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Multiple Comparison Procedures—Cutting the Gordian Knot

David J. Saville*

ABSTRACT

Multiple comparison procedures (MCPs), or mean separation tests, have been the subject of great controversy since the 1950s.

Essentially, these procedures are an attempt at simultaneously formulating and testing pairwise comparison hypotheses using

data from a single experiment. An unacceptable operating characteristic of most MCPs is their “inconsistency,” an idea that is

illustrated in this article. This characteristic led to the development of a “practical solution” to the MCP problem, which is to

“cut the Gordian knot” by abandoning any attempt at simultaneous formulation and testing. Instead, I recommend using the

simplest multiple comparison procedure, the unrestricted least significant difference procedure, to (i) formulate new hypotheses

ataknown “false discovery rate” (in the null case) such as 5%, and (ii) independently test interesting new hypotheses in a second

experiment. I also discuss the implications for sample size calculations of the choice of MCP.

Multiple comparison procedures are commonly
used to test for “significant” differences between treatment
means in experiments, even in cases where the set of treatments
has clear structure and has been derived with obvious questions
in mind. In these cases, the use of an MCP is inappropriate, as
has been pointed out a multitude of times (c.g., Swallow, 1984;
Little, 1978). To quote Swallow (1984), MCPs “were devel-
oped for cases where the treatment set lacked structure, that

is, where the treatments were just a collection of varieties or
perhaps chemicals with no particular inter-relationships. Most
treatment designs are not of this type. Usually, the treatment
set has a structure, and the statistical analysis should recognize
that structure.” This can be achieved by specifying appropri-
ate contrasts between the treatments, with each contrast
addressing a particular question of interest to the researcher; in
many cases, these contrasts can be chosen to be “orthogonal”
(mutually independent) but this is not essential. Journals often
encourage researchers to thus tailor their statistical analysis to
the objectives of the research, but the specification of appropri-
ate contrasts is not a skill easily acquired by researchers and
help from a biometrician is not always available, so this encour-
agement is often to no avail. As an example of such advice, in
the instructions to authors of Agronomy Journal (September,
2012), the statistical methods section is largely devoted to
warning of the limitations of MCPs, with the closing state-
ment, “[wlhen treatments have a logical structure, orthogonal
contrasts among treatments should be used.”
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Thus, the long-running debate on the relative merits of the
many different MCPs is relevant only to the minority of studies
in which such a procedure is appropriate.

I first introduce some necessary statistical terminology, then
discuss the general topic of MCPs in relation to various types of
error rate and in relation to the levels of conservatism of some
of the better known MCPs. The idea of inconsistency is then
introduced and discussed, with particular attention being paid
to Fisher’s restricted least significant difference (LSD) procedure,
the MCP most commonly used in Agronomy Journal. Next,
the implication of the choice of MCP for required sample
size (estimated using a power analysis) is discussed. Finally,

a practical solution to the problem of best choice of MCP is
described. This consists of using the simplest of procedures, the
unrestricted LSD procedure, with the proviso that it be regarded
as an hypothesis formulation tool, with any interesting pairwise
hypotheses thus formulated requiring testing in a second,
independent experiment.

RESULTS AND DISCUSSION

Types of Statistical Error

In drawing statistical conclusions from an experiment, the
hope is that all of your decisions will be correct. For example,
if there is truly no difference (between two treatment means,
for example), then the correct decision is to decide that there is
no difference (Table 1). Similarly, if there is truly a difference,
then the correct decision is to decide that there 75 a difference
(Table 1).

In real life, not all decisions will be correct, and statisticians
refer to two types of error that you can make. Loosely speaking,
one error is to find things that are not there, and the second is
to not find things that are there. These errors are sometimes
referred to as false positives and false negatives, respectively.

Formally, the first type of error (Type I) is to erroneously declare
anull effect to be real or non-zero (Table 1). If your statistical

Abbreviations: HSD, honest significant difference; LSD, least significant
difference; MCP, multiple comparison procedure.
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Table I. The four cases that can occur in relation to a statistically based
decision concerning whether a particular difference is zero or not. In
two cases the correct decision is made and in two cases an error occurs.

THETRUTH

No difference Difference

No difference  Correct decision Type Il error

DECISION

Difference Type | errort Correct decision}

T Probability of Type | error = 0.05 (for 5% level significance test).
} Probability of correct decision (above) = power of test.

test has a 5% level of significance, this means that it has been
constructed so that the probability of makinga Type I error is 0.05
(or 5%). With a 1% level test, the Type I error rate is 0.01 (or 1%).

Conversely, a Type I1 error is to fail to find a real (non-zero)
effect (Table 1). When designing your experiment, you may carry
out a “power analysis” to determine the sample size required to
reduce the Type IT error rate to a specified low level. The “power”
of the test is the probability of deciding that there is a non-zero
difference when the difference truly is non-zero; that is, the
power is the inverse of the Type II error rate (so the two add up
to 1.00). (More details on power analysis are given below.)

In an ideal experiment, you are able to minimize the chance
of both types of error. In real life, resources are limiting, so if
you specify a low chance of one type of error, you automatically
increase the chance of the other type of error; for example, if you
decide to reduce the chance of a Type I error by insisting on a
1% significant difference rather than a 5% significant difference
(before you report the difference as non-zero), then you increase
the chance of a Type Il error (not finding a truly non-zero
difference). The only way to reduce both chances is to do more
work or adopt a more sophisticated experimental design, perhaps
involvinga fancy block layout to reduce the residual error term.

