 180 kgha–1 
at planting; (xi) ESN (slow release nitrogen) = 180 kgha–1 
at planting; and (xii) split 2 (ammonium sulfate split) = 
50 kgha–1 at planting and 135 kgha–1 at 7 leaf stage.

sensor Data collection

Similar procedure for data collection was followed in both 
the states. In Maine, HSCCACS-430 was used instead of 
HSCCACS-470 at North Dakota State. Sensor readings were col-
lected four times at 4, 6, 10, and 12 leaf stage of potatoes in Maine, 
and at 6 and 12 leaf stage of corn in North Dakota State. The GS 
gave only one NDVI reading using red and infrared wavelengths.

The Holland Scientific sensor is a relatively easy to use 
instrument that currently comes with a 5-h battery pack. The 
HSCCACS-470 and HSCCACS-430 simultaneously emit 
three bands; two in the visible range (red 650 nm, red-edge 
730 nm) and one in the NIR (760 nm). The light source of 
both HSCCACS-470 and HSCCACS-430 is a modulated 
polychromatic LED array. It can emit and measure the light 
spectrums in the range from 430 nm to 850 nm bandwidth 
(BW). The sensor has a measurement filter range includes 
450 nm (BW ± 20 nm), 550 nm (BW ± 20 nm), 650 nm (BW 
± 20 nm), 670 nm (BW ± 11 nm), 730 nm (BW ± 10 nm), and 
760 nm (BW ± 10 nm) wavebands.

Wavelength values that we used for GS, HSCCACS-470, 
and HSCCACS-430 sensor are defined below.

The GS emits two bands, visible and near infrared:

NIR –  Red 774nm  –  656nm NDVI  or  
NIR Red 774nm  656nm

   =    + +   
 [1]

HSCCACS-470 and HSCCACS-430 emit three same 
bands: visible, red-edge, and near infrared:

NIR –  Red 760nm  –  670nm NDVI  or 
NIR Red 760nm  670nm

   =    + +   
 [2]

NIR –  Red edge 760nm  –  730nm NDVI  or 
NIR Red edge 760nm  730nm

 −  =    + − +  
 [3]

The GS, HSCCACS-470, and HSCCACS-430 readings 
were obtained when the corn was at ~V6 stage and again ~10 d 
to 2 wk later when the corn reached the V12 stage (V = vegeta-
tive). Readings were taken over the top of the corn whirl on the 
same interior row of each plot where harvest was intended. All 
reflectance data, as applicable, were inserted within the gener-
alized NDVI expression explained earlier.

crop height: manual/senixview

No height data was used in Maine. For the first 2 yr (2011 
and 2012), manual height was used for this experiment; 

however, during 2013, an automatic height sensor was used to 
collect the crop height data.

weather Data processing

In North Dakota, the multitudes of fields posed a slight dif-
ficulty in the changes in accumulated precipitation, as weather 
monitoring stations are not close. Using the North Dakota 
Agriculture Weather Network (NDAWN), the fields were best 
matched to the nearest weather station to record the precipitation 
in the area as precisely as possible. Several of the fields were located 
close to the same weather station, resulting in the same precipita-
tion data being used more than once. Using the NDAWN system, 
archived data logs were searched and compiled for average precipi-
tation recorded by each required weather station, and organized 
by month. From there, all precipitation data from each specified 
station was organized by year, and an average taken from a specific 
range of months only for the years of 2011 through 2013.

The weather station data was processed two ways to evalu-
ate the best representation of actual soil moisture status: 
(i) Option 1, Average precipitation from date of planting to 
date of harvesting (corn growth window); and (ii) Option 2, 
Average precipitation from date of planting to date of sensing. 

Table 2 explains the research site and weather station used by 
the NDAWN. There were two separate crop circle versions of 
each scan due to a difference in wavelength from 660nm (V1) 
and 710nm (V2).

