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The multi scale approach was pioneered by Tadmor, Ortiz and Phillips [1] for 
atomistic-based quasi-continuum analysis of dislocations and hardening plasticity of 
polycrystalline metals. In that case, the structural failure is due to necking, which is caused by 
nonlinear geometric effects of finite strain, or to sharp fracture, which is modelled separately 
(see also [2]). There can be no dispute that the multi scale approach is realistic, delivering to 
the continuum macroscale an essential information on the physical behavior on the subscale. 

However, applying the multi scale approach to failure due to interacting crack systems, 
or to softening damage such as distributed cracking, is an entirely different matter. To clarify 
it, let us discuss a few typical multi-scale approaches representative of a flood of recent 
publications. 

Types of Subscale Interactions in Damage or Fracture 

The multiscale models are intended to capture two types of interactions on the microscale: 

1. Interactions among orientations of micro-damage processes, e.g., orientations of 
tensile or splitting micro-cracks, and frictional micro-slips. 
2. Interactions at distance, e.g., among different grains or fibers, or among different 
micro-cracks and micro-slips. These interactions are of two kinds: 

(a) those affecting the average stress-strain relation, and 
(b) those governing localization, and the material characteristic length 10 in 
particular. 

Type 1 interactions are captured not only by the multiscale model but also by the 
microplane model, although for the latter they are lumped into one continuum point. Type 
2(b) interactions are captured by neither, and because 2(b) affects 2(a), type 2(a) interactions 
are hardly captured by the multi scale model any better than by the microplane model. 

So it appears that the current multi scale (and multiscale-multiphysics) approaches only 
facilitate the computational handling of strong mesh refinement. They fail to capture the 
physics of localizing distributed softening damage, such as the cracking and frictional slip in 
the mesostructure of concrete or the propagation of a softening kink band in fiber composites. 
These approaches offer real advantages over simpler models such as microplane models only 
if the material is hardening, but not if it exhibits softening damage which can localize into a 
crack band or shear band and must be described in terms of a material characteristic length, 10. 

An archetypical quasibrittle material is concrete. Others include rock, sea ice, consolidated 
snow, paper, carton and, most importantly, 'high-tech' materials such polymer-fiber 
composites, tough or toughened ceramics and rigid foams, as well as many bio-materials such 
as bone, cartilage, dentine and sea shells. All the brittle materials and many ductile materials 
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become quasibrittle on a sufficiently small scale, for instance metallic thin films and nano­
composites. 

Let us now clarify how the requirement for physical determination of 10 defeats the 
usefulness of the multiscale-multiphysics concept. 

Types of Multiscale Models and Material Characteristic Length 

• Type 1. A discretized subscale material element is embedded into a point of the 
macro scale continuum, e.g., an integration point of a finite element (slide 1). 

• Type 2. A finite region of the macro-continuum coarse mesh is overlapped by a fine 
mesh or discrete meso-structure model representing the material on the subscale or 
meso-scale (slide 2). 

• Type 3. A finite region of the macro-continuum coarse mesh is replaced with a refined 
discrete model of the meso-structure (slide 2). 

• Type 4. The interactions in a subscale material element among inelastic phenomena of 
all possible orientations are lumped into one point of the macro-continuum (slide 1). 
This leads to a microplane model, representing a semi-multi scale model in which the 
interactions at distance are discarded. 

Generally, only types 1 and 2 have been considered as multiscale methods. However, types 3 
and 4 are also multi scale models, and they have some significant advantages over types 1 and 
2 when the material exhibits softening damage. 

F or types 1 and 2, one faces various kinds of difficulties with the regularization of the 
continuum boundary values problem: 

I. Inappropriate boundary conditions of the subscale material element that undergoes 
softening. 
2. Ignoring energy release from the whole structure into the front of fracture or strain­
localization band. 
3. Replacing subscale micro- or mesostructure with an empirically assumed continuum 
model. 
4. Physically unjustified choice of localization limiter for the subscale material 
element. 
5. Lack of any localization limiter to be delivered to the macroscale continuum. 

Normally the strain increment at a continuum point (e.g., an integration point of a 
finite element) is applied on the mesoscale to a material element (an RVE, or larger) with a 
randomly generated meso-structure (consisting, in the case of concrete, of aggregates and the 
!llatrix). The corresponding average strains of the RVE, which can undergo strain-softening, 
are calculated by a mesoscale program and are then upscaled, i.e., delivered either to an 
integration point of a finite element of the macro-continuum (Type 1), or transmitted to an 
overlapping region of a coarse macro-continuum mesh (Type 2). 

