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Introduction

The characterization of dynamic response of contacting surfaces
plays an important role in the behavior of civil engineering struc-
tures. Prominent examples include the sliding at faults during seis-
mic activity, bolted connections in steel structures, and connections
within bridges of high-speed rail systems. Often, the microscale
compliance and damping characteristics at the interface serve as
the main source for energy dissipation and vibrational resistance
in engineered systems. At the relevant scales for continuum me-
chanics, these characteristics of the surface can be incorporated
either through explicit representation of the surface roughness
(Anciaux and Molinari 2010; Ladeveze et al. 2002) or through
the interaction of nominally flat surfaces with statistically equiva-
lent properties (Truster et al. 2013). In either case, the numerical
treatment of the contact conditions is of utmost importance, particu-
larly for capturing transient response.

Classical finite-element techniques for contact traditionally in-
volve node-to-node penalty formulations, node-to-surface projec-
tions, or mortar methods to treat the discrete contact conditions;
the latter have made significant progress in removing mesh biasing
and solving finite strain problems consistently (Laursen et al. 2012;
McDevitt and Laursen 2000; Temizer 2013). Another class of
mixed formulations that have demonstrated efficient performance
for contact problems are the dual mortar methods (Popp and Wall
2014; Sitzmann et al. 2015). The alternative to mixed methods is
the primal formulation adopting ideas from the Nitsche method
(Masud et al. 2012; Wriggers and Zavarise 2007) in which the dis-
placement field is the only unknown. Extension of these primal for-
mulations to embedded interface problems have also been applied
to quasi-static frictional sliding (Annavarapu et al. 2014) and

explicit dynamics (Annavarapu et al. 2012b). For elastostatics
problems, the performance of primal methods for problems with
discontinuous material properties and nonconforming or embedded
meshes (Annavarapu et al. 2012a; Truster and Masud 2014) has
been linked to the definition of the numerical interface flux as a
weighted average of the stresses across the interface. In the tran-
sient context, these interface flux terms may have an even greater
effect because errors introduced at one time step will propagate dur-
ing the remainder of the simulation. Thus, a proper definition for
these flux terms in the presence of nonconforming meshes and non-
linearities due to friction is expected to be critical to maintaining
stability within the numerical formulation.

In this work, a stabilized discontinuous Galerkin (DG) interface
method is presented for transient contact analysis with friction. The
developments are cast within the general framework of Truster and
Masud (2014), which employs concepts from the variational multi-
scale (VMS) method (Hughes 1995) to consistently derive expres-
sions for the numerical fluxes according to fine-scale models at
the contact interface. The fine-scale modeling technique in this
framework is coupled with an implicit time-integration scheme to
address the dynamic response of domains containing interfaces. The
ensuing numerical flux terms involve aweighted average of the inter-
face stresses and serve toweakly impose displacement continuity and
traction equilibrium. In the context of modeling contacting surfaces
(Masud et al. 2012), the numerical flux terms are segregated into nor-
mal and tangential components and subsequently embed constitutive
models for friction. The Coulomb friction model will be employed
within the present work; extension to physics-based friction models
follows along similar lines as pursued in Truster et al. (2013).

In the following sections, the DG formulation is presented first for
fully bonded interfaces for transient problems and then is extended to
contact and friction. Numerical results for impact test cases are pre-
sented with particular emphasis on isolating artificial effects, if any,
that are induced by the DG interfaces on the computed dynamics.

Stabilized Discontinuous Interface Method
for Elastodynamics

The present derivations mirror those of Truster and Masud (2014)
for the quasi-static interface problem, while emphasis is placed on
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assumptions relevant to the dynamic context. Consider an
open, bounded domain Ω ⊂ Rnsd and a time interval of interest
I ¼�0;T½, where nsd is the number of spatial dimensions. The do-
main Ω is split into two regions Ωð1Þ and Ωð2Þ by an interface ΓI as
shown in Fig. 1. Along the interface ΓI , the displacement field
u:Ω×�0;T½→ Rnsd has a prescribed discontinuity given by the field
ζ:ΓI×�0;T½→ Rnsd . Presently, ζ may be viewed as a rigid link or
spacer between the regions; subsequently, it will be given the physi-
cal connotation of the penetration or slip at the interface. Under
these conditions, the following elastodynamics initial-boundary
value problem is posed within each region ðαÞ for α ¼ 1, 2,
and along ΓI :

−ρðαÞüðαÞ þ divσðαÞ þ bðαÞ ¼ 0 in ΩðαÞ×�0;T½ ð1Þ

uðαÞ ¼ gðαÞðx; tÞ on ΓðαÞ
g ×�0;T½ ð2Þ

σðαÞ · nðαÞ ¼ hðαÞðx; tÞ on ΓðαÞ
h ×�0;T½ ð3Þ

uðαÞðx; 0Þ ¼ uðαÞ
0 ðxÞ in ΩðαÞ ð4Þ

u̇ðαÞðx; 0Þ ¼ u̇ðαÞ
0 ðxÞ in ΩðαÞ ð5Þ

uð1Þ − uð2Þ ≡ ⟦u⟧ ¼ ζðx; tÞ on ΓI ð6Þ

σð1Þ · nð1Þ ¼ λðx; tÞ ¼ −σð2Þ · nð2Þ on ΓI ð7Þ

In the following developments, the superscript ðαÞ will be sup-
pressed when the specified field has counterparts in both regions
ΩðαÞ. The balance of linear momentum in Eq. (1) relates the diver-
gence of the Cauchy stress σ to the body force b and the acceler-
ation field ü. The prescribed displacement g is assigned on the
Dirichlet boundary Γg through Eq. (2), and the prescribed traction
h is assigned on the Neumann boundary Γh through Eq. (3), where
ΓðαÞ
g ∩ ΓðαÞ

h ¼ ∅ and the region boundary ΓðαÞ ¼ ΓðαÞ
g ∪ ΓðαÞ

h ∪ ΓI.
Also, nðαÞ is the unit outward normal on ΓðαÞ. Initial conditions in
Eqs. (4) and (5) are ascribed to both the displacement u and veloc-
ity u̇ fields at time t ¼ 0. The displacement jump across the inter-
face ⟦u⟧ is set equal to the prescribed discontinuity ζ along ΓI via
the constraint in Eq. (6). Finally, this constraint is enforced through
the Lagrange multiplier field λ:ΓI×�0;T½→ Rnsd , which has the

connotation of the traction field at the interface according to the
equilibrium condition in Eq. (7).

