
Remote Sens. 2015, 7, 3400-3425; doi:10.3390/rs70303400 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Temporal Upscaling and Reconstruction of Thermal Remotely 
Sensed Instantaneous Evapotranspiration 

Tongren Xu 1, Shaomin Liu 1,*, Lu Xu 1,2, Yujie Chen 1,3, Zhenzhen Jia 1, Ziwei Xu 1  

and Jeffrey Nielson 4 

1 State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, 

and School of Geography, Beijing Normal University, No.19, Xinjiekouwai Street, 100875 Beijing, 

China; E-Mails: xutr@bnu.edu.cn (T.X.); xulu_cn@foxmail.com (L.X.);  

chenyujie769@126.com (Y.C.); jzz@mail.bnu.edu.cn (Z.J.); xuzw@bnu.edu.cn (Z.X.) 
2 Information Technology Department, National Library of China, No. 33, Zhongguancun Nandajie, 

100081 Beijing, China 
3 Yangzhou Environmental Monitoring Center, No.446, Yangzijiangbei Road,  

225007 Yangzhou, China 
4 Department of Civil and Environmental Engineering and Water Resource Research Center, 

University of Hawaii at Manoa, Honolulu, HI 96822, USA; E-Mail: nielsonj@hawaii.edu  

* Author to whom correspondence should be addressed; E-Mail: smliu@bnu.edu.cn;  

Tel.: +86-10-5880-2240; Fax: +86-10-5880-5274. 

Academic Editors: Soe Myint and Prasad S. Thenkabail 

Received: 13 January 2015 / Accepted: 17 March 2015 / Published: 23 March 2015 

 

Abstract: Currently, thermal remote sensing-based evapotranspiration (ET) models can 

only calculate instantaneous ET at the time of satellite overpass. Five temporal upscaling 

methods, namely, constant evaporative fraction (ConEF), corrected ConEF (CorEF), 

diurnal evaporative fraction (DiEF), constant solar radiation ratio (SolRad), and constant 

reference evaporative fraction (ConETrF), were selected to upscale the instantaneous ET to 

daily values. Moreover, five temporal reconstruction approaches, namely, data assimilation 

(ET_EnKF and ET_SCE_UA), surface resistance (ET_SR), reference evapotranspiration 

(ET_ETrF), and harmonic analysis of time series (ET_HANTS), were used to produce 

continuous daily ET with discrete clear-sky daily ET values. For clear-sky daily ET 

generation, SolRad and ConETrF produced the best estimates. In contrast, ConEF usually 

underestimated the daily ET. The optimum method, however, was found by combining 

SolRad and ConETrF, which produced the lowest root-mean-square error (RMSE) values. 
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For continuous daily ET production, ET_ETrF and ET_SCE_UA performed the best, 

whereas the ET_SR and ET_HANTS methods had large errors. The annual ET 

distributions over the Beijing area were calculated with these methods. The spatial ET 

distributions from ET_ETrF and ET_SCE_UA had the same trend as ETWatch products, 

and had a smaller RMSE when compared with ET observations derived from the water 

balance method. 

Keywords: evapotranspiration; thermal remote sensing; temporal upscaling; continuously 

daily ET reconstruction; regional ET production 

 

1. Introduction 

Evapotranspiration (ET) is one of the most important components of surface energy budgets  

and hydrologic cycles. Flux observation networks (e.g., FluxNet) and enhanced experiments (e.g., 

HiWATER) have been set up to monitor long-term surface heat fluxes over different kinds of land  

cover [1–3]. However, in situ measurements are expensive and difficult to extend to continental scales. 

Thus, models have been developed to map ET over continental scales based on remotely sensed 

information [4–11]. Unfortunately, thermal remotely sensed models can only detect a snapshot of ET 

spatial distributions at the time of satellite overpass. The snapshot of the ET map cannot satisfy 

practical applications, such as, irrigation judgment, and water resource planning and management. To 

satisfy such applications, the instantaneous ET needs to be upscaled to daily values for clear-sky days. 

Moreover, continuous daily ET values should be generated with temporal reconstruction approaches to 

fulfill long-term hydrologic requirements. 

There are many methods to upscale instantaneous ET to daily values. The most popular approach is 

the constant evaporative fraction (EF) method, which assumes that EF (EF is defined as the ratio of 

latent heat flux and available energy) is constant during the daytime [12]. Thus, the daily ET can be 

obtained with daily available energy (difference of net radiation, Rn, and soil heat flux, G0) and 

remotely sensed instantaneous EF. However, the daytime ET is usually underestimated by 5%–10% 

with the EF constant method [13,14]. The diurnal variations of EF have been found to be constant 

during the daytime (9:00–16:00 local time), with a slight increase during the afternoon [15]. The 

underestimation can be corrected by adding 10% ET directly [16]. The estimation errors using the 

constant EF method are mainly caused by: (1) the difference between instantaneous EF and daytime 

EF; (2) the difference between daytime and daily available energy; and (3) the difference between 

daytime and daily latent heat flux. Daily ET estimates can be corrected by eliminating these 

differences [17]. Another ET upscaling method is to assume the ratio between latent heat flux and 

other variables (e.g., solar radiation, reference evapotranspiration) is constant during the daytime. 

Latent heat flux and solar radiation have similar diurnal variations (e.g., sine functions), and daily ET 

can be estimated with the relationship between latent heat flux and solar radiation [18,19]. The 

reference ET (ETr) can depict the diurnal variations of net radiation, air temperature, wind speed, and 

relative humidity. The ratio between instantaneous ET and ETr is assumed to be constant during the 
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daytime, and daily ET can be estimated with daily ETr [20,21]. Most of these methods have been 

compared over different land cover types, and the feasibility of each approach has been noted [22–24].  

The upscaling methods can only be used to estimate daily ET with the instantaneous ET values over 

clear-sky days. This can be an issue, because it is difficult to obtain cloud-free thermal remote sensing 

data for every day of the year. It is, therefore, necessary to develop algorithms to reconstruct 

continuous daily ET variations with discrete clear-sky daily ET estimates. The Penman-Monteith 

equation has been used to calculate global ET with the revised surface resistance algorithm [25,26]. 

For clear-sky days, the surface resistance of Penman-Monteith can be retrieved by thermal remotely 

sensed daily ET. Then, continuous daily surface resistance can be gap filled with the two neighboring 

clear-sky surface resistances. Finally, continuous daily ET values can be estimated with the 

reconstructed surface resistance, leaf area index (LAI), and meteorological elements. This ET temporal 

reconstruction method, namely, the surface resistance approach, has been used for long-term regional 

and global ET production [25–27]. 