In Maine, the rainfall data from planting (May) to harvest-
ing (Sept.) was used. The Caribou weather station used for 
collecting the data for rainfall.

statistical Analysis

For the North Dakota State corn study, regression analyses 
were conducted on sensor readings and yield with yield as the 
dependent variable, and INSEY or INSEYH (in-season estima-
tion of yield multiplied by crop height) were determined at V6 
and V12 as the independent variable to evaluate the relationship 
between yield and INSEY multiplied with plant height at V6 
and V12, respectively. The INSEY was defined as the sensor 
reading divided by the growing degree days from the date of 
planting to date of sensor reading (Raun et al., 2001; Frank et 
al., 1998). The exponential and polynomial relationships were 
found to have a high frequency of describing the relationships 
compared to other models. Multiple regression analysis using 
the method of Sharma (2014) was used to determine whether 
the data should be segregated into long-term eastern no-till 
sites, eastern high clay conventional-till sites, and medium 
texture conventional sites. The analysis confirmed that segrega-
tion of the data into those categories improved the relationship 
between INSEY and yielded overall. The determination coef-
ficient (R2) was used to evaluate the relationship among crop 
yield, sensor reading, crop yield with sensor reading multiplied 
with corn height, and crop yield with sensor readings multiplied 
by crop height +rainfall data at V6 and V12. The SAS procedure 
Proc Reg for Windows V9.2 (SAS Institute, Cary, NC) was 
used to calculate the R2 and evaluate linear, quadratic, square 
root, and logarithmic regression models. The SAS Proc GLM 
procedure was used to compare the N treatments. A P-value 
of 5% was used to differentiate the treatments from each other 
regarding statistical differences between treatments.
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For the potato study in Maine, the data were analyzed using 
a linear model. The R2 value was used to evaluate the relation-
ship of crop yield, and sensor reading and crop yield with sen-
sor reading multiplied with rainfall data at 4, 6, 10, and 12 leaf 
stage of potatoes.

results
north Dakota state corn sensor study

use of rainfall Data with sensor readings

Option 01: Average Precipitation from Date of Planting to 
Date of Harvesting (Corn Growth Window). Option 01 (Table 
3), in the high clay–high yielding sites in 2011, the NDVI reading 
CC2V2 (Holland Scientific Crop Circle Sensor red edge reading 
at V12 stage) explained approximately 30% of the variation in the 
corn yield. When rain data was multiplied by relationship, sen-
sor reading and corn yield improved to 41% using a polynomial 
model. In 2012, the relationship between corn yield and NDVI 

readings Holland Scientific Crop Circle Sensor red wavelength 
reading at V6 (CCV1), Holland Scientific Crop Circle Sensor red 
edge reading at V6 stage (CCV2), and Trimble GreeSeeker red 
wavelength reading at V6, and Holland Scientific Crop Circle 
Sensor red edge reading at V12 stage (GSV1) improved after using 
the average rain data from R2= 0.56, 0.34, 0.33, and 57 to 0.56, 
0.39, 0.44, and 0.62, respectively, with the polynomial model.

In medium soil texture–high yielding sites in 2011 and 
2012, there is a significant improvement in the relationship 
between corn yield and NDVI readings CCV1, CCV2, and 
GSV1 in 2011 and CCV2 and GSV1 in 2012 after using the 
rain data. The R2 improved from 0.62, 0.59, and 0.44 in 2011 
and 0.44 and 0.27 in 2012 to 0.70, 0.67, 0.60, 0.45, and 0.34, 
respectively, using polynomial model. In the same treatment 
but low yield, 2011 and 2013, the relationship between NDVI 
readings CCV1 in 2011 and CCV1and CCV2 in 2013 were 
improved from R2= 0.48, 0.46, and 0.43 to 0.50 (exponential), 
0.48, and 0.43 (polynomial), respectively.

Table 2. The sites and weather station used for that specific site for rainfall data collection.
Field location Station Field location Station Field location Station