To fix ideas, each region is considered as a homogeneous
isotropic material possessing a mass density ρ, bulk modulus K,
and shear modulus G; generalizations to anisotropic (Truster
et al. 2015a) and inelastic (Truster 2015) materials are straight-
forward. The Cauchy stress is expressed as σ ¼ KtrðεÞIþ
2G½ε − 1=3 trðεÞI�≡ C:ε, where I is the second-order identity
tensor, trð·Þ is the trace operator, and ε is the small strain
tensor. The small strain tensor is obtained through the symmetric
gradient operator acting on the displacement field ε≡ εðuÞ ¼
1=2½∇uþ ð∇uÞT �, where ∇ð·Þ and ð·ÞT denote the gradient and
transpose operators, respectively.

A numerical approximation is now sought for the primary un-
known fields fu; u̇; ü; λg solving Eqs. (1)–(7) as driven by the pre-
scribed fields fb;g;h;uo; u̇o; ζg. Herein, discretization will be
applied first along the temporal axis and then along the spatial axes.
Let the time interval I be discretized into a series of finite time in-
tervals, with a generic interval denoted by times ½tn; tnþ1� and the
time step Δt ¼ tnþ1 − tn. The Newmark-β method is invoked to
express the velocity u̇nþ1 and acceleration ünþ1 at time tnþ1 in
terms of the displacement unþ1 and known values fun; u̇n; üng
at time tn

ünþ1 ¼
1

βΔt2
unþ1 þ

�
1 − 1

2β

�
ün − 1

βΔt
u̇n

− 1

βΔt2
un ≡ 1

βΔt2
unþ1 þ ~anþ1 ð8Þ

u̇nþ1 ¼
γ

βΔt
unþ1 þ

�
1 − γ

β

�
u̇n þ γΔt

�
1 − 1

2β

�
ün

− γ
βΔt

un ≡ γ
βΔt

unþ1 þ ~vnþ1 ð9Þ

where β and γ = parameters controlling temporal stability and order
of accuracy; and f ~vnþ1; ~anþ1g = predictors defined to simplify the
resulting expressions. Emphasis in the numerical simulations will
be given to the familiar average acceleration method fβ; γg ¼
f1=4,1=2g.

Applying Eqs. (8)–(9) to Eqs. (1)–(7) leads to a sequence of
boundary value problems written in strong form. The correspond-
ing weak form is obtained by weakly enforcing Eqs. (1), (3), (6),

and (7), which is stated as follows: Find fuð1Þ
nþ1;u

ð2Þ
nþ1; λg ∈ Sð1Þ ×

Sð2Þ ×Q such that for all fwð1Þ;wð2Þ;μg ∈ Vð1Þ × Vð2Þ ×Q

X2
α¼1

Z
ΩðαÞ

wðαÞ ·
ρðαÞ

βΔt2
uðαÞ
nþ1dΩþ

X2
α¼1

Z
ΩðαÞ

εðwðαÞÞ:C:ε�uðαÞ
nþ1

�
dΩ

−
Z
ΓI

λnþ1 · ⟦w⟧dΓ ¼
X2
α¼1

Z
ΩðαÞ

wðαÞ ·
�
bðαÞ
nþ1 − ρðαÞ ~aðαÞnþ1

�
dΩ

þ
X2
α¼1

Z
ΓðαÞ
h

wðαÞ · hðαÞ
nþ1dΓ ð10Þ

−
Z
ΓI

μ · ð⟦unþ1⟧ − ζnþ1ÞdΓ ¼ 0 ð11Þ

where the appropriate function spaces are specified as

SðαÞ ¼ fuðαÞjuðαÞ ∈ ½H1ðΩðαÞÞ�nsd ; uðαÞðxÞj
ΓðαÞ
g

¼ gðαÞðx; tnþ1Þg
ð12Þ

Fig. 1. (Color) Domain Ω split into two regions by interface ΓI with
imposed discontinuity ζ

© ASCE 04016084-2 J. Eng. Mech.

 J. Eng. Mech., 2016, 142(11): 04016084 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a 

on
 1

0/
28

/1
6.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



VðαÞ ¼ fwðαÞjwðαÞ ∈ ½H1
0ðΩðαÞÞ�nsd ; wðαÞðxÞj

ΓðαÞ
g

¼ 0g ð13Þ

Q ¼ fλjλ ∈ ½H−ð1=2ÞðΓIÞ�nsdg ð14Þ
and H1ðΩðαÞÞ and H−ð1=2ÞðΓIÞ are standard Sobolev spaces
[see Barbosa and Hughes (1991) and Truster and Masud (2014)
and references therein]. The next step is to convert the mixed
interface formulation in Eqs. (10)–(11) into a primal formulation

expressed in terms of the displacement field uðαÞ
nþ1 alone by con-

densing out the Lagrange multiplier field λnþ1. This is achieved

by applying a multiscale decomposition to separate uðαÞ
nþ1 into

coarse scales ūðαÞ
nþ1 and fine scales u 0ðαÞ

nþ1 in the vicinity of ΓI , ac-
cording to the VMS framework presented in Truster and Masud
(2014)

uðαÞ
nþ1 ¼ ūðαÞ

nþ1 þ u 0ðαÞ
nþ1; wðαÞ ¼ w̄ðαÞ þ w 0ðαÞ ð15Þ

As is typical for VMS formulations (Hughes 1995), herein the
coarse scales will be associated with the finite-element displace-
ment field, while the fine scales can be viewed as the error field
filtered out by the given mesh. The modeling of numerical fine
scales that are otherwise unaccounted for in the standard Galerkin
method leads to solid mechanics formulations exhibiting enhanced
stability (Cervera et al. 2003; Masud and Truster 2013; Masud
et al. 2011; Masud and Xia 2006; Scovazzi et al. 2015). The
key steps are subsequently provided for the derivation of the primal
formulation using the multiscale approach while highlighting the
distinguishing assumptions and terms compared to Truster and
Masud (2014). First, the multiscale decomposition in Eq. (15) is
substituted into the weak form in Eq. (10), and the terms corre-
sponding to the fine-scale problem in each region ΩðαÞ associated
with the fine-scale weighting terms w 0ðαÞ are as follows:Z
ΩðαÞ