The reference evapotranspiration approach is a commonly used temporal reconstruction  

method [28]. This approach assumes that the ratio (ETrF) between clear-sky daily ET and ETr has liner 

variations between two nearby clear-sky days. The cloudy-day ETrF can be linearly interpolated with 

the clear-sky day ETrF, which is like generating the seasonal crop coefficient (Kc) with discrete  

clear-sky values. Finally, continuous daily ET can be obtained with ETr and the interpolated ETrF. The 

reference evapotranspiration method has been used in the METRIC (mapping evapotranspiration at 

high resolution with internalized calibration) and SEBAL (surface energy balance algorithm for land) 

models to produce regional total ET that is vital to irrigation management [28,29]. 

The harmonic analysis of time series (HANTS) method was first developed to reconstruct cloud 

contaminated NDVI observations with clear-sky data at prescribed times [30,31]. The HANTS 

algorithm considers only the most significant frequencies of the time series data with the least squares 

curve fitting method [30]. With time iteration, the large positive and negative values are rejected and 

reconstructed to a smoother data curve. The seasonal ET curve can also be reconstructed with the 

HANTS algorithm by inputting clear-sky ET, and the reconstructed monthly ET has been found to be 

more reliable than the daily results [32].  

Data assimilation is a method used to produce a more reliable land surface state by assimilating 

spatially sparse in situ observations or temporal instantaneous remote sensing data [33,34]. Various 

data assimilation algorithms (e.g., ensemble Kalman filter (EnKF), shuffled complex evolution method 

developed at The University of Arizona (SCE_UA), particle filter, variational method, etc.) have been 

developed during the last two decades [35–38]. Data assimilation methods have been used to generate 

temporal continuous soil moisture, soil temperature, surface fluxes, NDVI and LAI, by assimilating 

remote sensing data into land surface models [39–46]. For surface flux gap filling, a data assimilation 

scheme has been developed to reconstruct surface flux data from eddy covariance measurements [47].  

Thermal remotely sensed instantaneous ET should be extended to daily scale over cloud-free days 

and reconstructed to continuous daily values, to fulfill the requirements of water planning and 

management, and other applications. Although temporal upscaling and reconstruction methods have 

been used broadly, they have not been compared extensively, especially the temporal reconstruction 

approaches. In this study, five ET upscaling methods (from instantaneous ET to daily over a clear-sky 

day) were compared with in situ observations and an optimum method is proposed. To reconstruct  
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clear-sky daily ET to continuous daily, data assimilation methods based on the Penman-Monteith 

equation were developed with two data assimilation techniques (EnKF and SCE_UA). The developed 

data assimilation methods were also compared with three commonly used temporal reconstruction 

approaches (surface resistance method, reference evapotranspiration approach, and HANTS package). 

Finally, the annual remotely sensed ET over Beijing area was estimated with these methods and 

compared with the water balance ET data. 

2. Methodology  

2.1. Remotely Sensed ET Model 

In this study, a remotely sensed ET model was used to estimate the instantaneous ET during satellite 

overpass time [5]. The model’s parameterization scheme is based on the SEBS model [4] and revised 

according to the heterogeneous land surface of the Beijing area. Using this model, the instantaneous 

net radiation (Rn), ground heat flux (G) and sensible heat flux (H) can be calculated with atmospheric 

interpolated forcing data (wind speed, air temperature/humidity, etc.) and remote sensing data (land 

surface temperature, albedo, emissivity, NDVI, etc.). With Rn, G, and H, the latent heat flux (LE) can 

be obtained with the residual method via LE = Rn − G − H. 

2.2. Instantaneous ET Upscaling Methods 

Five methods were selected to upscale instantaneous ET to daily values and are summarized below. 

2.2.1. Constant Evaporative Fraction Method (ConEF) 

The ConEF method treats the evaporative fraction (EF, EF = LE/Rn − G) as a constant during the 

daytime and that daily ET can be calculated using daily available energy via [12], 

λETd = [EFi(Rn − G)d] (1)

where λ is latent heat of vaporization (J·kg−1), ETd is the daily ET (mm/day), EFi represents  

the evaporative fraction during satellite overpass time i (-), (Rn − G)d represents daily available  

energy (W·m−2). 

2.2.2. Corrected Constant Evaporative Fraction Method (CorEF) 

The ConEF method usually leads to a 5%–10% underestimation of daily ET using EF around noon 

instead of daily EF [13,14]. This method adds 10% of EF to correct the error caused by ConEF  

via [16], 

λETd = [1.1 × EFi (Rn − G)d] (2)

2.2.3. Diurnal Evaporative Fraction Method (DiEF) 

The DiEF method introduced three parameters to correct ConEF method, including (1) the 

difference between instantaneous and daytime EF, βEF; (2) the difference between daytime-averaged 
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and daily-averaged available energy, βA; (3) the difference between daytime and daily ET, βLE. This 

method can be expressed as [17], 

λETd = EFi (Rn − G)d × (βLE × βA × βEF) (3)

1.26
sin π ∗

∆

sin π ∗
∆ 0.1

 (4)

1.26
0.5∆

∆ | |cos 365 0.5∆
 (5)

where t* is the length of time from sunrise (9:00), ∆td is the length of time from sunrise to sunset (9 h), 

∆tn is the length of time from sunset to sunrise (∆tn = 24 − ∆td), Yd is the day of year, aA and cA are 

empirical parameters that are set to 0.83 and −0.03, respectively, and βLE is set to 1.1.  

2.2.4. Constant Solar Radiation Ratio Method (SolRad) 

The SolRad method assumes the ratio of latent heat flux and solar radiation is constant at the daily 

time scale, which is expressed as [18,19], 

ES = LE/Rs (6)

λETd = ESi(Rs)d (7)

where ESi is the ratio between latent heat flux and solar radiation at time i (satellite overpass time), and 

Rs is the solar radiation. 

2.2.5. Constant Reference Evaporative Fraction Method (ConETrF) 

The ConETrF method assumes the ratio of ET and ETr is constant on the daily time scale. The daily 

ET can be calculated using [20,21], 

ETrF = ET/ETr (8)

ETd = (ETrF)i(ETr)d (9)

where ETrF is the ratio between ET and ETr, and ETr can be computed following the FAO-56  

paper [48]. 