2011 2012 2013
Valley City Fingal 4W Rutland West Oakes 4S Arthur Prosper
Rutland Oakes 4S Leonard North Leonard 5N Wheatland Prosper
Havana Oakes 4S Casselton North Prosper 5NW Milnor Lisbon
Durbin Fargo NW Amenia Prosper 5NW Leonard South Leonard
Mooreton Mooreton 3SW Casselton South Prosper 5NW Walcott West Leonard
Great Bend Wahpeton 6N Galchutt Mooreton 3SW Walcott East Leonard
Fairmount Wahpeton 6N Fairmount West Wahpeton 6N Casselton Fargo NW
Christine Leonard 5N Fairmount South Wahpeton 6N Rutland Oakes 4S
Prosper Prosper 5NW Great Bend Wahpeton 6N Jamestown Jamestown
Milnor Lisbon 2W Prosper Prosper 5NW Mott Jamestown
Page Site 2 Galesburg 4SSW Barney Mooreton 3SW Beach Beach
Buffalo Fingal 4W Mooreton Mooreton 3SW New Leipzig New Leipzig
Page Site 1 Galesburg 4SSW Arthur Prosper 5NW Leonard North Leonard 5N
Walcott Leonard 5N Walcott Leonard 5N Dwight Lisbon
Arthur Prosper 5NW Leonard Leonard 5N Durbin Prosper 5NW

Table 3: Regression relationship between sensor readings and corn yield with and without rainfall data averaged across months from April 
to September.
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Wavelength†

 
 

Original

Original data  
× weather data  
(Expo. model)

Original data  
× weather data  
(Poly. model)

Original data  
× weather data  
(Expo. model)

Original data  
× weather data  
(Poly. model)

Rainfall data date of planting to sensing Rainfall data date of planting to harvesting
High clay high yield 2011 CC2V1 0.30** 0.01 0.41*** – 0.44***
Medium high yield 2011 CCV1 0.62*** 0.60*** 0.70*** – 0.71**
Medium high yield 2011 CCV2 0.59*** 0.53*** 0.67*** 0.53*** 0.68***
Medium high yield 2011 GSV1 0.44*** 0.43*** 0.60*** 0.51*** 0.67***
Medium low yield 2011 CCV1 0.45*** 0.50*** 0.51*** 0.50*** 0.52***
High clay high yield 2012 CCV1 0.56*** 0.56*** 0.57*** 0.42*** 0.59***
High clay high yield 2012 CCV2 0.34** 0.38** 0.39*** 0.41*** 0.44***
High clay high yield 2012 GSV1 0.33* 0.41*** 0.44*** 0.64*** 0.65***
High clay high yield 2012 CC2V2 0.57*** 0.61*** 0.62*** 0.63*** 0.63***
High clay high yield 2012 GS2V1 0.55*** 0.58*** 0.59*** 0.58*** 0.60***
Medium high yield 2012 CCV2 0.44*** 0.44*** 0.45*** 0.33*** 0.33***
Medium high yield 2012 GSV1 0.23* 0.35** 0.34** – 0.33*
Medium low yield 2013 CCV1 0.44*** 0.47*** 0.48*** 0.48*** 0.49***
Medium low yield 2013 CCV2 0.43*** 0.41*** 0.49*** 0.45*** 0.51***
*** Denotes significance at 0.001, ** denotes significance at 0.01, and * denotes significance at 0.05, and missing place “–“were found with no relationship.
† CCV1 = CC red edge NDVI readings at V6, CCV2 = CC red NDVI readings at V12, GSV1 = GS red NDVI readings at V6, CC2V1 = red edge NDVI 
readings at V12, CC2V2 = CC red NDVI readings at V12, GS2V1 = GS red NDVI readings at V12.
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Option 02: Average Precipitation from Date of Planting to 
Date of Sensing. Option 02 (Table 3), in high clay–high yield-
ing sites in 2011, the NDVI reading CC2V1 was correlated with 
weak corn yield (R2 = 0. 0.01). When averaged rain data was 
used, the relationship was improved significantly (R2 = 0.44) 
using the polynomial model. In 2012, NDVI readings, CCV1, 
CCV2 GSV1, CC2V2, and GS2V1 and corn yield relationship 
R2 was 0.56, 0.34, 0.33, 0.57, and 0.55. However, incorporat-
ing averaged rain data significantly improved the relationship 
with corn yield by using the polynomial model. The relationship 
between corn yield and sensor readings was improved to R2 
values as 0.57, 0.39, 0.44, 0.62, and 0.59, respectively.