w 0ðαÞ ·
ρðαÞ

βΔt2
u 0ðαÞ
nþ1dΩþ

Z
ΩðαÞ

εðw 0ðαÞÞ:C:ε
�
u 0ðαÞ
nþ1

�
dΩ

¼þ
Z
ΓI

w 0ðαÞ ·
h
ð−1Þα−1λnþ1−C:ε

�
ūðαÞ
nþ1

�
·nðαÞ

i
dΓ

þ
Z
ΩðαÞ

w 0ðαÞ ·
�
bðαÞ−ρðαÞ ~̄aðαÞ− ρðαÞ

βΔt2
ūðαÞ
nþ1þdivσ

�
ūðαÞ
nþ1

�	
dΩ

þ
Z
ΓðαÞ
h

w 0ðαÞ ·
�
hðαÞ
nþ1−σ

�
ūðαÞ
nþ1

�
·nðαÞ

	
dΓ ð16Þ

where the terms involving the coarse-scale fields have been taken to
the right-hand side and integration by parts has been applied.
Because the fine-scale problem in Eq. (16) is infinite dimensional,
modeling assumptions are applied from Truster and Masud (2014)
in order to solve it analytically. First, the fine scales are taken to be
nonzero only within the layer of elements adjoining the interface,
which causes the Neumann term in Eq. (16) to vanish. Within each

element ΩðαÞ
e adjacent to ΓI , u

0ðαÞ
nþ1 is represented using an edge bub-

ble functions bðαÞ
s that is supported over a sector of the element

ωðαÞ
s ⊆ ΩðαÞ

e and vanishes on all edges except the one edge inter-

secting the interface γs ¼ ∂ΩðαÞ
e ∩ ΓI . Although the coarse-scale

discretization may be nonconforming along ΓI , a set of segments
fγsgnsegs¼1 can still be defined that covers ΓI and is conforming with

respect to the sectors ωðαÞ
s on either side. This fine-scale represen-

tation enables Eq. (16) to be posed over the series of segments γs
and sectors ωðαÞ

s surrounding ΓI . The specific definitions of γs and

ωðαÞ
s provided in Truster and Masud (2014) are adopted; the reader

is referred to this reference for further details. Lastly, due to the

significance of the interface in these developments, the interface
traction residual is assumed to dominate over the contribution of
the volumetric residual term in Eq. (16), leaving a single term
on the right-hand side.

Substituting these assumptions into the fine-scale problem in

Eq. (16) yields a segmentwise expression for u 0ðαÞ
nþ1 in terms of a

consistently derived stabilization tensor τðαÞs accounting for the
element geometry and material parameters

u 0ðαÞ
nþ1jγs ¼ τðαÞs

h
ð−1Þα−1λnþ1 − C:ε

�
ūðαÞ
nþ1

�
· nðαÞ

i
ð17Þ

τðαÞs ¼ ½measðγsÞ�−1
�Z

ωðαÞ
s

εðbðαÞ
s Þ:C:εðbðαÞ

s ÞdΩ
	−1�Z

γs

bðαÞs dΓ

	
2

ð18Þ

where ½measðγsÞ� = surface area (arc length) of segment γs for
three (two)-dimensional problems. Eqs. (17) and (18) match ex-
actly those derived in Truster and Masud (2014) because of the
addition modeling assumption to drop the mass-type term from
the fine scale on the left-hand side of Eq. (16). This assumption
is consistent with the present treatment of the fine scales as piece-
wise constant in time within the temporally discrete weak form in

Eqs. (10) to (11); also, Eq. (18) for τðαÞs provided excellent numeri-
cal performance in the tests in this paper. Herein, the simple poly-
nomial bubble functions provided in Truster et al. (2015b) and
Truster and Masud (2014) are chosen to represent the fine-scale

bubbles bðαÞs within Eq. (18).
Embedding the localized fine scales in Eq. (17) into the coarse-

scale problem associated with Eqs. (10) and (11) yields a stabilized
mixed weak form for the coarse scales ūðαÞ

nþ1 and λnþ1

X2
α¼1

Z
ΩðαÞ

w̄ðαÞ ·
ρðαÞ

βΔt2
ūðαÞ
nþ1dΩþ

X2
α¼1

Z
ΩðαÞ

εðw̄ðαÞÞ:C:ε
�
ūðαÞ
nþ1

�
dΩ

−
Z
ΓI

λnþ1 ·
�
w̄ð1Þ− w̄ð2Þ�dΓ

þ
X2
α¼1

Z
ΓI

h
C:εðw̄ðαÞÞ ·nðαÞ

i
· τðαÞs

h
ð−1Þα−1λnþ1−C:ε

�
ūðαÞ
nþ1

�
·nðαÞ

i
dΓ

¼
X2
α¼1

Z
ΩðαÞ

w̄ðαÞ ·
�
bðαÞ
nþ1−ρðαÞ ~̄aðαÞnþ1

�
dΩþ

X2
α¼1

Z
ΓðαÞ
h

w̄ðαÞ ·hðαÞ
nþ1dΓ

ð19Þ

−
Z
ΓI

μ ·
h�

ūð1Þ
nþ1 − ūð2Þ

nþ1

�
− ζ

i
dΓ

−
Z
ΓI

μ ·

�
−τð1Þs

h
C:ε

�
ūð1Þ
nþ1

�
· nð1Þ

i
þ τð2Þs

h
C:ε

�
ūð2Þ
nþ1

�
· nð2Þ

i	
dΓ

−
Z
ΓI

μ ·
h
τð1Þs þ τð2Þs

i
· λnþ1dΓ ¼ 0 ð20Þ

As discussed in Truster and Masud (2014), the inherent stability
of Eqs. (19) and (20) enables the choice of the discrete multiplier
space Qh ¼ ½L2ðΓIÞ�nsd ⊂ Q, which enables the analytical solution
of the continuity Eq. (20) as follows:

λnþ1jγs ¼ fC:εðūnþ1Þ · ngjγs − τsð⟦ūnþ1⟧ − ζnþ1Þjγs ð21Þ

© ASCE 04016084-3 J. Eng. Mech.
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fσ · ng≡ δð1Þs ½σð1Þ · nð1Þ� − δð2Þs ½σð2Þ · nð2Þ� ð22Þ

τs ¼
�
τð1Þs þ τð2Þs

�−1
; δðαÞs ¼ τs · τ

ðαÞ
s ð23Þ

The distinguishing feature of Eq. (21) is that λnþ1 is a function
of the prescribed discontinuity ζnþ1 through the stability tensor τs
scaling the constraint condition in Eq. (6); otherwise, the results of
Truster and Masud (2014) remain unchanged. The weighting
coefficients δðαÞs derived through the stability tensors τðαÞs provide
a definition for the numerical interface traction in Eq. (22), which is
well suited toward regions with material property mismatch such as
fibrous composite materials as well as stratum within geological
formations (Truster and Masud 2013, 2014).

Embedding the analytical expression Eq. (21) into Eq. (19) and
combining terms leads to the stabilized primal formulation through
the condensation of λnþ1

X2
α¼1

Z
ΩðαÞ

wðαÞ ·
ρðαÞ

βΔt2
uðαÞ
nþ1dΩþ

X2
α¼1

Z
ΩðαÞ

ε
�
wðαÞ�:C:ε�uðαÞ

nþ1

�
dΩ

þ
Z
ΓI

⟦w⟧ · τs · ð⟦unþ1⟧− ζÞdΓ−
Z
ΓI

½C:εðwÞ · n�

· ð⟦unþ1⟧− ζÞdΓ

−
Z
ΓI

⟦w⟧ · ½C:εðunþ1Þ · n�dΓ−
Z
ΓI

⟦C:εðwÞ · n⟧ · δs

· ⟦C:εðunþ1Þ · n⟧dΓ

¼
X2
α¼1

Z
ΩðαÞ

wðαÞ ·
�
bðαÞ
nþ1− ρðαÞ ~aðαÞnþ1

�
dΩþ

X2
α¼1

Z
ΓðαÞ
h

wðαÞ · hðαÞ
nþ1dΓ

ð24Þ

where the additional traction jump term ⟦σ · n⟧≡ σð1Þ · nð1Þþ
σð2Þ · nð2Þ and tensor δs ≡ δð1Þs · τð2Þs ¼ δð2Þs · τð1Þs have appeared
consistently as in Truster and Masud (2014). The authors choose
to neglect this term in the derivations that follow because it was
found to have negligible contribution to numerical stability.

The variational multiscale interface framework has yielded sta-
ble and accurate results for linear elastostatics (Truster and Masud
2014), evolving finite deformations (Truster et al. 2015a), and plas-
ticity (Truster 2015), particularly for nonconforming meshes and
heterogeneous materials. Applying the framework to the transient
problem provides consistent definitions for the interface flux terms
according to Eq. (21). The performance of these fluxes at sup-
pressing spurious oscillations arising at nonconforming interfaces
under high-speed impact will be determined through numeri-
cal tests.

Remark: The appearance of the transient formulation in
Eq. (24) is very much like the linear elastic formulation in Truster
and Masud (2014). Indeed, the sole distinguishing features appear
to be the presence of the inertial term w · ρ=βΔt2unþ1 and the pre-
scribed discontinuity ζnþ1. The implementation of the transient ex-
tension of the static formulation thus only requires the addition of
these terms. However, in the preceding derivations, the fine-scale
modeling assumptions that led to the simplified formulation in
Eq. (24) have been carefully highlighted, namely that u 0 is piece-
wise constant in time and localized to ΓI . Thus, emphasis is placed
on the treatment of interface dynamics; other fine-scale modeling
techniques may provide improved performance in the bulk domain,
such as for highly turbulent fluid dynamics (Calderer and
Masud 2013).

Extension to Transient Contact and
Friction Problems

Proceeding along the lines of Masud et al. (2012) and Truster
et al. (2013) for the quasi-static case, the stabilized elastodynamic
primal interface method is now extended to accommodate contact
and friction mechanics. The key feature of contact problems
(Masud et al. 2012; McDevitt and Laursen 2000; Simo and Laursen
1992) is that the interface continuity condition in Eq. (6) is replaced
by an impenetrability condition in the normal direction and a stick–
slip relation in the tangential direction along ΓI . Thus, the numeri-
cal flux terms contained in Eq. (24) is decomposed to treat each of
these conditions separately, leading to the following semidiscrete
formulation posed at time tnþ1:

X2
α¼1

Z
ΩðαÞ

wðαÞ ·
ρðαÞ

βΔt2
uðαÞ
nþ1dΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bulk inertia

þ
X2
α¼1

Z
ΩðαÞ

εðwðαÞÞ:C:ε
�
uðαÞ
nþ1

�
dΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bulk stiffness

−
Z
ΓI

δgNtN;nþ1dΓ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
pressure continuity

−
Z
ΓI

δtNgN;nþ1dΓ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
impenetrability constraint

−
Z
ΓI

δgT · tT;nþ1dΓ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
frictional stick-slip relation

−
Z
ΓI

δtT · gT;nþ1dΓ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
full-stick condition

¼
X2
α¼1

Z
ΩðαÞ

wðαÞ ·
�
bðαÞ
nþ1 − ρðαÞ ~aðαÞnþ1

�
dΩþ

X2
α¼1

Z
ΓðαÞ
h

wðαÞ · hðαÞ
nþ1dΓ

ð25Þ

The definitions for the normal and tangential components
follow from term-by-term comparison between Eqs. (24) and (25)
according to Masud et al. (2012). The normal gap gN and tangential
gap gT represent the amount of penetration or slip along the contact
surface, respectively:

gN ¼ −⟦Xþ u⟧ · nð1Þ; gT ¼ −½I − nð1Þ ⊗ nð1Þ�⟦Xþ u⟧

ð26Þ
where X = spatial coordinate of the surface ΓI in the undeformed
configuration. The decomposition is taken with respect to the unit
normal nð1Þ, and hence requires evaluation through a closest-point
projection operation. This operation is described in detail within
the appendix of Masud et al. (2012). The quantities δgN and
δgT are the variational gaps in the normal and tangential directions,
respectively