2.3. Continuously Daily ET Temporal Reconstruction Approaches 

In this section, five approaches were introduced to reconstruct continuous daily ET with clear-sky 

daily ET estimates. 

2.3.1. Data Assimilation Method 

In the developed data assimilation scheme, the Penman-Monteith equation was used as the model 

operator and the clear-sky daily ET estimates were assimilated into the Penman-Monteith equation to 

generate the continuous daily ET. The Penman-Monteith equation can be expressed as [25], 
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∆

∆ 1
 (10)

where ∆ is the slope of the curve relating saturated water vapor pressure to temperature (Pa·K−1), ρa is 

the air density (Kg·m−3), cp represents the specific heat capacity of air (J·Kg−1·K−1), rs is the surface 

resistance (s·m−1), ra is aerodynamic resistance (s·m−1), ea is the actual water vapor pressure (Pa), es is 

the saturated water vapor pressure (Pa), and γ is the psychrometric constant (Pa·K−1). The 

parameterization scheme of the surface resistance of this study follows Mu et al. [25]. The ET over the 

open water surface can be calculated as, 

∆
∆ ∆

 (11)

where Ea is the evapotranspiration rate (mm/day). 

Before constructing the data assimilation scheme, the extended Fourier amplitude sensitivity test 

(EFAST) [49] was used to rank the model variables that are important for ET estimates with the 

Penman-Monteith equation. According to the sensitivity test, the available energy (Rn − G) and 

surface resistance (rs) were the most important variables in the Penman-Monteith equation. Thus, two 

tunable parameters were added along with the available energy (Rn − G) and surface resistance (rs), 

and the data assimilation scheme was constructed as, 

∆

∆ 1
 (12)

Over the open water surface, the data assimilation scheme was constructed as, 

∆
∆ ∆

 (13)

where α and β are two tunable parameters in the data assimilation scheme.  

To update the two parameters with clear-sky ET estimates, two data assimilation algorithms were 

used, namely, the EnKF and SCE_UA method. The EnKF and SCE_UA algorithms are popular 

methods in data assimilation [34]. The detailed implementation of EnKF and SCE_UA can be found in  

Xu et al. [42]. The two parameters were updated with previous clear-sky ET observations when using 

the EnKF method. However, the SCE_UA method can use clear-sky ET observations before and after 

the reconstruction day. Thus, the SCE_UA approach can make full use of more observations. In this 

study, two parameters were updated with four neighbored clear-sky ET observations when using the 

SCE_UA method, and one previous ET observation when using the EnKF method. The data 

assimilation methods are defined as ET_EnKF and ET_SCE_UA hereafter. 

2.3.2. Surface Resistance Method 

The surface resistance method was built, based on the Penman-Monteith equation, to reconstruct ET 

estimates over cloudy conditions [25]. The surface resistance (rs) in the Penman-Monteith equation 

represents wet conditions of the land surface and the stomatal conductance of vegetation. Over a  
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clear-sky day, rs can be retrieved with the Penman-Monteith equation based on remotely sensed ET 

estimates. The cloudy-sky day rs can be computed with the rs neighboring clear-sky days, LAI, and the 

daily reduction functions for stomatal conductance to minimize the air temperature m(Tmin) and vapor 

pressure deficit m(VPD). The surface resistance on cloudy-sky days can be calculated using the 

following equation, 

_
_  (14)

where rs_cld and rs_clr are the surface resistance on cloudy-sky and clear-sky days (s·m−1), and LAIcld and 

LAIclr represent the leaf area index on cloudy-sky and clear-sky days (m2·m−2). A table of m(Tmin) and 

m(VPD) functions based on different land cover types was built and used in this study [25]. The 

surface resistance method is defined as ET_SR hereafter. 

2.3.3. Reference Evapotranspiration Method 

This method is the same as the ConETrF upscaling method described in Section 2.2. The ratio of ET 

and ETr on cloudy-sky days can be interpolated by ETrF on neighboring clear-sky days. The equation 

for this method is shown below, 

ETcld = (ETrF)clr(ETr)cld (15)

where ETcld is the cloudy-sky ET estimates, (ETrF)clr is the interpolated clear-sky ETrF, and (ETr)cld 

represents cloudy-sky ETr. The reference evapotranspiration method is defined as ET_ETrF hereafter. 

2.3.4. Harmonic ANalysis of Time Series (HANTS) Method 

The HANTS method is a time series analysis method based on Fourier transforms [31]. The 

HANTS method allows the user to choose the frequencies of periodic functions to estimate the time 

series of variables with discrete observations. The gaps in ET can be filled with discrete clear-sky ET 

values. The parameters used for the HANTS method are displayed below in Table 1.  

Table 1. HANTS parameters setting for two study sites: Guantao and Arou. 

Parameters Guantao Arou 

Minimum Valid Data 0 0 

Maximum Valid Data 550 320 

Number of Frequencies 6 4 

Period(s) 360 130 90 70 50 30 360 200 150 100 

Fit Error Tolerance 2 2 

3. Data Sets 

3.1. In Situ Meteorological and Validation Data 

Data from two sites namely Guantao and Arou, located in different natural zones (the eastern 

monsoon area, and the Qinghai-Tibet alpine area) of China, were selected to validate various temporal 

upscaling and reconstruction methods described in Section 2. Data from another two sites, namely, 
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Daxing and Miyun, located in Beijing, China were selected for access to regional application results. 

Guantao is a cropland site with winter wheat/maize and cotton rotation, and is located in the Hebei 

Province. Daxing is a cropland site covered with winter wheat/maize and vegetables located southeast 

of Beijing. Miyun is an orchard site covered with orchards and maize, and is located in a valley 

northeast of Beijing. Ground measurements at Guantao, Daxing, and Miyun sites consist of multiscale 

surface flux and meteorological measurements in the Hai River Basin [50]. Arou is a grassland site 

covered with alpine meadows, and is located in the Qinghai Province. The in situ measurements at the 

Arou site are a part of the Watershed Allied Telemetry Experimental Research (WATER) [51]. The 

vegetation growing time was determined according to vegetation phenology data provided by the 

Chinese Ecosystem Research Network (CERN) (http://www.cern.ac.cn/). 