In 2011 medium soil texture–high yielding sites, the rela-
tionship between NDVI reading and corn yield increased for 
CCV1, CCV2, and GSV1 from R2 = 0.62, 0.59, and 0.44 to 
0.70, 0.67, and 0.60, respectively, with the polynomial model. 
In 2012, the relationship between corn yield and NDVI 
reading (CCV2 and GSV1) increased from 0.44 and 0.23 to 
0.45 and 0.34 with the polynomial model. In 2011 and 2013 
medium soil texture–low yielding sites, there was a significant 
improvement in the relationship between corn yield and NDVI 
readings. The relationship on corn yield with CCV1 in 2011 
and CCV1 and CCV2 in 2012 improved from 0.45, 0.44, and 
0.43, to 0.51, 0.48, and 0.49, respectively, using the polynomial 
model when raindata was multiplied with sensor readings.

use of plant height and rainfall 
Data with sensor readings

Option 01: Average Precipitation from Date of Planting 
to Date of Harvesting (Corn Growth Window). Using plant 
height also improved the relationship between corn yield 
and NDVI readings. In Option 01 (Table 4) high clay–high 
yielding sites in 2011, the NDVI reading and CV2 × H1 was 
weak, R2 = 0.11, but after incorporating averaged rain data 
significantly improved the relationship with corn yield with 

R2 = 0.41. In 2011, similar results were observed with other 
wavelengths such as 2CV1 × H2, GV1 × H1, and, GV2 × H2 
(Table 4). However, when averaged rain data was incorporated, 
the relationship significantly improved with R2 values of 0.44, 
0.47, and 0.48, respectively. In 2012 and 2013, the relation-
ship between corn yield and NDVI readings GV1 × H1 GV2 
× H2 in 2012 and GV2 × H2, in 2013 increased from R2 = 
0.23, 0.01, and 0.01 to 0.65, 0.68, and 0.47, respectively. In the 
high clay–low yielding sites in 2012, the relationship stayed the 
same, R2 = 0.46 to 0.46 for 2CV1 × H2.

In medium soil texture–high yielding sites in 2011, the 
NDVI readings CV2 × H1, 2CV1 × H2, and GV2 × H2 
were strongly correlated with corn yield of R2 = 0.54 and 0.45. 
However, when averaged rain data was used, the relationship 
was improved further to R2 values of 0.67 and 0.67. In 2012, 
the NDVI readings CV1 × H1, 2CV1 × H2, 2CV2 × H2, and 
GV2 × H2 correlated with corn yield with R2 values of 0.33, 
0.42, 0.47, and 0.13, respectively. When averaged rain data was 
used, the relationship was improved significantly to 0.51, 0.51, 
0.52, and 0.59, respectively.

Option 02: Average Precipitation from Date of Planting 
to Date of Sensing. Using plant height also improved the rela-
tionship between corn yield and NDVI readings. In Option 01 
(Table 4) high clay–high yielding sites in 2011, the NDVI read-
ing and CV2 × H1 was weak, R2 = 0.11; however, incorporat-
ing averaged rain data significantly improved the relationship 
with corn yield with R2=0.40. In the same year but different 
NDVI readings from 2CV1 × H2, GV1 × H1, and GV2 × 
H2, the relationship improved from R2 =0.23, 0.10, and 0.17 
to 0.44, 0.47, and 0.48, respectively. In 2012 and 2013, the rela-
tionship between corn yield and NDVI readings GV1 × H1, 
GV2 × H2 in 2012 and GV2 × H2, in 2013 were increased 
from R2 = 0.23, 0.01, and 0.01 to 0.49, 0.48, and 0.36, respec-
tively. In the high clay–low yielding sites in 2012, the relation-
ship stayed the same, R2 = 0.46 to 0.46 for 2CV1 × H2.