δgN ¼ −⟦w⟧ · nð1Þ; δgT ¼ −½I − nð1Þ ⊗ nð1Þ�⟦w⟧ ð27Þ

The contact pressure tN and shearing traction tT are defined
from the numerical flux terms in Eq. (21) in order to have equiv-
alence with Eq. (24)

tN ¼ f½C:εðuÞ · n� − τs⟦Xþ u⟧g · nð1Þ ð28Þ

tT ¼ ½I − nð1Þ ⊗ nð1Þ� · f½C:εðuÞ · n� − τs⟦Xþ u⟧g ð29Þ

These expressions have an augmented form combining the
traction field and displacement jump, similar to Simo and
Laursen (1992). The variational tractions δtN and δtT are defined
analogously
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δtN ¼ fC:εðwÞ · ng · nð1Þ ð30Þ

δtT ¼ ½I − nð1Þ ⊗ nð1Þ� · fC:εðwÞ · ng ð31Þ

Remark: The preceding definitions for the normal and tangen-
tial components are valid for small-deformation contact mechanics.
Extension to large-deformation contact requires treatment of the
variation of the unit normal vector; see, e.g., Wriggers et al.
(1990) for discussions of this variation.

The tangential terms fgT ; δgTg and ftT ; δtTg provide a mecha-
nism for embedding constitutive models for friction along the lines
developed in Masud et al. (2012) and Truster et al. (2013). The
variational traction term δtT must be included when the constitutive
response in the stick regime is desired to be completely rigid, sim-
ilar to the augmented Lagrangian method (Simo and Laursen 1992)
and the rigid-plastic frictional Nitsche formulation (Annavarapu
et al. 2014). Herein, the elastoplastic regularized Coulomb friction
model is employed as presented in Simo and Laursen (1992) and
Truster et al. (2013) and the tangential traction tT in Eq. (29) is
replaced by the following evolution equations:

Φ ¼ ktTk þ μftN ≤ 0; ζ ≥ 0; ζΦ ¼ 0 ð32Þ

ġT − ζ
∂
∂tT Φ ¼ 1

ϵT
ṫT ð33Þ

where μf = friction coefficient; and ϵT = tangential stiffness of the
interface capturing the experimentally measured compliance
(Wriggers et al. 1990). The elastic regularization in Eq. (33) pro-
vides an explicit evolution of tT in terms of the increasing slip ġT .
Therefore, the variational traction term δtT , which is generally
variationally consistent only for rigid-plastic constitutive response,
will be dropped from the formulation in Eq. (25).

The constitutive relations in Eqs. (32) and (33) are integrated in
time using the backward Euler method and the radial return algo-
rithm as described in Truster et al. (2013)

tðtrialÞT;nþ1 ¼ tT;n þ ϵTðgT;nþ1 − gT;nÞ ð34Þ

ΦðtrialÞ
nþ1 ¼

���tðtrialÞT;nþ1

��� − μftN;n ð35Þ

tT;nþ1 ¼ tðtrialÞT;nþ1 −Δζ
tðtrialÞT;nþ1���tðtrialÞT;nþ1

��� ð36Þ

Δζ ¼

8><
>:

0 if ΦðtrialÞ
nþ1 ≤ 0

ΦðtrialÞ
nþ1

ϵT
if ΦðtrialÞ

nþ1 > 0
ð37Þ

Depending on whether the stick or slip regime is active, these
expressions can be combined and simplified as follows:

tT;nþ1 ¼ tT;n þ ϵTðgT;nþ1 − gT;nÞ ktT;nþ1k ≤ μftN;nþ1 ðstickÞ
ð38Þ

tT;nþ1 ¼ μftN;nþ1ðgT;nþ1 − gT;nÞ=kgT;nþ1 − gT;nk
ktT;nþ1k > μftN;nþ1 ðslipÞ ð39Þ

The backward Euler integration scheme for the constitutive
model is consistent with the Newmark algorithm, which also

evaluates momentum balance at tn and tnþ1. Substituting the
constitutive model in Eqs. (26)–(39) into the contact weak form
in Eq. (25) yields a nonlinear system of evolution equations that
may be solved using the Newton-Raphson method. The lineariza-
tion of the contact terms in Eq. (25) are contained in Masud et al.
(2012) and references therein.

Remark: Presently, the two-body contact problem yields an in-
equality constraint expressed through a Kuhn-Tucker condition as
gN ≥ 0, tN ≤ 0, and gNtN ¼ 0. Also, the tangential expressions in
Eqs. (38) and (39) are valid only in the contact regime tN < 0. In the
numerical setting, these conditions are evaluated at the Gauss
points of the segments γs along the interface. The traditional active
set strategy (Simo and Laursen 1992) is employed by testing these
conditions at each quadrature point and retaining interface quan-
tities only for points in active contact.

Remark: The average acceleration method is utilized in the
numerical problems herein for integrating the transient problem
in Eq. (25), which is known to conserve energy in the linear con-
text. However, this conservation is not guaranteed for nonlinear
problems (Hughes 1976). Other techniques have been devised to
improve the transient stability properties (Chung and Hulbert
1993; Love and Laursen 2003). Nonetheless, the authors are inter-
ested in investigating the stability of the response achieved by the
consistently derived numerical fluxes in Eq. (21) within the stan-
dard Newmark algorithm. The present formulation could have been
developed in the context of these enhanced time integration
schemes.

Remark: Due to the stick–slip nature of the flow rule in
Eq. (33), the consistent tangent matrix in regions with persistent
sliding is indeterminate between the elastic and plastic branches
for the first iteration of a load step. The numerical studies herein
indicate that using the plastic or slip constitutive tangent as the pre-
dictor enhanced the stability of the method, enabling larger time
steps. Similar observations were made in the context of cohe-
sive-zone modeling for delamination (Alfano and Crisfield 2001).