The main characteristics of the four sites are summarized in Table 2. The meteorological data (wind 

speed/direction, air temperature/humidity, air pressure, precipitation, shortwave/longwave radiation) 

were measured with automatic weather stations (AWS) mounted on flux towers. Eddy covariance (EC) 

instruments were also equipped on flux towers, and measured latent heat flux data were used as input 

and validation data. Original EC data were collected at a sampling frequency of 10 Hz, and processed 

using the post processing software Edire (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe). 

The post processing included spike removal, lag correction of H2O/CO2 relative to the vertical wind 

component, sonic virtual temperature correction, the performance of the planar fit coordinate rotation, 

corrections for density fluctuation (WPL-correction), and frequency response correction, etc. [50,52]. 

The ground heat flux was measured by a soil heat flux plate buried at a specific depth and was 

corrected to the soil surface (0 cm) with soil temperature and moisture observations [53]. A large 

aperture scintillometer (LAS), consisting of a transmitter and receiver, was used to measure the 

sensible heat flux over a larger spatial scale at the Daxing and Miyun sites. At the Daxing site, the LAS 

transmitter and receiver were installed on two opposing towers, positioned in the southwest and 

northeast. At the Miyun site, the LAS transmitter and receiver were installed on two opposing hills 

along the valley in the northeast and southwest. Data were recorded at a sampling frequency of 1 Hz 

using a Kipp & Zonen LAS at the two sites. With measured net radiation and ground heat flux, the 

LAS latent heat flux can be calculated as the residual of the surface energy balance (LE = Rn − G0 − H). 

The detailed height/depth of surface heat flux measurements and LAS path length at the experiment sites 

were summarized in Table 3. 

All the meteorological and flux data were processed in 30-min intervals with strict quality control 

procedures [50,52]. The EC-derived ET data in 2010 at the Guantao site, and in 2009 at the Arou site, 

were selected for use in the method comparisons. The 30-min data at noon (12:00 PM) on clear-sky 

days were used to upscale instantaneous ET to daily value. The accumulated daily ET on clear-sky 

days was used to access the accuracy of temporal upscaling methods. The continuous daily ET was 

reconstructed with the accumulated clear-sky daily ET. The 30-min ET data for cloudy-days were 

processed to daily values to validate the temporal reconstruction results. ET derived from LAS 

instruments in the year 2009 at the Daxing and Miyun sites was used to validate the remotely sensed 

ET estimates. 
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Table 2. Summary of the surface characteristics of the four sites. 

Site  Latitude Longitude Location (Province) Land Cover 
Vegetation Growing 

Season (DOY) 

Guantao 36.52°N 115.13°E Hebei Winter wheat/maize and cotton 100–161 & 182–283 

Arou 38.04°N 100.91°E Qinghai Alpine meadow 105–273 

Daxing 39.62°N 116.42°E Beijing Winter wheat/maize and vegetables 100–161 & 182–283 

Miyun 40.63°N 117.32°E Beijing Orchard and maize 100–283 

Table 3. Summary of surface heat flux measurement height/depth (m). 

Instrument Variable Guantao Arou Daxing Miyun 

EC Sensible and latent heat flux 15.6 3.2 3.0 26.7 

LAS Sensible heat flux   27.0 Path length 2480.0 35.9 Path length 2420.0 

Soil heat flux plate Soil heat flux 0.02 0.05 0.02 0.02 

 

Figure 1. The temporal distribution of clear-sky daily evapotranspiration (ET) over the 

whole year. 

The data from clear-sky days were selected for temporal upscaling method comparisons at the 

Guantao and Arou sites, according to the following three conditions: (1) the data must have a  

double-zero MODIS quality assurance flag, indicating no cloud cover (QA = 00); (2) no missing data 

during a day; and (3) an energy balance ratio larger than 0.8 for EC flux data (EBR = (H + LE)/(Rn − G0)). 

After this data selection procedure, there were 71 and 67 clear-sky days at the Guantao and Arou sites, 

respectively. In addition, data from 273 and 239 cloudy-sky days were used for ET temporal 

reconstruction approach comparisons at the Guantao and Arou sites, respectively. The temporal 

distributions of clear-sky days and continuous daily ET, measured at the Guantao and Arou sites, are 

shown in Figure 1. 
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3.2. Regional Application Data 

The ET temporal upscaling and reconstruction methods were applied over the Beijing area, which is 

located in the northern part of the North China Plain. The land surface data of Beijing consist of 

distinct land cover types (cropland, garden-plot, forest, grassland, urban, road, water, and bare land), as 

shown below in Figure 2. The locations of four experiment sites and locations of Beijing are also 

shown In Figure 2. 

 

Figure 2. Site locations and land use of Beijing in China, 2009. 

The hourly meteorological data (wind speed, air temperature/humidity, and sunshine percentage) 

were collected from 20 weather stations within the Beijing area in 2009. The data required temporal 

and spatial interpolation for regional applications. The cubic spline interpolation method was used to 

interpolate the hourly air temperature/humidity observations and the satellite overpass time. The linear 

interpolation method was used to interpolate the hourly wind speed observations and the satellite 

overpass time. The Kriging and inverse distance weighted (IDW) methods were compared for regional 

air temperature and wind speed interpolation. Through comparison, the Krigring method had higher 

accuracy for air temperature/humidity interpolation than the IDW method, while the IDW method had 
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higher accuracy for wind speed interpolation than Krigring method (not shown). Thus, the Kriging 

method was used to interpolate the air temperature/humidity observations over sparse data sites to the 

remote sensing pixel scale (1 km in this study) over Beijing, and the IDW method was used to 

interpolate the wind speed observations to the same scale. The lapse rates were allowed in the Kriging 

method for spatial interpolation by including DEM data (obtained from United States Geological Survey, 

USGS) [54]. 

The MODIS products (collection 5) were used to estimate clear-sky instantaneous ET with the 

remotely sensed model proposed by Liu et al. [5]. These products were land surface temperature (LST, 

MOD11A1), albedo (MOD09A1), NDVI (MOD13A2), and leaf area index (LAI, MOD15A2). The 

spatial resolution of the LST, NDVI, and LAI products was 1 km and the albedo product was 

aggregated to the same spatial resolution of the other products. The ET products from MODIS 

(MOD16A3) [26] and ETWatch [27] were also acquired for comparison over the Beijing area. The 

land cover map was obtained by artificial interpretation using MODIS visible and infrared data. 