Although the macro stress-strain relation may get improved by dipping into the 
subscale, it is still a local strain-softening stress-strain relation. Consequently, the macro-scale 
tangential stiffness matrix is not positive definite, causing the wave speed to be imaginary, the 
boundary value problem to be ill-posed, and the equilibrium on the continuum level to be 
unstable. So, the finite element solutions lack objectivity with respect to the mesh choice, 
exhibiting spurious mesh sensitivity and convergence to material failure that is localized to a 
zero volume (domain of measure zero) and thus occurs with zero energy dissipation. This 



blatantly incorrect feature precludes simulating the energetic size effect [3,4,5,6,7], which is 
the salient aspect of all quasibrittle or softening failures (in fact, the size effect in concrete, 
laminates, sandwich shells or other quasibrittle materials seems not to have yet been 
successfully modelled by any multi scale approach). 

Therefore, some sort of a localization limiter, associated with a material characteristic 
length 10 or material fracture energy Gf (per unit area, not per unit volume), is crucial in order 
to regularize the boundary value problem (i.e., make it well posed). Realistic estimation of 10 
is inevitable to model strain softening objectively and realistically, and to capture the size 
effect. 

The simulated material element may be taken as the representative volume element 
(RVE), the size of which, in the case of strain softening, should be taken equal to only about 
two to three dominant grain or inhomogeneity sizes [8,9] (slide I). Since no localization can 
occur within such a small material element, the desired benefit of physical support for the 
chosen type of regularization is forfeited. 

If the simulated material element is taken to be larger than one RVE, say, a cube 
having the side of 10 grains (and thus a volume 1000 grains), a localized damage band may 
develop within such an element (slide I). But regardless of whether the boundary conditions 
of this element are periodic, or are specified as displacement or force increments, the width 
and orientation of the localization band will not be realistic, because the band formation 
depends not only on the stiffness and energy dissipation of the localization band (of unknown 
size, orientation and location), but also on the rate of energy release not just from this element 
but from the whole structure. The energy release, which is what matters, is conveyed to the 
band in this larger element through the tangential stiffness matrix of the surrounding structure 
acting on the boundaty-nodes of the material~lement (slide--l). This matrix must-correspoIRt­
to proper loading-unloading combinations everywhere in the surrounding structure. 
Unfortunately, the existing multiscale models do not meet this requirement. 

As a related problem, the stresses and strains in an oversize material volume element 
that contains a localized damage band can be highly non-uniform. This renders their averages 
unrealistic for transfer to the continuum macroscale. 

Another related problem stems from the requirement that the sum of the volumes of 
the RVEs associated with all the integration points of one macroscale finite element must be 
equal to the volume of that element. This requirement has typically been ignored. But then the 
strain energy release delivered to the macroscale integration point as the RVE unloads is 
incorrect. Hence, the size of the embedded sub scale element and the macroscopic finite 
element size must be uniquely related. 

The characteristic length 10 governing localization essentially represents the minimum 
spacing of parallel cohe.sive cracks, or the localization band width, and governs the type I size 
effect [5]. It is different from (though related to) Irwin's characteristic length I := EGF If? 
which controls the length of the fracture process zone and governs the type 2 size effect [5] (E 
bYoung's modulus, .ft = tensile strength). Unambiguous identification of 10 calls for 
computational simulation of and matching of scaled size effect tests on the given brittle 
heterogeneous material. If the small-size and large-size asymptotic power laws are 
experimentally or computationally identified, their intersection gives a certain characteristic 
size It, and multiplying it by a proper geometry factor yields 10. Arbitrary imposition of some 
kind of localization limiter with characteristic length It into a sub scale finite element mesh 
helps, of course, to stabilize strain-softening but certainly does make the model realistic. 

Some so-called 'multiscale' models do not try to simulate the actual heterogeneous 
microstructure on the subscale (meso-scale). Rather, they simply introduce in the sub scale 
material element a refined mesh and adopt ,arbitrarily some localization limiter (e.g., the 



micropolar continuum) regardless of its physical justification. There is nothing physically 
multi scale about such computational exercises. They merely serve as a convenient approach 
to mesh refinement. 