Table 4: Regression relationship between sensor readings multiplied with corn height and corn yield with and without rainfall data aver-
aged across months from January to September.
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Wavelength†

 
 

Original

Original data  
× weather data  
(Expo. model)

Original data  
× weather data  
(Poly. model)

Original data  
× weather data  
(Expo. model)

Original data  
× weather data  
(Poly. model)

Rainfall data date of planting to sensing Rainfall data date of planting to harvesting
High clay high yield 2011 CV2 × H1 0.11* 0.25* 0.40*** 0.25** 0.41***
High clay high yield 2011 2CV1 × H2 0.23** 0.27** 0.43*** 0.27** 0.44***
High clay high yield 2011 Gv1 × H1 0.10 0.31** 0.47*** 0.31** 0.47***
High clay high yield 2011 GV2 × H2 0.17* 0.31** 0.48*** 0.32** 0.48***
Medium high yield 2011 CV2 × H1 0.54*** 0.49*** 0.67*** 0.56*** 0.67***
Medium high yield 2011 2CV1 × H2 0.45*** 0.44*** 0.64*** 0.57*** 0.67***
Medium high yield 2011 GV2 × H2 0.68*** 0.65*** 0.68*** 0.44*** 0.64***
High clay high yield 2012 GV1 × H1 0.23* 0.23* 0.49*** 0.61*** 0.65***
High clay high yield 2012 GV2 × H2 0.01 0.23* 0.48*** 0.65*** 0.68***
Medium high yield 2012 CV1 × H1 0.33*** 0.36*** 0.36*** 0.26** 0.51***
Medium high yield 2012 2CV1 × H2 0.42*** 0.50*** 0.50*** 0.25** 0.51***
Medium high yield 2012 2CV2 × H2 0.47*** 0.47*** 0.47*** 0.46*** 0.52***
Medium high yield 2012 GV2 × H2 0.13* 0.26*** 0.27** 0.58*** 0.59***
High clay low yield 2012 2CV1 × H2 0.46*** 0.44*** 0.46*** 0.44* 0.46**
High clay high yield 2013 GV2 × H2 0.01 – 0.19* 0.47*** 0.47***
*** Denotes significance at 0.001, ** denotes significance at 0.01, and * denotes significance at 0.05, and missing place “–“were found with no relationship.
† CCV1 = CC red edge NDVI readings at V6, CCV2 = CC red NDVI readings at V12, GSV1 = GS red NDVI readings at V6, CC2V1 = red edge NDVI 
readings at V12, CC2V2 = CC red NDVI readings at V12, GS2V1 = GS red NDVI readings at V12.
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In medium soil texture-high yielding sites in 2011, the NDVI 
readings CV2 × H1, 2CV1 × H2, and GV2 × H2 relationship 
with corn yield were improved from R2 = 0.54 and 0.45. to 0.67 
and 0.64. In 2012, the NDVI readings CV1 × H1, 2CV1 × H2, 
2CV2 × H2, and GV2 × H2 correlated with corn yield with R2 
values of 0.33, 0.42, 0.47, and 0.13, respectively. When averaged 
rain data was used, the relationship was improved significantly to 
0.36, 0.50, 0.47, and 0.26, respectively.

maine potato sensor study

The data from three corn studies showed that rainfall data 
from the entire crop period was better compared to the rainfall 
data from the date of planting to date sensing. In the potato study, 
rainfall from date of planting to date of harvesting was used. The 
total precipitation from May to September was multiplied with the 
sensor readings. A strong relationship between sensor reading and 
potato yield was observed, especially during the 10- and 12-leaf 
stage. The HSCCACS-430 was consistently better in predicting 
the potato yield compared to GS. When rainfall data was multi-
plied with the sensor readings, there was a significant improvement 
in the relationship between sensor readings and potato yield.

The relationship with red edge NDVI was improved from 
R2= 0.07, 0.14, 0.36 (Fig. 1), and 0.42 (at 4-, 6-, 10-, and 12-leaf 
stage, respectively) to R2 = 0.15, 0.26, 0.51, and 0.45 (Fig. 4) 
when multiplied with rainfall data. The improvement was 
higher when data were collected at 10-leaf stage. Similarly, the 
HSCCACS-430 red NDVI relationship with potato yield 
improved from R2= 0.04, 0.07, 0.24 (Fig. 2), and 0.13 to R2 = 
0.10, 0.19, 0.46, and 0.32 (Fig. 5), respectively, at 4-, 6-, 10-, and 
12-leaf stage. However, in case of GS, the relationship was very 
weak when sensor reading was individually used with potato 
yield, but it improved to significant level when multiplied with 
rainfall data from R2 = 0.01, 0.02, 0.15, and 0.11 (Fig. 3) to 
R2 = 0.05, 0.13, 0.35, and 0.33 (Fig. 6).