The total ET was calculated with hydrological data over Beijing using the water balance equation  

ET = P − R + ∆S, in which P represent precipitation, R means runoff (including water outflow Q1, 

water inflow Q2, and emergency water diversion Q3, R = Q1 − Q2 − Q3), and ∆S is change of terrestrial 

water storage (including change of water storage in reservoirs ∆S1, and change of ground water 

resources ∆S2, ∆S = ∆S1 + ∆S2) [55]. According to Beijing Water Resource Bulletin 2009 published by 

the Beijing Water Authority (http://www.bjwater.gov.cn/pub/bjwater/), P = 448 mm, R = 2.6 × 108 m3  

(Q1 = 8.23 × 108 m3, Q2 = 3.03 × 108 m3, and Q3 = 2.6 × 108 m3), and ∆S = −7.66 × 108 m3  

(∆S1 = −1.32 × 108 m3, and ∆S2 = −6.34 × 108 m3). R and ∆S were transformed to the same unit of ET 

by dividing the area of Beijing (1.68 × 1010 m2), which equals 15.5 mm and −45.6 mm, respectively. 

With these data and the water balance equation, the annual ET of Beijing in 2009 was about 387 mm. 

3.3. Regional Remotely Sensed ET Validation 

The pixel-scale ET estimated by the remotely sensed model were validated with LAS measurements. 

One transmitter and one receiver installed on a pair of opposing towers form a complete LAS system, 

which can measure the average value of sensible heat flux between the two towers. The LAS 

measurements at the Daxing and Miyun sites were used as the validation data for model estimates. The 

source area of the LAS measurements was calculated using a footprint model as follows [50,52],  

, , , ,  (16)

where W(x’) is the path-weighting function of the LAS, x1, x2 are the locations of the LAS transmitter 

and receiver, respectively, x’, y’ are the points along the optical length of the LAS, x, y are the 

coordinates upwind of each point (x’, y’), and zeff is the effective measurement height of the LAS. 

The calculated LAS source areas at the Miyun and Daxing sites were overlaid with remote sensing 

pixels as shown in Figure 3. The relative weight of the source area was determined by using the 

footprint model (Equation (16)). The relative weight was highest near the center of the LAS optical 

path, and decreased as distance from the center increased. The ET estimates at each covered pixel were 

spatially aggregated into one value that can be compared with LAS measurements via [55], 
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 (17)

where Yweighted is the aggregated remote sensing ET, which is spatially the same as the LAS 

measurements, xi is the weight of pixel i, Pi is the ET estimate at pixel i, and n is the number of pixels 

covered by the LAS source area.  

 

Figure 3. LAS source area overlaid with 1 km MODIS pixel (left is the Miyun site, right is 

the Daxing site; LAS_T is the LAS transmitter and LAS_R is the LAS receiver; the 

background pix is derived from MODIS LAI products, MOD15A2).  

4. Results and Discussions 

4.1. In Situ Validation 

The five temporal upscaling methods and five temporal reconstruction approaches were  

tested and compared with EC-derived ET observations at the Guantao (for 2010) and Arou (for 2009) 

sites. The mean relative error (MRE), root mean square error (RMSE) and correlation (R) were used to 

assess the results.  

The temporal upscaling results from the five methods were compared with the daily clear-sky ET 

observations (see Table 4). The RMSE values of the five methods were all within 1 mm/day and the R 

values were all larger than 0.89. The SolRad and ConETrF methods were the two best upscaling 

methods, as indicated by the smallest RMSE values and largest R values. The MRE values indicated 

that the ConEF method significantly underestimated the daily ET by 19.1% and 14.1% at the Guantao 

and Arou sites, respectively. Since many studies have indicated that “self-preserving” will lead to an 

approximately 5%–10% underestimation of the daytime ET, 10% was added to the ET values for the 

CorEF method, to correct the underestimation, which led to an 8.1% and 8.6% reduction in MRE at the 

Guantao and Arou sites. However, the CorEF method still underestimated the daily ET, because 

nighttime ET was not accounted for. The DiEF method accounted for the nighttime ET by using three 

factors that enhance the daily ET estimates with the daytime instantaneous data. The MRE values for the 

DiEF method were near zero. Similarly, the SolRad and ConETrF methods had MRE values around zero, 
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which indicates that these three methods had little bias in ET temporal upscaling. Moreover, SolRad and 

ConETrF methods had smaller RMSE than DiEF, indicating that the ratio between latent heat flux (ET) 

and solar radiation or reference ET was more stable than EF. According to Gentine et al. [15], EF is 

higher during early morning and late afternoon than it is midday. Here, Similar to the finding of previous  

studies [23,24], this phenomenon caused underestimation of the daytime average EF from midday EF 

observations with the ConEF method. However, the ConETrF method upscales ET with daily ETr, 

which is better at capturing the impacts of advection, changing wind, and changing humidity 

conditions during the day with the reference ET included [28].  

Table 4. The statistics of the five temporal upscaling methods at the Guantao and  

Arou sites. 

Site Season Statistics ConEF CorEF DiEF SolRad ConETrF 

Guantao 

Vegetation, growing 

MRE (%) −13.0 −4.3 4.4 −2.1 −1.4 

RMSE (mm/day) 0.79 0.80 0.96 0.70 0.65 

R (-) 0.93 0.93 0.93 0.93 0.93 

Vegetation, dormant 

MRE (%) −29.5 −22.4 −15.4 −11.2 0.91 

RMSE (mm/day) 0.58 0.51 0.54 0.33 0.33 

R (-) 0.96 0.96 0.96 0.98 0.98 

Overall 

MRE (%) −19.1 −11.0 −2.7 −6.9 −1.3 

RMSE (mm/day) 0.76 0.71 0.79 0.58 0.65 

R (-) 0.94 0.94 0.94 0.95 0.93 

Arou 

Vegetation, growing 

MRE (%) −15.4 −6.9 2.2 −3.9 0.79 

RMSE (mm/day) 0.61 0.54 0.60 0.29 0.49 

R (-) 0.89 0.89 0.89 0.97 0.98 

Vegetation, dormant 

MRE (%) −45.1 −39.6 −37.6 −5.9 −18.7 

RMSE (mm/day) 0.17 0.15 0.14 0.07 0.11 

R (-) 0.98 0.98 0.98 0.98 0.97 

Overall 

MRE (%) −14.1 −5.5 3.2 −3.4 0.9 

RMSE (mm/day) 0.64 0.65 0.70 0.21 0.39 

R (-) 0.89 0.89 0.89 0.99 0.96 

Among the five upscaling methods, SolRad performed the best during the season of dormant 

vegetation, and ConETrF produced the best results during the season of active vegetation growth. 

