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ABSTRACT

Motivation: Biologists often employ clustering techniques in the

explorative phase of microarray data analysis to discover relevant

biological groupings. Given the availability of numerous clustering

algorithms in the machine-learning literature, an user might want to

select one that performs the best for his/her data set or application.

While various validation measures have been proposed over the

years to judge the quality of clusters produced by a given clustering

algorithm including their biological relevance, unfortunately, a given

clustering algorithm can perform poorly under one validation

measure while outperforming many other algorithms under another

validation measure. A manual synthesis of results from multiple

validation measures is nearly impossible in practice, especially,

when a large number of clustering algorithms are to be compared

using several measures. An automated and objective way of

reconciling the rankings is needed.

Results: Using a Monte Carlo cross-entropy algorithm, we success-

fully combine the ranks of a set of clustering algorithms under

consideration via a weighted aggregation that optimizes a distance

criterion. The proposed weighted rank aggregation allows for a far

more objective and automated assessment of clustering results than

a simple visual inspection. We illustrate our procedure using one

simulated as well as three real gene expression data sets from

various platforms where we rank a total of eleven clustering

algorithms using a combined examination of 10 different validation

measures. The aggregate rankings were found for a given number of

clusters k and also for an entire range of k.

Availability: R code for all validation measures and rank aggregation

is available from the authors upon request.

Contact: somnath.datta@louisville.edu

Supplementary information: Supplementary information are avail-

able at http://www.somnathdatta.org/Supp/RankCluster/supp.htm.

1 INTRODUCTION

1.1 Motivation

Cluster validation techniques in bioinformatics gained some

attention in the recent years. With the widespread application

of clustering to the post-genomic data analysis, a thorough

validation of the results became necessary. To fill the void,

classical validation measures from the data-mining literature
have been carried over to bioinformatics (Handl et al., 2005), as

well as new validation indexes, both internal (Datta and Datta,

2003) and external (Datta and Datta, 2006), have been
developed specifically for the microarray data clustering

assessment.
Choosing a suitable clustering method, an appropriate

measure of dissimilarity (similarity), and a reasonable number

of clusters for a particular data at hand remain today the

biggest challenges of the clustering process. Our expectation

that with the help of validation techniques we would be able to

alleviate, if not eliminate, some of those challenges, faced

further complications. When applied to the real-world data

sets, the results from multiple validation measures are incon-

clusive, to say the least. Often times they are utterly contra-

dictive. Optimized to assess a certain aspect of a partitioning,

both clustering algorithms and cluster validation techniques

exhibit biases towards the particular property they optimize.

Since none of the clustering algorithms performs uniformly best

under all scenarios, it is not enough to use a single algorithm

and/or a single validation measure when the real underlying

structure of data is unknown which is true in many cases.

The most recent recommendations for performing cluster

analysis (Handl et al., 2005) are to use a number of algorithms

and validation measures that optimize different aspects of a

partitioning (compactness, connectedness and spacial separa-

tion) on the appropriate range of cluster sizes. An objective

visual analysis of the results, however, is nearly impossible

when the number of validation measures is large.

The goal of multiobjective clustering is to identify
a partitioning that, in some sense, would be optimal with

respect to several objective functions. A number of different

approaches have been proposed in the literature. Law et al.
(2004) suggest to combine the results from multiple clustering

algorithms that optimize conceptually different objective

functions into a single partitioning (post-clustering optimiza-
tion). Handl and Knowles (2005; also see Handl and Knowles,

2004), on the other hand, suggest a new clustering algorithm

called MOCK (multiobjective clustering with automatic deter-
mination of the number of clusters), which identifies multiple

trade-off solutions optimized with respect to two objective

functions from the Pareto front during the clustering process
and has the ability to automatically determine the number

of clusters.*To whom correspondence should be addressed.
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In this article, we introduce a new technique that can select
an optimal algorithm amongst a collection of clustering

algorithms that the user is considering. It is based on a

weighted rank aggregation that allows us to combine the results

from multiple validation measures in a comparative analysis of

a given collection of clustering algorithms. Thus, we do not

introduce a new algorithm but provide an automatic and

objective evaluation of a set of clustering algorithms all of

which are considered to be potentially useful by the user.