DIscussIon
There was a significant improvement in sensor relationship 

with crop yield, as observed when rainfall data was or wasn’t 
used in combination with plant height. Out of two options of 
collecting rainfall data, Option 01 (average precipitation from 
date of planting to date of harvesting) and Option 02 (aver-
age precipitation from date of planting to date of sensing), the 
consistent improvement in sensor readings and crop yield was 
observed in Option 01, because it includes the amount and the 
intensity of variations incurred by the crop plants between an 
entire corn growing season compared to Option 02. The YP of 
any crop does not only depend on the initial growth curve when 
corn absorbs ~70% of N after/or at V12 growth stage, but also 
on the environmental changes after fruit set (Bu et al., 2017; 
Sharma, 2014; Sharma et al., 2017). ). The amount of N miner-
alization that happened during corn growth cycle may compen-
sate any loss of N due to intense rainfall after planting (Sharma, 
2014). Any N released in the soil solution was available to the 
plant only when there is an optimum level of soil moisture 
(rainfall) available throughout the plant growth period. This 
fact confirmed in our study when entire rainfall data from corn 
planting to harvesting was used instead of planting to sens-
ing. The difference in a relationship between sensor reading 
and corn yield each year could be due to the difference in N 
mineralizable potential of soils each year as well as the amount 
of rainfall, which was different during the 3-yr study. The year 
2012 was the driest year in North Dakota history. Despite this 
fact the corn yield was not greatly affected, with a range of 6200 
kg ha–1 to 15,000 kg ha–1. This could be due to the variations in 
the timing of rainfall and growing degree-days (Shanahan et al., 
2008) which may have influenced the N response in corn and 
thus affected sensor readings. A possible reason for poor sensor 
relationships in eastern high clay conventional-till sites in 2012 
is the dry growing season. In the highly smectitic clays of the 

Fig. 1. The Holland Crop Circle-ACS 430 sensor readings (red NDVI) relationship with potato yield. (A) Potato yield relationship with 
sensor readings taken at 4 leaf stage. (B) Potato yield relationship with sensor readings taken at 6 leaf stage. (C) Potato yield relationship 
with sensor readings taken at 10 leaf stage. (D). Potato yield relationship with sensor readings taken at 12 leaf stage.
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Red River Valley, where the eastern high clay conventional-till 
sites were located, dry soil conditions and corresponding plant 
water uptake result in large, deep cracks and therefore deep 
soil drying. Even though capillary movement of water should 
theoretically supply moisture to corn crop in eastern high clay 
conventional-till sites textured soils, deep soil cracks result in 
dryer soil at deeper depths than otherwise possible (Whitmore 

and Whalley, 2009). Deep soil cracks are not present in eastern 
medium-textured conventional-till sites during similar dry 
conditions.

The amount of rainfall during a critical time (high N uptake 
by corn during July when planted in April) was 100-mm more 
than usual in 2011(NDAWN records, http://ndawn.ndsu.
nodak.edu/). This could result in water saturation of high clay 

Fig. 2. The Holland Crop Circle-ACS 430 sensor readings (red edge NDVI) relationship with potato yield. (A) Potato yield relationship 
with sensor readings taken at 4 leaf stage. (B) Potato yield relationship with sensor readings taken at 6 leaf stage. (C) Potato yield 
relationship with sensor readings taken at 10 leaf stage. (D) Potato yield relationship with sensor readings taken at 12 leaf stage.

Fig. 3. The Trimble GreenSeeker sensor readings (red NDVI) relationship with potato yield. (A) Potato yield relationship with sensor 
readings taken at 4 leaf stage. (B) Potato yield relationship with sensor readings taken at 6 leaf stage. (C) Potato yield relationship with 
sensor readings taken at 10 leaf stage. (D) Potato yield relationship with sensor readings taken at 12 leaf stage.
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sites enhancing high N loss as denitrification (Sogbedji et al., 
2001; Katsvairo et al., 2003b). Losing N from the research 
sites put all N rates at equal risk resulting in high N loss from 
high N rate lead to uniform N availability across the N rates, 
thereby making it difficult for sensors to predict any change 
among N rates. Therefore, when rainfall data was incorporated, 

it resulted in improvement of the sensor reading relationship 
with crop yield. Compared to high clay sites, the medium 
textured sites were mostly dry due to good drainage capac-
ity, thus showed better N response, however there was also 
N loss happened with N leaching as nitrate into the ground-
water. Although the use of rainfall data did not improve the 