Similar findings were obtained by Colaizzi et al. [22], which proved that the ConETrF method 

performs better during periods of active vegetation growth. Thus, the optimum method is a 

combination of the SolRad method when vegetation growth is dormant, and the ConETrF method 

during periods of active vegetation growth. RMSE values for the optimum method were 0.58 mm/day 

and 0.25 mm/day for the Guantao and Arou sites, respectively. The corresponding MRE values were 

−3.7% and 0%. The ET estimates from the optimum method are plotted in Figure 4. Figure 4 shows 

that the ET estimates from the optimum method were close to observational values.  
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Figure 4. The comparisons of clear-sky ET estimates from the optimum method with  

in situ observations. 

The continuous daily ET was reconstructed with discrete accumulated clear-sky daily ET values 

measured by EC instruments at the Guantao and Arou sites. The cloudy-day ET temporal reconstruction 

results from the developed data assimilation methods (ET_EnKF and ET_SCE_UA), ET_SR, 

ET_ETrF, and ET_HANTS method, were compared with the ET observations (see Figure 5). As 

shown, the data assimilation methods and the ET_ETrF method performed the best, as indicated by the 

scattering about the 1:1 line. The ET_SR method underestimated the cloudy-day ET significantly, and 

the ET_HANTS method overestimated.  

 

Figure 5. The comparisons of cloudy-day ET between the model estimations and 

observations. (Guantao site result (top); Arou site result (bottom)). 

The statistics of each temporal reconstruction method are shown in Table 5. Over the whole time 

period, the RMSEs of most of the temporal reconstruction approaches were within 1.0 mm/day, except 

for the ET_HANTS method at the Guantao site (1.06 mm/day). The ET_ETrF method produced the 

lowest RMSE values, which were 0.61 and 0.37 mm/day at Guantao and Arou, respectively. MRE 
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values of ET_SCE_UA method were around zero (−5.4% and −2.6% at the Guantao and Arou sites), 

indicating the lowest ET estimation bias. Of the two data assimilation methods, the ET_SCE_UA 

approach outperformed the ET_EnKF. As indicated in Section 2.3.1, the ET_SCE_UA approach can 

make full use of four neighbored clear-sky ET observations to update the model parameters, while the 

ET_EnKF method only uses one previous ET observations. Thus, the ET_SCE_UA approach can 

produce lower errors than ET_EnKF method. The performances of these methods were also analyzed 

during periods of vegetation growth and dormant vegetation, as shown in Table 5. The periods of 

vegetation growth usually had larger RMSEs than periods of vegetation dormancy, and over the entire 

period, because the ET value was larger in summer than the other seasons, which was caused by higher 

solar radiation. The MRE values of most methods were closer to zero during periods of vegetation 

growth than periods of dormant vegetation, except for the ET_HANTS method. The data assimilation, 

ET_SR, and ET_ETrF methods were all based on Penman-Monteith equation. Since the key parameter 

(surface resistance) of the Penman-Monteith equation is parameterized by leaf area index, it may get 

more accurate results for periods of vegetation growth than periods of vegetation dormancy [25]. 

Table 5. The statistics of temporal reconstruction approaches at the Guantao and  

Arou sites.  

Site Season Statistics ET_EnKF ET_SCE_UA ET_SR ET_ETrF ET_HANTS 

Guantao 

Vegetation, growing 

MRE (%) −7.4 −0.2 −13.8 9.6 41.1 

RMSE (mm/day) 1.14 0.81 1.20 0.80 1.53 

R (-) 0.75 0.84 0.73 0.83 0.40 

Vegetation, dormant 

MRE (%) −53.8 −22.4 −56.1 14.0 −28.0 

RMSE (mm/day) 0.43 0.51 0.44 0.41 0.44 

R (-) 0.85 0.79 0.85 0.82 0.84 

Overall 

MRE (%) −18.3 −5.4 −23.6 10.7 24.9 

RMSE (mm/day) 0.81 0.66 0.85 0.61 1.06 

R (-) 0.87 0.91 0.85 0.91 0.83 

Arou 

Vegetation, growing 

MRE (%) 12.7 0.0 −19.7 −6.5 21.5 

RMSE (mm/day) 0.60 0.48 0.80 0.45 0.98 

R (-) 0.90 0.94 0.88 0.90 0.59 

Vegetation, dormant 

MRE (%) −3.2 −31.8 −73.5 −19.1 −39.2 

RMSE (mm/day) 0.51 0.33 0.52 0.30 0.30 

R (-) 0.57 0.63 0.51 0.68 0.76 

Overall 

MRE (%) 9.6 −2.6 −25.4 10.5 12.9 

RMSE (mm/day) 0.57 0.41 0.66 0.37 0.73 

R (-) 0.93 0.96 0.91 0.95 0.88 

No soil moisture or precipitation data were used in any of the temporal reconstruction approaches. 

However, soil moisture may increase suddenly due to precipitation and thermal remote sensing is not 

able to detect this change during rainy days. The variations of soil moisture will lead to change in ET 

distributions. Thus, errors may be cut down by developing ET temporal reconstruction methods that 

can assimilate microwave soil moisture (e.g., SMAP), or precipitation observations. For the ET_HANTS 

method, the cloudy-sky ET can be estimated based on clear-sky ET observations. However, the  
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clear-sky ET is usually higher than cloudy-sky ET, which is a result of larger values of solar radiation. 

Without an input for forcing data (e.g., solar radiation, precipitation), the ET_HANTS method cannot 

detect a sudden decrease in ET caused by clouds. Thus, the estimated cloudy-sky ET from  

ET_HANTS is usually larger than in situ measurements, as was found here and is indicated by Figure 5. 

Moreover, the ET_HANTS method produced smooth seasonal variation of cloudy-sky daily ET. Thus, 

the scattering from the ET_HANTS method was sparser than the others (see Figure 5). The surface 

resistance in the ET_SR method with cloudy-sky conditions was obtained with the clear-sky values 

and ancillary parameters (LAI, m(Tmin) and m(VPD) functions). Because threshold values of m(Tmin) 

and m(VPD) were constructed based on vegetation types globally [25], they may not suitable for all 

specific land cover and climatic condition and should be calibrated with local observations.  

 

Figure 6. The monthly ET variations from five temporal reconstruction approaches.  