1.2 Related work

Lin et al. (2006) used two cross-entropy Monte Carlo methods
to combine the lists of MicroRNAs (miRs) targets predicted by

three different algorithms. Datta and Datta (2003) and Datta

and Datta (2006) together introduced five novel cluster

validation measures for gene expression data which we consider

here. An excellent account of traditional cluster validation

measures is given in Handl et al. (2005). We use five of those in

this work.

1.3 Outline and summary

In the System and Methods section, we provide descriptions of

the four gene expression data sets (1 simulated, 3 real) along
with their corresponding GO annotations. Brief discussions

of the clustering methods and the cluster validation measures

used to analyze the performance of the algorithms on these data

sets follow. Weighted rank aggregation approach of cluster

validation measures is considered in the Algorithm and

Implementation section where some background information

on the cross-entropy Monte Carlo algorithm is given. The

Results section summarizes our findings of consolidating ranks

from different validation indexes using the algorithm described

in the previous section for each of the data sets. The article ends
with a general discussion of rank aggregation and our overall

conclusions.

2 SYSTEM AND METHODS

2.1 Data sets

We consider one simulated and three real data sets in this article. In

each case, we also have a reference set of functional classes to calculate

certain biological validation indices (external measures) that we use for

evaluation.

2.1.1 Simulated data The simulated data set contains 300 ‘genes’

with seven time points. Their (log-transformed) temporal profiles were

assumed to follow a multivariate normal distribution which were

generated using mvrnorm function available in the R (http://www.r-

project.org/) library MASS. With all means set to 0, the variance

structure reflected the existence of six distinct classes of same size in the

data. Correlations between any two profiles not in the same class were

set to 0.1, while correlations within each individual classes were

gradually decreasing by �0.01 starting from 0.8 as one was moving

away from the main diagonal of the variance–covariance matrix. The

entries of the main diagonal were set to 1.

For the construction of the reference set of functional classes, 10 out

of 50 ‘genes’ in each group were arbitrarily selected whose class

membership information were made known to reflect partial biological

information.

2.1.2 Mouse data The mouse data which is publicly available at

http://hugheslab.med.utoronto.ca/Zhang/, consists of 41 699 genes

whose mRNAs levels were measured in 55 mouse tissues (hybridization

repeated twice for each tissue). For our illustration, we selected a subset

of 1000 genes that had the largest mean squared errors across profiles.

Only 16 out of 55 tissues (110 in total since all are duplicated) that did

not have missing values were selected. Using these 16 dimensional

expression profiles, 1000 genes were clustered using the 11 clustering

algorithms.

Zhang et al. (2004) provide two sets of functional annotations for

this data, GO and SuperGO. Using the GO annotations, we were able

to annotate 422 genes (SuperGO provided a smaller number) out

of 1000 that we chose. The following functional classes were

constructed with corresponding sizes in parentheses: Behavior (5),

Biogenesis (28), Bone Remodelling (4), Cell Activation (2), Cell

Adhesion (32), Cell Cycle (13), Cell Death (11), Cell Growth (3),

Cell Motility (14), Development (56), Differentiation (8), Excretion (5),

Immune System (31), Metabolism (117), Regulation (5), Reproduction

(3), Response (47), Transport (38).

2.1.3 Sporulation data This is a well known data set collected

and analyzed by Chu et al. (1998) that records mRNA levels at seven

different time points during the sporulation process in budding

yeast. For our purposes, only a subset consisting of 513 genes that

were positively expressed is analyzed. A gene was considered to be

positively expressed if
P

logR > 0 where the sum is taken over all

time points.

To obtain a set of functional classes, we used the FunCat webtool

available at http://fatigo.bioinfo.cipf.es/. Out of 513 genes 503 were

annotated into the following 16 functional classes: metabolism (138),

energy (27), cell cycle and DNA processing (152), transcription (50),

protein synthesis (10), protein fate (72), protein with binding

function or cofactor requirement (81), protein activity regulation (16),

transport (63), cell communication (12), defense (36), interaction with

environment (33), cell fate (17), development (13), biogenesis (77) and

cell differentiation (82). The same reference set of functional classes was

used in (Datta and Datta, 2006).

2.1.4 Breast cancer data Human breast cancer progression data

set consists of 258 genes (SAGE tags) that were considered to be

differentially expressed at 5% significant level between four normal and

seven ductal carcinoma in situ (DCIS) samples. Abba et al. (2004)

provide further details in their article.