Fig. 4. The Holland Crop Circle-ACS 430 sensor readings (red edge NDVI) multiplied by rainfall data relationship with potato yield. (A) 
Potato yield relationship with sensor readings taken at 4 leaf stage. (B) Potato yield relationship with sensor readings taken at 6 leaf stage. (C) 
Potato yield relationship with sensor readings taken at 10 leaf stage. (D) Potato yield relationship with sensor readings taken at 12 leaf stage.

Fig. 5. The Holland Crop Circle-ACS 430 sensor readings (red NDVI) multiplied by rainfall data relationship with potato yield. (A) Potato 
yield relationship with sensor readings taken at 4 leaf stage. (B) Potato yield relationship with sensor readings taken at 6 leaf stage. (C) Potato 
yield relationship with sensor readings taken at 10 leaf stage. (D) Potato yield relationship with sensor readings taken at 12 leaf stage.
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relationship between sensor readings and corn yield under high 
clay sites as other soil types, it explained N loss as leaching.

In the case of potato, the rainfall data from the date of plant-
ing to date of harvesting was used, and the results were similar to 
those observed in the three-year corn study in North Dakota.

The crop root system plays a significant role in absorbing 
nutrients from the soil (Walsh et al., 2013). The corn root system 
is nodal from where root originates from the lower end of the 
stem and develop throughout the growth cycle. As soil moisture 
increases, the root development intensity increases due to the 
availability of nutrients near root vicinity. Consequently, the 
amount of soil moisture near the root system drives the absorp-
tion of N from the soil, which ultimately helps in defining the 
N response in crop plants. This makes it easier for the sensors to 
predict the N response in term of biomass when rainfall data used 
along with sensor readings. In a potato cultivation system, most 
of the potato is grown on sandy soils and water is a prime factor 
that drives the nutrients availability to potato roots. Since Maine’s 
potato is a dryland cultivation similar to North Dakota’s corn cul-
tivation, the rainfall intensity and amount largely impact the root 
zone of both corn and potatoes in terms of nutrient movement.

Considering the environmental and soil variations, neither 
GS nor HSCCACS-470 and HSCCACS-430 sensors alone or 
in combination with corn height and rainfall data consistently 
provide significant yield prediction; however, no other method or 
prediction of in-season N rates is desirable. Farmers who are inter-
ested or doing an in-season corn N application and use one or all 
of these technologies have at least reduced or protected their N loss 
period by delaying a percentage of their N fertilizer requirements 
until later in the season. Also, the complications of developing 
yield maps using soil data and applying variable rate fertilizer at 
planting also putting applied N at risk of loss. Therefore, a scien-
tific approach using the relative health of the crop at the time of 

sensing to calculate in-season application rate of N is perhaps more 
desirable as compared to a pre-season estimate.

conclusIon
The rainfall data was found useful when used with sensor 

readings, with or without using crop height. However, when 
crop height was involved in the equation, the relationship 
between crop yield and sensor was relatively better than sensor 
reading, rainfall, and crop yield. Since weather is an important 
factor that impacts nitrogen use efficiency and crop yield, it is 
rational to install few remotely controlled weather stations; this 
will not only help in predicting the weather, but also in impro-
vising N rates, with the help of GBAOS. In this study, we used 
GBAOS as a source to detect plant health, but rainfall data 
could be used with other available technologies such as satel-
lite imagery and drones. Several studies have been published 
recently on using leaf area index with NDVI to improve YP 
models, however, all these vegetative indices measured during 
the time of sensing, which happens early in the season. The sen-
sor YP models are most affected by the events that happened 
after the sensing, such as rainfall, temperature, humidity, dis-
eases, and insect attack. Although we cannot control all those 
factors, the one that affects N response most out of all is rain-
fall. Therefore, using rainfall data along with the GBAOS may 
help in improving GBAOS effectiveness and N use efficiency.
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