The monthly variation of ET at the Guantao and Arou sites is shown in Figure 6. From Figure 6, the 

five methods show similar trends. At the Guantao site, all the methods display dual-peak ET values, 

caused by different growth patterns of winter wheat and summer corn. The low ebb of the ET 

estimates is indicative of a crop rotation period, where the winter wheat was cut down and the summer 

corn was at the early stages of growth. The ET_HANTS method estimated an ET that was larger than 

the other methods for May and August, which are the months of peak ET for both winter wheat and 

summer corn. The ET_HANTS overestimated the ET by 24.9% (see Table 5), which was caused by 

the large error for these two months at the Guantao site. At the Arou site, all methods depict a  

single-peak ET trend throughout the year. The ET_HANTS overestimated the ET by 12.9%, which 

was caused by the large error from May to August. 
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4.2. Regional Application 

In this study, the regional instantaneous clear-sky ET values were estimated by the remotely sensed 

ET model proposed by Liu et al. [5]. The instantaneous ET estimates were upscaled to daily values 

with the combination of the SolRad and ConETrF methods (the “optimum method”). The ConEF 

method was also applied for comparison. Over land surface covered with vegetation (cropland,  

garden-plot, forest, and grassland in Figure 2), the SolRad and ConETrF methods were used for ET 

upscaling, during periods of vegetation dormancy and growth, respectively. Over land surface without 

vegetation (urban, water, road, and bare land), the SolRad method was used for ET upscaling over the 

entire year. In Beijing, the season of vegetation growth is from day of year (DOY) 100–283, for  

garden-plot, forest, and grassland areas, but for cropland, the season of vegetation growth is from DOY 

100–161 and 182–283, according to vegetation phenology. As discussed in Section 4.1, the ET_ETrF 

and ET_SCE_UA methods performed the best out of the ET temporal reconstruction approaches. 

Thus, those approaches were selected to produce the continuous daily ET with upscaled clear-sky daily 

ET for the Beijing area. The ET_SR method was also applied in Beijing for comparison. The 

comparisons between model estimates and the LAS observations are shown in Figures 7 and 8. 

Figure 7 shows the temporal upscaling results of the instantaneous ET estimates with the optimum 

method. The model estimates were close to LAS daily ET observations and the scatter plots 

approximately form 1:1 lines. At the Daxing site, the MRE (RMSE) value was 5.4% (0.72 mm/day). 

The corresponding MRE (RMSE) for the Miyun site was 0.3% (0.54 mm/day). Thus, the optimum 

method showed minor bias and low RMSE values at the two sites, which indicates that the optimum 

method is a suitable thermal ET upscaling method. 

 

Figure 7. The comparisons of clear-sky daily ET estimates from the optimum method with 

LAS observations. 

The continuous daily ET was reconstructed based on the discrete clear-sky daily ET upscaling 

results. The comparisons between reconstructed cloudy-day estimates and LAS observations are 

shown in Figure 8. Compared with observations, the scatter plots from the ET_SCE_UA and ET_ETrF 

methods are close to 1:1 lines. The ET_SR method overestimated the continuous daily ET compared 

with observational values. The statistics of the temporal reconstruction approaches are summarized in  

Table 6. The ET_ETrF and ET_SCE_UA methods produced lower RMSEs and MREs, and showed 
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higher correlations than the ET_SR method. The ET_ETrF method performed the best at both the 

Daxing and Miyun sites. At the Miyun site, the ET_ETrF method underestimated the continuous daily 

ET when the value was larger than 3 mm/day (Figure 8), which was caused by the underestimation of 

clear-sky ET, derived from the remotely sensed model and the upscaling method (Figure 7). 

 

Figure 8. The comparisons of cloudy-day ET between model estimates and in situ 

observations. (Daxing site result (top row); Miyun site result (bottom row)). 

Table 6. The statistics of temporal reconstruction approaches at the Daxing and  

Miyun sites. 

Site Name Statistics ET_SCE_UA ET_ETrF ET_SR 

Daxing 

MRE (%) −14.43 −12.98 72.34 

RMSE (mm/day) 0.74 0.56 1.60 

R (-) 0.83 0.87 0.73 

Miyun 

MRE (%) −23.98 −16.24 42.74  

RMSE (mm/day) 0.89 0.75 1.32  

R (-) 0.74 0.77 0.74 

The comparisons of monthly accumulated ET estimates and LAS observations are shown in Figure 9. 

Results from the three methods had the same trends as the observations. The Daxing site exhibits weak 

dual-peak ET variation, and the Miyun site shows single-peak ET variation. At the Daxing site, ET 

estimates from the three methods were higher than the observations. At the Miyun site, ET estimates 

from the three methods were higher than the observations from Apr. to Jun., but lower than the 

observations in Aug. The ET_ETrF method had the lowest RMSE values (8.2 mm/month and  

12.3 mm/month), and MRE values from ET_SCE_UA were closer to zero (−7.84% and −3.56%) at the 

Daxing and Miyun sites, respectively. 
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Figure 9. The comparisons of monthly ET between model estimates and observations at 

the Daxing and Miyun sites.  

The regional annual ET estimates from the three methods are shown in Figure 10, and the ET 

products from MOD16A3 and ETWatch are also shown, for comparison. Over the whole region, the 

estimations from the ET_ETrF and ET_SCE_UA methods had the same trend as the ET products from 

ETWatch. In the downtown area of Beijing, ET values were smaller than in other areas, as expected, 

due to paved land surfaces. The cropland and forest distributed around the downtown area showed 

high annual ET values, caused by irrigation and vegetation transpiration. The largest annual ET values 

were found over open water in the Miyun reservoir area, north of Beijing. However, the ET_SR method 

performed poorly over some of the urban areas, which showed large ET values. The ET_SR method is 

also adopted by MOD16A3, but no values were obtained from urban and water areas over Beijing. 