Functional classes were successfully mined from the AmiGo web-

based tool available at http://www.godatabase.org/cgi-bin/amigo/go.cgi

for 113 genes. The following 11 classes were obtained: biogenesis (24),

transport (7), cell communication (15), cellular metabolism (48), cell

cycle (6), cell motility (7), immune response (7), cell death (7),

development (5), cell differentiation (5) and cell proliferation (5).

2.2 Clustering methods

In this work, a clustering technique is referred to as a clustering method;

if it is used with more than one dissimilarity measure, each one is called

an algorithm. For a clustering technique that does not use a general

dissimilarity, the terms ‘method’ and ‘algorithm’ are synonymous. A

total of eleven clustering algorithms consisting of seven different

clustering methods were considered in this study. Many of the

clustering methods are available in the R base distribution or the

cluster package. R package kohonen provides the SOM method and

mclust package provides the Model-based method. Our own imple-

mentations of SOTA was developed which is available upon request.

The methods UPGMA, Diana, PAM and SOTA can be used with a

general dissimilarity measure; we used both Euclidean and (Pearson’s)

correlation-based dissimilarities.

V.Pihur et al.
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2.2.1 UPGMA Unweighted pair group method with arithmetic

mean (Sneath and Snokal, 1973) is probably one of the most frequently

encountered clustering methods. It owes its widespread popularity to its

conceptual simplicity and software availability. Over the years,

researchers successfully applied UPGMA to many different situations,

both biological and non-biological in nature.

2.2.2 K-Means This is another classical clustering method many

consider when clustering data (Hartigan and Wong, 1979). It is a

partitioning technique that uses the within-class sum of squares as a

criterion. An initial set of cluster centers needs to be provided or

randomly generated which, of course, requires to set the number of

clusters to be generated beforehand.

2.2.3 Diana Diana is a divisive hierarchical method that itera-

tively splits clusters into two smaller ones until a desired number of

clusters is generated or each cluster contains a single observation

(Kaufman and Rousseeuw, 1990). Diana is one of a few representatives

of the divisive hierarchical approach to clustering (SOTA is another

one) as most hierarchical methods are agglomerative. In addition, it

also provides the divisive coefficient which is a measure of how much

structure was found in the process (many methods do not provide a

measure of the significance of the results).

2.2.4 PAM Partitioning around medoids is considered to be a

more robust version of K-Means (Kaufman and Rousseeuw, 1990). In

many respects, these two methods are very similar.

2.2.5 Model-based clustering Under this approach, a statistical

model (mixtures of normals) is fit to the data using the maximum

likelihood method (EM algorithm) (Banfield and Raftery, 1993).

2.2.6 SOM This is also a popular method amongst computational

biologists and machine-learning researchers. Self-organizing maps uses

neural network settings under which numerous observations compete

for the current object and the one whose weight vector is closest wins.

The winner and its neighbors learn by having their weight vectors

readjusted according to pre-specified rules (Kohonen, 1997).

2.2.7 SOTA Self-organizing tree algorithm is an unsupervised

network with a binary tree topology (Herrero et al., 2001). It combines

the advantages of both hierarchical clustering and SOM. It has much

better running times than UPGMA when the number of items (genes) is

over 600. In all our analysis, SOTA is used with the neighborhood

parameter set to zero.

2.3 Validation measures

An excellent summary of different types of validation measures can be

found in Handl et al. (2005). Based on the classification discussed in the

article, we select at least one validation measure from each category: for

assessing compactness and separation properties of a partitioning,

Dunn Index and Silhouette Width are used; for assessing connected-

ness, Connectivity is selected; and for predictive power assessment, the

Stability measure is chosen which is supplemented by Figure of Merit

(Yeung et al., 2001) and three other stability measures developed by

Datta and Datta (2003). Our list also contains two novel external

(biological) measures developed by Datta and Datta (2006).

2.3.1 Dunn index Dunn index is a ratio of the smallest cluster

distance to the largest intra-cluster distance, where the smallest cluster

distance is defined as the minimum distance between two observations

that belong to different clusters (Dunn, 1974). This index is limited to

the interval ½0, þ1� and should be maximized.