Without a good subscale (micro- or mesotructure) model, the choice of a proper type 
of localization limiter is another major problem. The existing possible choices include: 

(1) a strongly nonlocal formulation (in the form or an integral over a finite 
neighborhood, or a coupled Helmholtz equation); or 

(2) a weakly nonlocal formulation (in the form of the second strain gradient, or the 
first strain gradient, as in Cosserat's, Mindlin's or Eringen's micropolar 
media). 

Many more choices exist for orthotropic composites. These arbitrary choices of regularization 
of the boundary value problem do not yield identical results. For example, the micropolar 
model, adopted for the meso-scale in some recent studies, is known to be a poor localization 
limiter; it can control only localization into pure shear bands, but not into tensile cracking 
bands, compression shear bands or compression splitting bands. 

Unfortunately, the requirement for some kind of nonlocal model, with a localization 
limiter involving a material characteristic length, defeats the main purpose of the multi scale 
approach-modeling based on the physics of microstructure. Thus, in the case of softening 
damage, the multiscale approach, while more complex, is actually no more realistic than the 
simpler microplane approach which, too, delivers no characteristic length of material, and 
requires this length to be introduced separately. . 

Replacing a Finite Region with Heterogeneous Meso-Structure Simulation 

An approach that appears to capture realistically the meso-scale behavior is the CSL lattice­
particle model of the meso-structure [10,11,12] (slide 3). Large three-dimensional structures, 
of course, cannot be simulated in this manner. But even for large structures, the lattice particle 
model can be used within a small region of the structure where severe distributed cracking, 
slipping, fracture, or shear-banding is expected, while the regular finite elements are used for 
the remaining non-softening region. For strain-softening distributed damage, this combination 
of a continuum with a meso-structural lattice-particle system appears to be the only viable, 
fully multi scale, approach at present. 

Some recent variants, called "multiscale", e.g. the "bridging multi scale method" are 
not really aimed at capturing the physics on the meso-scale but merely serve to reduce the 
computational burden of strong mesh refinement. They introduce hierarchical, or sequential, 
overlapping meshes of different refinements (slide 2). A region of coarse mesh, in which 
damage is expected, is overlapped by a fine mesh whose displacement field is considered to 
be additive to the macro-continuum displacement and is intended to capture softening damage 
with its localization [13, 14, 15, 16, 17]. 
, However, in some· approaches (e.g., the 'bridging multi scale method'), the 
discretization by a fine mesh does not reflect the actual meso-structure of the material. Rather 
it consists again of a continuum-a strain-softening continuum. This makes it necessary to 
introduce a localization limiter in the fine mesh on the sub-scale. This localization limiter 
must again be some type of a nonlocal or gradient model, which must posses a material 
characteristic length, 10• So, again, one cannot avoid a purely empirical choice of both 10 and 
the type of localization limiter. 

Consequently, despite using the term "multi scale" , methods such as the "bridging 
multi scale method" or "sequential multiscale method" are not really complete multiscale­
multiphysics approaches as far as damage and structural failure is concerned. They merely 



supplant to the damage regularization problem on the macro-scale another damage 
regularization problem on the subscale. 

Some approaches (e.g., the "multi-scale asymptotic expansion method") use a 
homogenization method for the microstructure on the subscale. The resulting stress-strain 
relation, however, is good only for hardening behavior because the hypotheses of 
homogenization procedures exclude damage localization and imply absence of 10 [17]. 

So it appears that, thus far, there is no way to eschew, on the subscale, a discrete 
micro- (or meso-) structure model covering the entire region of potential softening damage 
localization (slide 2). Only such a lower-scale discrete model can capture both the interactions 
among orientations and the interactions at distance (including the material characteristic 
length implied by the dominant spacing of material particles, e.g., the grains of the material). 