Generalization to Other One-Step
Integration Methods

Upon applying spatial discretization, the stabilized interface weak
form presented in Eq. (25) leads to the discrete momentum balance
equation that can be represented in vector form as

Manþ1 þKbulkdnþ1 þ Fcontactðdnþ1Þ ¼ Fexternalðtnþ1Þ ð40Þ
where M = mass matrix; Kbulk = stiffness contribution of the
interior of domain Ω; Fexternalðtnþ1Þ = external force vector; and
Fcontactðdnþ1Þ = nonlinear term arising from contact and friction
along ΓI . Although the development of the semidiscrete stabilized
form has been presented within the context of the standard New-
mark method, the authors wish to emphasize that the proposed
method can be easily cast in any other time integrator of choice.
A commonly used method is the generalized-α method (Chung
and Hulbert 1993) that provides targeted damping in the higher
modes while maintaining second-order accuracy and minimizing
damping in the lower modes. These features make this algorithm
attractive for structural dynamics problems. In extending the pro-
posed method to the generalized-α format, the predictor and multi-
corrector Eqs. (8) and (9) do not change, only the time discrete
equation of motion in Eq. (40) gets updated as follows:

Manþ1−αm
þKbulkdnþ1−αf

þ Fcontactðdnþ1−αf
Þ ¼ Fexternalðtnþ1−αf

Þ
ð41Þ
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dnþ1−αf
¼ ð1 − αfÞdnþ1 þ αfdn ð42Þ

anþ1−αm
¼ ð1 − αmÞanþ1 þ αman ð43Þ

tnþ1−αf
¼ ð1 − αfÞtnþ1 þ αftn ð44Þ

Within the nonlinear momentum balance in Eq. (41), the contact
terms defined in the previous section that are contained in Fcontact

are evaluated at the intermediate time tnþ1−αf
. Consistent lineari-

zation of Eq. (41) leads to a consistent tangent matrix that has the
same structure as that of the Newmark method, except that it con-
tains additional factors of ð1 − αfÞ and ð1 − αmÞ. All other devel-
opments remain essentially unaltered. This direct extension is
enabled by the piecewise constant in time approximation of the fine
scales.

Numerical Results

The performance of the proposed dynamic interface method is
assessed through a series of numerical benchmark problems. Em-
phasis is placed on the effects that mesh conformity and friction
have on the computed response. Plane strain conditions are as-
sumed in all cases. Bilinear quadrilateral elements are employed,
and full numerical quadrature is used to evaluate the domain and
interface integrals. Details concerning the integration of the inter-
face terms and the definitions of the bubble functions used within
the stability tensors in Eq. (18) are found in Masud et al. (2012),
Truster et al. (2015b), and Truster and Masud (2014). For the fric-
tional problem, the Newton-Raphson algorithm with consistent
linearization is employed to solve Eq. (25) at each time step,
and quadratic rate of convergence of the out-of-balance residual
vector is achieved.

Quasi-Static Patch Test for Frictional Response

To verify the consistency of the method, a quasi-static friction
problem with an exact solution is investigated. Consider two blocks
joined by a frictional interface that are pressed together by a
constant applied pressure σ as shown in Fig. 2. Shearing tractions
τ are applied on all faces to create a uniform state of stress, except
for the right face where a uniform prescribed displacement δ is ap-
plied to each of the rollers in the vertical direction. The displace-
ment and the tractions are increased proportionally up to the critical
stick–slip transition at δc and τ c. Afterward, the displacement can
be increased to freely slide the surfaces of the blocks past each
other. On the finite-element mesh, the time-varying vertical dis-
placement δ is prescribed to each of the nodes along the right face
of the domain.

For the numerical simulation, each block is discretized into
a nonuniform mesh of four quadrilateral elements as shown in
Fig. 3. The material properties are taken as G ¼ 5 kPa, ν ¼ 0,
ϵT ¼ 100 kN=m, and μf ¼ 0.25. The compressive stress is set
to σ ¼ 40 Pa such that the critical shear stress to induce sliding
is τ c ¼ μfσ ¼ 10 Pa; the axial compression does not induce lateral
expansion because ν ¼ 0. Due to the tangential elasticity of the
interface, the deflection of the right block at the critical point is
determined as δc ¼ τ cL=Gþ τ c=ϵT ¼ 0.0041 m, where L ¼
2 m is the length of the two blocks. In the numerical test, the shear
stress is first increased in two steps using Δτ ¼ 5 Pa and displace-
ment Δδ ¼ 0.00205 m; the end of the first step is denoted by A in
Fig. 2(b). This applied displacement increment is then maintained
after the critical slip state for four more steps to a maximum value
of δ ¼ 0.0123 m, which is indicated by point B. Because the total
slip is less than 1% of the domain width, the problem has been
simulated with the normal vector and contact surfaces evaluated
in the undeformed configuration in order to accommodate an ana-
lytical solution. The stress contours at these two states are shown in

Fig. 2. (Color) Contact patch test: (a) domain and boundary conditions; (b) variation of applied load

Fig. 3. (Color) Stress contours τxy on amplified deformed configuration: (a) applied displacement δ ¼ 0.00205 m; (b) applied displacement
δ ¼ 0.01230 m
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Fig. 3. The deformations of the domains have been amplified by
a factor of 10 to highlight the discontinuity after the critical
stress is achieved in Fig. 3(b). Clearly, the computed stresses
are constant within the two blocks as is expected from the exact
solution. Thus, the stabilized DG interface method enforces the
impenetrability constraint exactly and reproduces the various stages
of stick and slip.