2.3.2 Silhouette width Silhouette width is a combination measure

that considers both intra and inter cluster distances (Rousseeuw, 1987).

It takes values in the interval ½�1, 1� and should be maximized.

2.3.3 Connectivity Connectivity captures the degree to which

observations are connected within a cluster by keeping track of whether

the neighboring observations are put into the same cluster (Handl et al.,

2005). The closer the neighbor that is put into a different cluster, the

greater the penalty that is incurred. Neighborhood size (¼10 in our

analysis) is a required parameter. This index should be minimized.

2.3.4 Stability Under this scheme, the data is randomly divided

into two equal groups on which clustering algorithm is separately used.

Cluster assignments from the first (training) group are then used to

predict cluster assignments for the items in the second (test) group on

the basis of the nearest-neighbor classifier. The correspondence between

the two assignments is reflected with this stability index which, in our

case, was the average over 20 such divisions. This measure should be

maximized on the interval ½0, 1� (Handl et al., 2005).

2.3.5 FOM Figure of merit is another stability-based measure

that estimates the predictive power of a clustering algorithm (Yeung

et al., 2001). Small values for FOM are desirable.

2.3.6 Average proportion of non-overlap The idea behind this

and the next two stability-based measures is that a clustering algorithm

should produce consistent results even when one deletes one of the

dimensions (e.g. time points, replicates, etc.) from the original data set.

Average proportion of non-overlap computes the average proportion of

genes that are grouped into different clusters based on the complete

data and the reduced data (one column missing). The smaller the values

of this measure, the more stable the algorithm seems to be (Datta and

Datta, 2003).

2.3.7 Average distance between means This measure computes

the average distance between the mean expression ratios of all genes

clustered together based on the complete and reduced data (Datta and

Datta, 2003). It should be minimized.

2.3.8 Average distance Average distance measure computes the

average distance between all genes clustered together on the basis of the

complete and reduce data (Datta and Datta, 2003). This measure also

should be minimized.

2.3.9 BHI Biological homogeneity index is a measure of how

biologically homogeneous clusters are based on the available (usually

incomplete) biological information. This is an external validation

measure because previous knowledge is necessary to compute the index

(Datta and Datta, 2006). It should be maximized.

2.3.10 BSI Biological stability index is a measure of consistency

with regard to previous biological knowledge when the complete and

reduced (by one dimension) data are used in clustering (Datta and

Datta, 2006). This index, just like BHI, should also be maximized.

3 ALGORITHM AND IMPLEMENTATION

When evaluating algorithms with the above 10 validation
measures, we obtain 10 different ordered lists of 11 clustering

algorithms for each total number of clusters under considera-
tion. One can make an attempt to visually analyze them with
the goal of finding the best algorithm for a particular data.

A completely objective evaluation, however, is not possible
with this traditional approach.
Thinking in the direction of discovering a super-list that

would be simultaneously as ‘close’ as possible to the 10 lists

Weighted rank aggregation of cluster validation measures
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produced by each validation measure, we can formalize our

goal within the framework of the following minimization

problem. Find �� such that

�� ¼ arg min �ð�Þ, ð1Þ

where �ð�Þ ¼
P

M dð�,LMÞ in which LM is an ordered list

produced by validation measureM, d is an appropriate distance

function, and the minimization is carried over all possible

ordered lists � of size k ¼ jLMj.
We use Spearman’s footrule distance (Fagin et al., 2003) to

this end. However, we modify it by including certain weights to

reflect how varied the scores are under validation measure M

for different ranked positions. Also, we consider the slightly

more general problem of combing the top k lists of n clustering

algorithms under multiple validation measures M, where k � n.
Let LM ¼ fAM

1 , . . . ,AM
k g, where k � 1, denote an ordered list

of top k algorithms produced by the validation measure M. Let

Mð1Þ, . . . ,MðkÞ be the scores for the top k algorithms in LM,

where M(1) is the best score given by measure M and so on. Let

rM(A) be the rank of A under M (1 means "best") if A is within

top k, and be equal to kþ 1, otherwise; r�ðAÞ is defined likewise.