Damage Modelled as Dispersed Cohesive or Singular Line Cracks 

When damage is modeled by dispersed discrete cohesive or singular cracks embedded on the 
subscale, there is no crack band of a finite width, and so one might think that the problem of 
characteristic material length cannot arise. But it can. In the case of parallel line cracks, there 
must exist a certain minimum possible crack spacing [18]. While a softening stress-strain 
relation (with a fixed post-peak) dissipates finite energy per unit volume and thus gives a zero 
energy dissipation for a band of elements of vanishing size, a system of parallel cohesive 
cracks whose spacing tends to zero dissipates infinite energy. So the minimum spacing must 
be a material property representing a material characteristic length [19], which is physically 
determined by inhomogeneity sizes or by Irwin's length for mesoscale cracks. Otherwise the 
computational resul~ay. be llllObjective when the dispersed line -eraeks--remain--dispersed, 
i.e., when their openings do not localize into the opening of one single crack. Such a 
nonlocalized crack system will occur, e.g., when parallel cracks grow into a stabilizing 
compression zone [20] or when they are stabilized by transverse reinforcement; see an 
example in [19]. If no minimum spacing, based on a physically established characteristic 
length, is imposed, the results will depend on the element size on the sub scale and, for 
vanishing element size, will exhibit a physically impossible convergence. 

Special Case of Inertia Dominance at High Impulsive Loads 

In the case of dynamics of impact and groundshock, the mass inertia, coupled with the viscous 
strain rate effect or other damping, may delay any pronounced damage localization beyond 
the duration of impact event. In that case, the aforementioned regularization of softening 
damage can be ignored, though only as an approximation (which becomes progressively 
worse with the passage of time because localization begins to develop already during the 
impact event) [21]. For this reason, it is appropriate that the finite elements have roughly the 
size of the material characteristic length (or the width of the localization band). Such an 
approach corresponds to what is called the crack band model. 

Even for high-rate loading problems, it is usually necessary to relate the tensorial 
constitutive equation base on material properties obtained in standard material tests, uniaxial 
as well as multiaxial, which are necessarily static. This relationship cannot be realistic if the 
material characteristic length is not properly captured. 



Objectivity Checks for Multiscale Models 

The lack of objectivity is best detected by simulating mesh refinement or, equivalently, the 
size effect in geometrically similar structures (slide 3). The simplest is to simulate a 
homogeneously stressed rectangular specimen [3]. If mesh refinement leads to different post­
peak responses, the multiscale model is not suitable for damage and failure analysis (slide 3, 
top). Neither it is if, for a cracked two-dimensional rectangular panel (slide 3, middle and 
bottom), the curves of load versus crack band length, or load versus deflection, change 
significantly with mesh refinement, or with the scaling of panel size at constant mesh size 
[19,4]. These simple basic checks should not be ignored. 

Analogous Problem in Seismic Structural Tests with Real-Time Simulation of Damaging 
Zone 

In recent experimental studies of seismic resistance of structures, it has become fashionable to 
use computer-driven servo-control to simulate a cracking zone of a reinforced concrete 
structure. One technique is to measure a small displacement increment of the surrounding 
structure, then compute according to a previously calibrated model of the cracking zone the 
corresponding displacement increments, and then impart these increments, in real time, by 
fast computer-controlled hydraulic jacks, onto the rest of the structure. Unfortunately, seismic 
loading is not fast enough to shield this technique from all the aforementioned problems. The 
simulated cracking zone behaves just like the embedded subscale material element already 
discussed. As long as this zone is hardening, there is, of course, no problem. But as soon as 
softening begins, which is what is of main interest, the localization ·of cr.acking damage within 
this zone will differ from reality. The reality is not imposed displacement increments but a 
two-way interaction (with energy release and proper tangent stiffness constants) of the 
damage zone with the rest of the structure. To expect a real seismic behavior of concrete 
structures to be reproduced by such a technique is wishful thinking. 

Conclusion 

As long as the simulation of subscale mesostructure does not yield the material characteristic 
length and the type of localization limiter, the multi scale modeling is not a valid approach to 
softening damage. At present, the only valid approach is a discrete (lattice-particle) simulation 
of the meso-structure of the entire structural region in which softening damage can occur. 
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Slide 1: Representative volume element 
(RCE) embedded in a point of macro-
continuum, with interactions among 
orientations (top right) and at distance 
(lower right). 

Bottom: Material element larger than 
RVE, with localization band. Bottom 
Left: Isolated; Bottom Right: Interaction 
with the rest of structure, modeled by 
springs of tangential stiffness.

Slide 2 Region of structure 
where a fine mesh 

supposed to represent the 
meso-structure overlays a

coarse mesh that 
discretizes the macro-

continuum.

Slide 3 Objectivity criteria for multiscale 
models, whose check cannot be ignored.