Axial Bar under Tensile Impact

The next numerical test investigates whether the insertion of a dis-
crete interface into an otherwise continuous domain affects the
underlying dynamic response. The domain consists of a rectangular
bar that is fully fixed on the left edge, as shown in Fig. 4(a), and a
Heaviside tensile traction is applied horizontally on the right edge
with a magnitude of qo ¼ 1 MPa. The material properties are taken
as E ¼ 210 GPa, ν ¼ 0.3, ρ ¼ 7,800 kg=m3, and t ¼ 1 m in order
to agree with a study conducted by Herry et al. (2002), which uti-
lized Lagrange multipliers to enforce the interface constraints. The
average acceleration method (β ¼ 1=4, γ ¼ 1=2) was used for time
integration with a time step ofΔt ¼ 12.5 μs. A series of four analy-
ses are performed. A conforming continuous Galerkin (CG) mesh
with 21 × 42 elements serves as a benchmark wherein an interface
is not inserted, as shown in Fig. 4(b). The second analysis uses the
same mesh, but a vertical DG interface is applied in the center that
partitions the domain into two squares of 21 × 21 elements. The
other two analyses are conducted on the mesh in Fig. 4(c) contain-
ing a nonconforming DG interface. The interface, which is high-
lighted by the red dashed box around the center of the mesh, arises
because different numbers of elements are used in the two regions
(18 × 18 in the left half, 21 × 21 in the right half). As mentioned in
Herry et al. (2002), this mesh does not contain any element edges
that match up along the interface. The first simulation on this mesh
will employ the definitions of the stability tensor and flux weights
defined in Eqs. (18) and (23), and the results will be labeled
as VMDG according to the name given in Truster et al. (2015b).
Second, the results produced by the classical parameters from the
DG method (Arnold et al. 2002) are also investigated. Thus, equal
scalar weights δð1Þs ¼ δð2Þs ¼ 1=2 are applied in the interface flux,

and the area-weighted formula for the stability parameter is taken
from Masud et al. (2012)

τ s ¼
5½Gð1Þ þ Gð2Þ�

hs
; hs ¼ 2

(
meas½Γð1Þ

e �
meas½Ωð1Þ

e �
þ meas½Γð2Þ

e �
meas½Ωð2Þ

e �

)−1

ð45Þ

where Ωð1Þ
e and Ωð2Þ

e = elements on either side of the segment γs;
and ΓðαÞ

e = entire edge of the element ΩðαÞ
e . These results will be

labeled as equal discontinuous Galerkin (eDG). In contrast, the ten-
sors τðαÞs are evaluated over sectors ωðαÞ

s of the interface, which are
defined according to the automatic procedure in Truster and Masud
(2014) and have variable size due to the nonconformity of ΓI .
Again, the intentions for this problem are to study the effect of
the definition for the stability parameters in the method and to de-
termine if the discrete interface introduces undesirable numerical
artifacts.

Simulations are performed on each mesh to track the dominant
longitudinal vibrations induced by the Heaviside force; minor
transverse modes are also excited due to the Poisson effect and
the fully fixed left edge. A contour plot of the axial stress σxx ob-
tained from each mesh during the first cycle at time t ¼ 750 μs
when the bar is beginning to recoil is shown in Figs. 5(a–d), where
the deformations are magnified 10,000 times. The stress field is
nonuniform due to the higher-frequency dynamical effects induced
from the boundary conditions, and a finer grid may be required to
fully resolve these details. However, Figs. 5(a and b) clearly indi-
cate that the conforming DG mesh produces essentially the
same response as the benchmark CG mesh. Also, the two noncon-
forming simulations have produced nearly identical stress contours
in Figs. 5(c and d). While the conforming and nonconforming re-
sults appear qualitatively similar, a close inspection indicates that
the axial stress wave has travelled slightly further to the right on the
nonconforming mesh. This apparent difference in the wave speed
from the stress contour plots is likely caused by the different sizes
of the solid elements in the two meshes rather than being caused
by the DG interface. Also recall that the accuracy of the stress
field is one order less than the displacement field for finite-element

Fig. 4. (Color) Problem description: (a) axial bar domain: (b) conforming mesh; (c) nonconforming mesh
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models, and the displacement accuracy is compared in the sub-
sequent figures. Thus, the interface ΓI does not appear to induce
artificial dispersion or scattering, at least not during the first cycle
of transient response.

Next, the time history of the axial displacement ux obtained at a
point on the interface [Point A in Fig. 4(a)] is depicted in Fig. 6 for
each of the analyses. All four curves appear to lie exactly on top of
each other during the six cycles of response shown in Fig. 6(a). By
zooming in at the instant 7.3 ms, the responses from the conforming
meshes and the nonconforming meshes can be distinguished. Even
with this magnification, the CG and VMDG conforming results
exhibit complete agreement. Slight differences can be seen between
the VMDG and eDG results for the nonconforming mesh. The non-
conforming mesh exhibits slightly higher frequency response than
the conforming mesh, which is logical due to the additional degrees
of freedom at the interface. Also, the displacement history results
agree very closely with those reported in Herry et al. (2002); note
that the time step size was Δt ¼ 0.125 μs in the reference. Thus,
the differences in the transient response induced by the definition
of the stability parameters at the interface appear to be rather mild
for this benchmark problem. Nonetheless, the authors with to high-
light that this optimal performance was achieved by the VMDG
method for the nonconforming mesh without requiring any user

calibration of the interface stabilizing terms. The consistently de-
rived expressions in Eqs. (18) and (23) provided a proper account-
ing for the difference in element size and edge mismatch along ΓI .

Remark: During prolonged simulations for 200 cycles, neither
phase error nor amplitude error developed in the primary axial mode
between the conforming meshes and nonconforming. This result in-
dicates that artificial diffusion is not introduced by the interface.

Analogous plots are provided for the velocity vx at Point A for
each mesh in Fig. 7. The differences in the four simulations are
more clearly observed in the magnified plot in Fig. 7(b); even
the CG and DG results on the conforming mesh have slight varia-
tions. The rather jagged response is attributed to the fixed boundary
conditions on the left end of the bar, particularly because the initial
response of the bar before 0.25 ms appears to be smooth.

As a quantitative indicator of the differences in the solutions, a
record of the nodal displacement value at Point B [Fig. 4(a)] on
the right end of the bar obtained from each analysis is provided
in Table 1. The slightly smaller displacements for the nonconform-
ing mesh indicate that the recoil of the first cycle has progressed
further than the conforming mesh, which agrees with the stress con-
tours shown in Fig. 5.