The weighted Spearman’s footrule distance between LM and

any ordered list � of k algorithms is given by

dð�,LMÞ ¼
X

t2LM[�

jMðr�ðtÞÞ �MðrLM ðtÞÞj � jr�ðtÞ � rLM ðtÞj:

One can intuitively think of this distance as a penalty for

moving algorithm t from one position to another within the list

M(second term of the products) which is adjusted by the

difference in scores between the two positions (first term).

We also normalize the scores under each measure before

computing d.

Having defined the distance for our minimization problem,

we can easily solve it when the number of items in our lists is

not large or, in case, only a k-top combined list is needed where

k < n. Since the cardinality of the set of all possible solutions is

n!=ðn� kÞ!, a brute force approach is certainly feasible for small

k’s. To solve this combinatorial problem for larger k’s, we use

cross-entropy Monte Carlo algorithm originally proposed by

Rubinstein (1997) for estimating probabilities of rare events in

complex stochastic networks and soon after extended to solving

difficult combinatorial optimization problems (Rubinstein,

1999, 2001). The algorithm is suitable for solving the

minimization problem of finding the optimal list ��.

3.1 Cross-entropy (CE) Monte Carlo algorithm

Before we present the algorithm, a short introduction of

notation is necessary. Let ðXÞn�k be a random matrix whose

entries are 0 or 1 with the constraints of its columns summing

up to 1 and its row summing to at most 1. Under this setup,

each realization of X, x, uniquely determines an ordered list of

size k by the position of 1’s in each column from left to right

(Lin et al., 2006). For example, if the full list was ðA,B,CÞ,

a 3� 2 matrix

x ¼

0 1
0 0
1 0

2
4

3
5

would translate into a candidate top 2 list of ðC,AÞ. We

introduce a stochastic search algorithm to find an x* that

corresponds to an optimal �� satisfying (1).
Assume that the random matrix X that has a probability

mass function P(x) that is indexed by the parameter matrix

ðvÞn�k ¼ ððpjrÞÞ as follows:

PvðxÞ /
Yn
j¼1

Yk
r¼1

ð pjrÞ
xjr

� I
Xk
r¼1

xjr � 1, 1 � j � n;
Xn
j¼1

xjr ¼ 1, 1 � r � k

 !
:

Note that any realization x of X will satisfy the above two

conditions and hence would correspond to a size k ordered list.
CE Monte Carlo algorithms is a 2-step ‘simulate-update’

iterative procedure (De Boer et al., 2005; Rubinstein and

Kroese,2004):

(i) Generate a random sample from Pv(x).
(ii) Update parameters v based on the drawn sample to

produce a ‘better’ sample in the future which is

concentrated around an x* that corresponds to an

optimal ��.

Next, we present a more detailed account of the procedure in

our context. The procedure has a number of user selectable

parameters N (a positive integer), � 2 ½0, 1�, w 2 ½0, 1� and

� 2 ½0, 1� whose selection is discussed following the description

of the algorithm.

(1) Initialization: set t ¼ 0: Set the initial parameter matrix v0

of the random distribution of X with constant entries; i.e.

let each p0jr ¼ 1=n. Thus, at this stage, each of the n

clustering algorithms has equal chance of being included

in the lists of k algorithms for which the objective

function � will be evaluated.

(2) Sampling: at stage t, draw a sample of size N from Pvt ðxÞ.

Find the corresponding k lists and the values of

the objective function �, �ð�iÞ, 1 � i � N. Sort the

�ð�iÞ’s in ascending order, say, �ð1Þ � � � � � �ðNÞ and

find a �-quantile, yt ¼ �ð½�N�Þ, where ½a�, for any real

number a, is the integer part of a.

(3) Updating: update the parameter vector as follows

pðtþ1Þ
jr ¼ ð1� wÞptjr þ w

PN
i¼1 Ið�ð�iÞ � ytÞxijrPN
i¼1 Ið�ð�iÞ � ytÞ

,

where xijr is the value at the jrth position of the ith sample and

w is a weight parameter introduced to avoid convergence to a

local maxima.