The annual ET values of different land cover types are shown in Table 7. The ET values over water, 

cropland, garden-plot, forest, and grassland were in the first class with larger ET from the 

ET_SCE_UA, ET_ETrF, MOD16A3, and ETWatch methods. Over the water area, most of the 

available energy is evaporated to water vapor that leads to largest ET estimates. Irrigation of vegetated 

lands, e.g., croplands and garden-plots, made vegetation transpiration values much larger than values 

from other vegetated lands that were unirrigated, e.g., unirrigated grassland. Forested land is generally 

located in mountainous regions, which experience high levels of precipitation, but a large portion of 

the rainfall becomes runoff and does not add to ET. Thus, forested land tends to have less soil water, 

and lower ET values than cropland and garden-plot. The smallest ET values were found in the urban 

areas of Beijing, because most of the land is paved, not vegetated, and precipitation is routed as storm 

water into the city’s sewer system. Since the Penman-Monteith method is better suited for use with 

densely vegetated land cover, the ET_SR method did not perform well over urban areas. The 
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corresponding values for the ET_SCE_UA, ET_ETrF, ET_SR, and ETWatch methods were 347 mm, 

356 mm, 580 mm, and 470 mm, respectively. The results from the ET_ETrF and ET_SCE_UA 

methods were closer to the water balance derived value (387 mm), and the ET_SR and ETWatch 

methods had larger errors. Thus, annual ET from the ET_SCE_UA method was in the same order of 

magnitude as the water balance method, and ET estimates of different land covers were more 

reasonable than the ET_ETrF method (ET from forest was larger than water).  

 

Figure 10. Annual ET distributions for the Beijing area in 2009. 

Table 7. Annual ET over different land covers in 2009. 

Land Cover Type ET_SCE_UA ET_ETrF ET_SR MOD16A3 ETWatch 

cropland 405 446 604 295 483 
garden plot 404 463 626 290 505 

forest 334 488 534 428 549 
grassland 362 338 499 390 529 

urban 153 146 609 - 382 
road 94 120 504 - 340 
water 705 480 656 - 522 

bare land 320 368 608 207 447 

The averaged ET values over vegetated land covers (cropland, garden-plot, forest and grassland) 

were 376 mm, 434 mm, 566 mm, 350 mm, and 516 mm for ET_SCE_UA, ET_ETrF, ET_SR, MOD16A3, 

and ETWatch, respectively. ET estimates were the highest from the ET_SR and ETWatch, while ET 

from MOD16A3 was the smallest, which indicates that ET was underestimated over the Beijing area. 
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Moreover, ET values from forest and grassland were larger than the values from cropland and  

garden-plots, which did not seem reasonable for MOD16A3 ET products. 

5. Conclusions 

Long-term regional evapotranspiration is important for water resources planning and management 

and water-saving agricultural. The development of remotely sensed ET models enabled the mapping of 

regional ET at the time of satellite overpass. However, thermal remote sensing data are often 

contaminated by clouds. Thus, temporal upscaling methods are needed to upscale the instantaneous ET 

into daily values. Moreover, continuous daily ET should be reconstructed with discrete clear-sky ET. 

In this study, five temporal upscaling methods were selected to extend the instantaneous ET to daily 

values, and five temporal reconstruction approaches were used to generate continuous daily ET values 

for one year. These methods were compared extensively at two sites in China, namely, Guantao and 

Arou, which were selected based on distinct climate conditions. For regional application, annual ET 

distributions over the Beijing area for 2009 were produced with these methods, and the total annual ET 

was compared with the water balance method. Additionally, ET products from MOD16A3 and 

ETWatch were obtained for regional comparisons. LAS observations from two sites within Beijing 

(Daxing and Miyun) were acquired for ET estimate validations.  

The five temporal upscaling methods were compared with EC measurements at the Guantao and 

Arou sites. Comparisons showed that the SolRad and ConETrF methods performed the best, as 

indicated by having produced the smallest RMSE values. The commonly used ConEF method 

underestimated the daily ET, due to the increasing EF in the early morning and late afternoon. The 

CorEF and DiEF methods attempted to correct the underestimation by adding 10% of the ET, and by 

using three factors that enhance daily ET estimation with instantaneous EF observation. Because 

reference ET can capture impacts from changes in wind and humidity, the ConETrF method was more 

stable than the ConEF and its related methods (CorEF and DiEF methods). Moreover, the ConETrF 

method produced the smallest RMSE values during the season of vegetation growth, where  

Penman-Monteith equation performs well. The SolRad method performed best during the season of 

vegetation dormancy, and for non-vegetated land cover. The combination of the SolRad and ConETrF 

methods, each optimized with respect to land cover and time period, produced RMSE values of  

0.58 mm/day and 0.25 mm/day, at the Guantao and Arou sites, respectively. The corresponding MRE 

values were −3.7% and 0%. Thus, the combination of the SolRad and ConETrF methods (the 

“optimum method”) performed the best overall.  

The five temporal reconstruction approaches were used to generate continuous daily ET values with 

discrete clear-sky daily ET at the Guantao and Arou sites. Through comparison, the reference 

evapotranspiration method (ET_ETrF), and the data assimilation method of the SCE_UA algorithm 

(ET_SCE_UA), were found to perform the best at the two sites. The ET_ETrF method produced the 

lowest RMSE values of 0.61 and 0.37 mm/day at Guantao and Arou, respectively. The MRE values of 

the ET_SCE_UA method were around zero (−5.4% and −2.6% at the Guantao and Arou sites), which 

turned out to be the lowest ET estimation biases. The surface resistance method (ET_SR) and the 

HANTS method (ET_HANTS) had large errors compared to observational values. The temporal 

reconstructed continuous daily ET values might have had larger errors than monthly ET values, 
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because the random errors of continuous daily ET values cancelled each other out. Rainfall that 

occurred during cloudy-days increased the soil moisture, EF and ETrF, which may have led to errors in 

reconstructing continuous daily ET with discrete clear-sky ET values. In future studies, soil moisture 

information should be included to mitigate the variations of wet land surface conditions. 

For regional application, a remotely sensed ET model was selected to calculate the instantaneous 

regional ET based on MODIS data. The optimum method was used to upscale the instantaneous ET to 

daily values. The ET_SCE_UA and ET_ETrF methods were used to reconstruct continuous daily ET 

based on clear-sky daily ET. The distribution of calculated annual ET over the Beijing area had a 

similar trend to the MOD16A3 and ETWatch products. In 2009, the annual ET values over the Beijing 

area for the ET_SCE_UA, ET_ETrF, ET_SR, and ETWatch methods were 347 mm, 356 mm, 580 mm, 

and 470 mm, respectively. The results from the ET_ETrF and ET_SCE_UA methods were closer to the 

water balance derived annual ET for Beijing (387 mm). The ET estimates from ET_SCE_UA were 

more reasonable than those from ET_ETrF over different land covers.  

Although ET temporal upscaling and reconstruction methods have been compared at two typical 

sites and applied over the Beijing area in China, they need to be validated over broader flux sites 

around the world to assess broader application.  
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