Remark: Observe that the expressions for the interfacial stabil-
ity parameters τs and δðαÞs in Eq. (23) informed by the fine-scale

Fig. 5. (Color) Stress σxx (Pa) contour plots of response at time t ¼ 750 μs: (a) CG mesh; (b) VMDG conforming mesh; (c) VMDG nonconforming
mesh; (d) eDG nonconforming mesh

Fig. 6. (Color) Displacement ux (μm) at Point A: (a) six cycles; (b) focus on 7.3 ms
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models in Eq. (18) account for element size disparity across the
interface ΓI . This fact enables the VMDG method to achieve ac-
curate and nondispersive results for the nonconforming mesh.

Bolted Lap Joint under Tensile Loading

The final problem is of physical significance: a bolted lap joint
loaded by a tensile impact force. The joint consists of two
1-cm-thick, 25-cm-long plates attached by 12-mm-diameter bolts
to lap plates that are 0.5 cm thick and 12 cm long, as shown in
Fig. 8(a). These dimensions are representative of an experimental
test conducted in Eriten et al. (2011). To approximate the bolts
within a two-dimensional model, a uniform pressure P ¼ 35 MPa
is applied over 20-mm-wide zones as indicated in the figure.
This pressure corresponds to individual bolts at a 5-cm lateral
spacing with a 35-kN pretension, as illustrated in Fig. 8(b). The
material parameters for steel are taken as E ¼ 200 GPa, ν ¼ 0.24,
and ρ ¼ 7,800 kg=m3, and the frictional parameters are taken as

εT ¼ 5 × 104 GN=m and μf ¼ 0.30. The joint is simulated using
the trapezoidal rule and a time step Δt ¼ 6.25 μs, and the magni-
tude of the tensile impact traction (applied instantly at t ¼ 0 and
held constant) is F0 ¼ 5 MPa, applied uniformly along the right
edge. For the discretization, a conforming mesh is used with three
elements through the thickness of the lap plates, shown in Fig. 8(c).
The influence of mesh refinement for problems with friction has
been treated for the quasi-static case in Truster et al. (2013). A fully
fixed boundary condition is applied on the left edge.

A major quantity of interest is the evolution of the axial stress
waves induced by the application of the tensile force. While the
joint induces additional effects, the dominant response is a longi-
tudinal vibration and associated stress wave similar to the previous
problem. A snapshot of the stress contour is provided in Fig. 9 dur-
ing the first cycle when the wave is reflecting off the fixed end,
where the overall joint response is given in Fig. 9(a). Three separate
interface conditions are compared, which are shown zoomed in
over the center of the joint. In Figs. 9(c and d), the plates are welded
together along 60% of each of the contacting interfaces, nearly
matching the persistent contact zone caused by the bolts. For
the configuration shown in Fig. 9(c), the nodal values are tied
together to give a CG discretization, while full DG treatment cou-
pling normal and tangential interactions is utilized in Fig. 9(d);
hence the surfaces are welded together. These configurations
serve as a reference for analyzing the dynamics of the contact
and Coulomb friction response in Fig. 9(b). In all three cases,
the bolt preload causes the toes of the lap plates to rise off of

Fig. 7. (Color) Velocity vx (m=s) at Point A: (a) six cycles; (b) focus on 7.3 ms

Table 1. Displacement ux of Point B at Time t ¼ 750 μs

Mesh Value (μm)

CG conforming 15.57442
VMDG conforming 15.57417
VMDG nonconforming 15.56408
eDG nonconforming 15.56557

Fig. 8. (Color) Double-bolted lap joint: (a) side view; (b) plan view; (c) conforming discretization
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the long plates. The contours of the two welded configurations in
Figs. 9(c and d) are identical; therefore, all variations between the
welded and bolted configurations can be attributed to the dynamics
of contact and friction. In particular, note that the stress wave ap-
pears to have progressed slightly further in the bolted configuration.
Also, the stress in the contacting zone appears a bit different near
the outer edges.

To further highlight the features of the dynamic response, an
additional set of contour plots corresponding to the end of the cycle
are shown in Fig. 10. Compression is evident in the lap plates at this
instant in time, and the profiles from the bolted and welded con-
figurations are again somewhat distinct.

As a final result, the long-term behavior of the tip displacement
is presented in Fig. 11. Because the two welded configurations had
identical results, only the CG results are presented for clarity. Even
after a few cycles, the frictional response is seen to deviate from
the welded response. The primary mode is a see-sawing motion
characteristic of a long one-dimensional rod, with high-frequency
response likely induced by reflections in the lap plates. The sim-
ulation was carried out for nearly a tenth of a second, over which
hundreds of cycles occur. From the displacement plot in Fig. 11(b),
dissipation is evident in the bolted configuration while the welded
configuration maintains constant system energy. Also, both con-
figurations exhibit a beating phenomenon, although the frequency

Fig. 9. (Color) Axial stress contour at time t ¼ 0.00025 s: (a) overview of entire joint; (b) bolted simulation; (c) welded contact using nodal tying;
(d) welded contact using DG method

Fig. 10. (Color) Axial stress contour at time t ¼ 0.000431 s: (a) overview of entire joint; (b) bolted simulation; (c) welded contact using nodal tying;
(d) welded contact using DG method
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of the frictional case is lower. These results help isolate the fric-
tional effects on the underlying dynamics and demonstrate the
performance of the method for solving interface problems.

Conclusions

A DG computational technique for modeling the transient response
of domains containing interfaces is consistently derived by extend-
ing ideas from the stabilized primal interface framework of Truster
and Masud (2014) to include time-dependent effects. Subsequently,
the method is applied to frictional contact problems by embedding
constitutive models for friction into the tangential numerical flux
terms at the interface in lieu of Masud et al. (2012). A key benefit
of the present approach is that the need for auxiliary Lagrange mul-
tipliers to treat the contact constraint is eliminated, reducing the
cost of the method and avoiding the stability issues associated with
mixed methods. Multiple nonsmooth transient problems were
analyzed, including simulations on nonconforming meshes. The
proposed DG method produces almost identical results to the
classical CG method for the case of conforming meshes. Computed
solution discrepancies observed for nonconforming interfaces were
restricted to high-frequency modes. Total energy is conserved by
the DG method for frictionless fully bonded interfaces when the
average acceleration method is employed for time integration.
Dissipation effects and beating phenomena are highlighted within
a simulation of a bolted lap joint under impact loading.
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