(4) Convergence: if jjvtþ1 � vtjj < �, then stop iterating in

which case �ð1Þ is taken to be the minima of the objective

function and the corresponding ordered subset is the

optimal k list, otherwise go back to Sampling. We define

jjvtþ1 � vtjj as

jjvtþ1 � vtjj ¼
1

nk

X
j

X
r

jptþ1
jr � ptjrj:

V.Pihur et al.
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In the Sampling step, we use a Markov chain Monte Carlo

(MCMC) procedure to generate samples from Pv(x). It is a

sequential procedure (a Markov chain) where at each iteration

b, a proposed matrix xn�k is generated by a random shuffling of

1’s in the current realization of the Markov chain xðbÞ subject to

the two constraints discussed above. It is then accepted as the

next realization xðbþ1Þ of the Markov chain if the acceptance

probability pA defined by

pA ¼
PvðxÞ

PvðxðbÞÞ

¼
Yk
r¼1

Yn
j¼1

ðpjrÞ
xjr�x

ðbÞ
jr

is greater than u, where u is another (uniform) random

number in (0, 1) that is independently generated; otherwise, x is

rejected and we let xðbþ1Þ ¼ xðbÞ.
The CE algorithm requires users to set a number of

parameters. Convergence to a global optimal solution in

many ways depends on the parameters chosen. It is recom-

mended that the number of samples N is to be set to at least

10k2 and the rarity parameter � is to be set to 0.01 if N is

relatively large or 0.1 if N is small (<100). The weight

parameter w has somewhat a lesser impact on the convergence

and values from 0.25 to 0.75 are common. The � parameter

should be small; a value of 10�4 was used by us.

3.2 Standardization of validation scores

Validation measures employed in this work return scores on

different scales and, thus, proper standardization is necessary to

equalize the contribution of each measure to the calculation of

the objective function. We tried numerous standardization

schemes to this end and decided to use a simple transformation

of the form: ðx�minðxÞÞ=maxðx�minðxÞÞ, where x is either a

matrix (if multiple number of clusters considered) or a vector

(if a number of cluster is fixed beforehand) of scores returned

by a particular measure. The main reason for picking this

transformation over others lies in its ability to spread out

standardized scores over the whole interval ½0, 1� which ensures

equal importance of each measure in the aggregation process.

Aggregation tables using other standardization techniques can

be found on the Supplementary Material.

4 RESULTS

For each of the 11 algorithms, we compute the 10 validation

measures over an appropriate range of cluster sizes. Parameters

for the CE algorithm were selected as follows: the number of

samples generated N was set to 2000, the weight parameter

w¼ 0.5 and the rarity parameter �¼ 0.01. Throughout, UE

stands for UPGMA with the Euclidean distance, UC for

UPGMA with the correlation distance, K for K-Means, DE for

Diana with the Euclidean distance, DC for Diana with the

correlation distance, PE for PAM with the Euclidean distance,

PC for PAM with the correlation distance, M for model-based,

SM for SOM, SE for SOTA with the Euclidean distance and

SC for SOTA with the correlation distance.

We begin the presentation of our findings with the simulated

data. We considered from four to eight clusters, but for the sake

of brevity, only illustrate the performance of the algorithms for

the six clusters which is a ‘true’ cluster structure by design.

Figure 1 shows the standardized scores for the 10 validation

measures (similar plots are available on the Supplementary

Material illustrating different standardization techniques that

can also be used). Scores closer to one indicate a better

performance under the measure. Careful visual inspection of

the plot seems to indicate that SOM and Model-based

algorithms perform quite well. It is not as trivial, however, to

see which one of these two algorithms performs better overall.

Even in this relatively simple situation, obtaining aggregated

ranks of all 11 algorithms by visual inspection alone is quite a

difficult task. The proposed CE Monte Carlo rank aggregation

approach greatly simplifies and automates the process of

obtaining the holistic picture of the clustering results, providing

us with a list of algorithms objectively ordered according to the

weighted Spearman’s footrule criteria. The combined list

returned by the CE algorithm in this particular situation

(considering six clusters) ranked from best to worst is:

ðM,SM,K,PE,UE,DE,SE,PC,UC,SC,DCÞ. Model-based

algorithm does outperform its rival SOM.
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Fig. 1. Standardized scores for the simulated data (six clusters). Large

scores correspond to a better performance under a measure. Here,

based on the 10 validation measures (x-axis), it is very difficult to

identify the winner or rank the algorithms from best to worst by visual

inspection alone. None of the algorithms performs well under all

measures.
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Next, we would like to look at a more complicated and

general case when the true number of clusters in the data is

unknown. Mouse data is a good candidate to consider. Table 1

summarizes the rankings produced by the CE algorithm for the

mouse data. For each number of clusters under consideration, a

separate combined list is given with the overall ranking at the

bottom of the table. Each row in Table 1 represents the

aggregation over the 10 validation measures for a particular

number of clusters and the overall ranking represents the

aggregation over the validation measures and the number of

clusters. For the mouse data, e.g. the overall ranking is the

ordered list �� which minimizes the objective function

�ð�Þ ¼
P

M dð�,LMÞ, where LM consists 10� 7 ¼ 70 ordered

lists. Here, each validation measure is represented by seven

ordered lists (one for each number of clusters).
In Figure 2, we show five validation measures selected from

different categories (internal, stability-based and biological)

and plot their standardized scores against the number of

clusters. One immediately begins to appreciate the complexity

of each individual plot. To pick an algorithm that performs best

considering these five measures is nearly impossible. The

Supplementary Material offers five more plots for the other

five validation measures which makes any attempts to visually

analyze them hopeless. Inspecting Table 1, we see that UPGMA

with the correlation distance is the overall winner. PAM, with

correlation, is ranked second and also seems to be a good

choice for this data.

It is worth mentioning here that if it is of interest to find a top

k list where k< n, let’s say a top five list, e.g. it is possible to do

so using the same algorithm with a parameter k¼ 5. We obtain a

top five list for the mouse data and compare it to the top five

algorithms from the complete list (the last row of Table 1). The

top five list ranked from best to worst is the following:

ðPC,UC,PE,K,SCÞ. The two lists are somewhat different

which is due to using partial information (the first five positions)

when constructing a top five list. It is preferred to use complete

information if possible but when n is very large, computational

considerations come into play; in such cases, it may be more

practical to only consider a top k list for a k smaller than n.

Rankings of the 11 algorithms applied to the yeast data

are summarized in Table 2. It appears that UPGMA with

the Euclidean distance is the overall winner in this case.

UPGMA with the correlation distance, and SOTA with the

Euclidean distance capture the next two spots. For the cancer
data,UPGMA,Diana and SOTA all with the Euclidean distance
perform reasonably well. Table 3 shows the complete rankings.

The graphs of all 10 validation measures for the mouse,
yeast, cancer and simulated data are available on the
Supplementary Material. Additional aggregation tables similar

to Table 1–3 computed using different standardization methods
are also available on the Supplementary Material
. With reasonable transformations (see Supplementary Material

for examples) <þ ! ½0, 1�, ranks returned by the CE algorithm
do not differ substantially.
The CE algorithms took 10–15 iterations to converge in

each case. Everything else remaining equal, the number of
iterations will depend on � in the convergence criterion which
we set to 10�4.

5 DISCUSSION

The problem of rank aggregation is certainly not new. Back in
1770, a French mathematician and nautical astronomer
Jean-Charles de Borda, proposed the solution based on the

average position of items in the lists. It found its famous
application in the voting theory where each candidate’s overall
rank was a simple average of the number of candidates beaten

by him/her over all voters’ rankings. This simple solution,
however, had a major drawback in a sense that a candidate with
the largest number of pairwise wins could lose the race. Here’s a

small example that illustrates the situation in which this can
happen. Let’s assume that three candidates A,B and C have

been ranked by five different voters as in the Table 4.
Using Borda’s method, we would obtain the combined

ranking ðB,A,CÞ where B is ranked ahead of A despite the fact

that A is preferred to B more often. Spearman’s footrule
distance is minimized when the overall ranking is: ðA,B,CÞ and
declares A to be a winner, which is in agreement with the

principle that a candidate with the largest number of pairwise
wins should win (also known as a Condorcet criterion). In a
case of a complete symmetry when each candidate beats the

same number of his/her adversaries, Borda’s method in its
original form is not very helpful in determining the winner.
The voting example is inherently dichotomous and in that

sense is different from the settings of ranking clustering
algorithms where validation scores provide additional informa-
tion that can be integrated into the ranking process.

Incorporating the weights into the Spearman’s footrule distance
turned out a very useful and, in many examples, a necessary
property for the convergence of the CE algorithm. When two

candidate lists have the same value of the objective function,
the CE algorithm struggles in choosing between the two, taking

a long time to converge arbitrarily to one of them. Weights
almost eliminated the possibility of such a tie and made the
solution unique. Let us consider an example. Assume that the

three lists with corresponding weights are given as in Table 5.
Combining them without considering weights produces two
distinct aggregated lists with the same values of the objective

function equal to 18, ðD,A,F,EÞ and ðA,D,F,EÞ. Obviously,
the winner cannot be determined in this situation. When the
weights are used, however, the solution, ðD,A,F,EÞ, is unique

with a unique minimum value of the objective function of 6.75.

Table 1. Rankings of various clustering algorithms for mouse data

Ranks (1 is best)

1 2 3 4 5 6 7 8 9 10 11

6 Clusters UC K PC PE SC UE DC M SM SE DE

7 Clusters PC UC K SC DC SM PE M UE SE DE

8 Clusters PC K PE SC UC DC SM M UE SE DE

9 Clusters PC UC K PE M SC UE DC SM SE DE

10 Clusters UC K PC PE DC UE SC M SM DE SE

11 Clusters UC PE PC K DC UE SC M SM DE SE

12 Clusters UC PE PC DC K UE M SC SM DE SE

Overall UC PC K PE SC DC UE M SM DE SE
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D does beat A and, in this case, one can confirm that without

much difficulty by looking at Table 5. This example clearly

demonstrates the advantages of using the weighted rank

aggregation introduced in this article over a conventional one

that uses ranks alone.
Researchers may choose to have a greater control over

the aggregation process by weighing different validation

measures differently. This can be easily done by introducing

the weight function W(M) into our objective function

�ð�Þ ¼
P

M WðMÞdð�,LMÞ. As for example, if multiple valida-

tion indices that measure similar characteristics of a clustering

algorithm are included for rank aggregation, each can be down-

weighted by the inverse of the total number of such similar

indices.

It is important to remember that clustering results should be

scrutinized and checked before running the CE algorithm to

avoid potential biases and pitfalls. Fanny, a fuzzy clustering

method, which we initially considered for this study, was

consistently returning a smaller number of hard clusters than

anticipated. We then had to remove it because its performance

was biased in a positive direction due to validation measures’

sensitivity towards the number of clusters. Handl et al. (2005)

discuss this in more details in their article. A trivial example of

a validation measure being effected by the increasing number of

clusters would be connectivity which is minimized (is zero)

when only one cluster is considered and tends to increase when

the number of clusters in a partitioning becomes larger.

Another issue one can potentially encounter when clustering
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Fig. 2. Standardized cluster validation scores for various cluster validation measures across a range of different number of clusters (mouse data).

Again, large scores imply better performance. Without knowing the true number of clusters in a given data set, multiple 2D plots have to be

considered simultaneously to judge the performance of algorithms. It is virtually impossible to analyze these plots visually.
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data is having a partitioning with a single large cluster and a

few small clusters (1–2 profiles). Similarly to the previous

scenario, a clustering algorithm that returns a partitioning of

this type will be favored by many of the validation measures

that we discuss in this article.

The advantage of using the proposed approach to obtain a

full ranking of clustering algorithms based on their perfor-

mance evaluated by numerous validation measures is its

flexibility. Any computationally reasonable number of different

clustering algorithms can be considered with arbitrary

combinations of tuning parameters and/or distance functions.
In addition, a researcher can decide what and how many

validation measures he/she wants to use to sufficiently evaluate

the performance of the algorithms on a given data. This
decision is subjective and, in many cases, may be data driven.

Also, not only the winning algorithm is determined, which

often is of primary interest, but a complete ranking of all
clustering algorithms is returned, giving researcher the direc-

tions in which further exploration of the data should or should

not be conducted. Inclusion of the additional clustering
algorithm(s) may change the order of other algorithms

previously ranked and we have verified that experimentally.

This is certainly a disadvantage of the aggregation method,

however, changes in the ordering of the algorithms are minimal
and, if having place, they usually occur in the middle and tail

portions of the aggregated lists.
As with any optimization procedure, care should be taken

when using the CE procedure. It is recommended to run the

algorithm multiple times with different seeds for the random
number generator and tweaking the tuning parameters, if

necessary, until a consistent convergence to the optimal value is

achieved.
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