When studying error rates associated with different MCPs,
statisticians have found it relatively easy to study experiments in
which there are truly 70 effects but have found it less convenient
to study experiments in which there are real effects (which can
occur in an infinite variety of ways). As aresult, statisticians in
general have spent more time studying Type I errors than Type
II errors. Researchers, on the other hand, are often more worried
about not detecting a real effect, so are more concerned about
Type I errors than Type I errors. There has therefore historically
been a difference in mind set—statisticians have tended to be
more preoccupied with Type I errors, while researchers have
tended to be more preoccupied with Type Il errors.

Traditional Hypothesis Testing Scenario

The traditional hypothesis testing scenario goes something

like the following:

A group of researchers has an idea (or hypothesis), such as
“legumes outyield nonlegumes.”

The researchers plan an experiment to test this idea (hypoth-
esis); for example, they may decide to include six treatments,
consisting of three legumes and three nonlegumes.

Their biometrician advises that the “contrast” (comparison)
corresponding to the idea (hypothesis) of interest is the aver-
age of the treatment mean yields for legumes minus that for
nonlegumes. This is a pre-specified contrast. For information on
how to match ideas (hypotheses) to contrasts or comparisons,
see Cochran and Cox (1957) or Saville and Wood (1991).

After the data have been collected, an analysis of variance
(ANOVA) is performed that includes this contrast. An F
test of the hypothesis “true contrast value = 0” is performed
as part of the ANOVA; this is either significant or not.

Conclusion: The idea (hypothesis) that “legumes outyield non-
legumes” is either confirmed, or not, by the experiment.

What if There Are No Prior Ideas?

If there are no prior ideas (hypotheses), there are two cases
that occur. The first, rather trivial case is that the experiment
involves only two treatments (here there 75 presumably a prior
plan, which is to compare the two treatments). In this case, there
is good news!—statisticians agree on how to statistically compare
the two treatment means (use an ANOVA, which, by defaul,
includes an F test of the hypothesis “true difference between the
two treatment means = 0”).

The second case is that the experiment involves more than
two treatments, but there are no prespecified contrasts (or ideas/
hypotheses) (here the researcher presumably did have reasons for
doing the experiment, but the underlying ideas have not been
articulated). In this case, there is bad news—statisticians do not
agree on how to statistically compare the treatment means (two
at a time) and have suggested scores of different MCPs, which
have been the subject of great controversy since the 1950s.

Multiple Comparison Procedures

Essentially, MCPs are an attempt at simultancously
formulating and testing pairwise comparison hypotheses
using data from a single experiment. Statisticians view this as
similar to data-dredging. They think, “what if all treatments
are truly equal?” and worry about the number of false 5%
level significances, or Type I errors, that can occur in this case
(c.g., with 20 treatments, there are 20C2 =20x 19/2=190
comparisons, so with a Type I error rate of 0.05, there would be,
on average, 190 x 0.05 = 9.5 Type I errors).

Such thinking about the probability of committing Type I
errors in the null case generates a desire to build conservatism
into an MCP procedure. The problem is: how much
conservatism should be built into an MCP? Unfortunately, no
one agrees on the answer. To date, scores of MCPs have been
proposed, and new MCPs are currently being proposed, all with
differing amounts of conservatism.

Ordering of Multiple Comparison
Procedures by Level of Conservatism

Of those MCPs that are commonly used by research workers,
the three most conservative MCPs, in terms of the ability of the
researcher to declare significant differences between means, are
Bonferroni, Tukey’s honest significant difference (HSD), and
Student—Newman—Keuls. These are all based on thinking about
the experiment-wise Type L error rate, which is the probability
that at least one Type I error occurs in an experiment that truly
includes no treatment effects.

On the other hand, the least conservative MCPs are Duncan’s
multiple-range test and the unrestricted LSD procedure. These
are based on thinking about the comparison-wise Type I error
rate, which is the probability of Type I error per null comparison.

Fisher’s restricted LSD procedure is somewhere in between the
above extremes in terms of level of conservatism. If the overall F
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test is statistically significant, then it reduces to the unrestricted
LSD procedure. Overall, it is variable in its level of conservatism.

What is the Natural Unit?

A related question is: “What is the natural unit for the
statistical analysis?”

If the answer is the comparison (between any two treatment
means), then the MCP to use is the unrestricted LSD
procedure, which will falsely declare 5% of null differences to
be significant. In this case, the comparison-wise Type I error
rate is 5%.

If the answer is the experiment, then the MCP to use is the
more conservative Tukey’s HSD procedure, which will falsely
declare a null difference to be significant in only 5% of null
experiments. In this case, the experiment-wise Type I error rate
is 5%. This MCP has a much reduced comparison-wise Type I
error rate but pays the price of a much increased Type II error
rate.

But why stop there? If the answer is the project, consisting
of several experiments, then the MCP to use is an even more
conservative, yet-to-be-invented procedure that will falsely
declare a null difference to be significant in only 5% of null
projects. This procedure would have an even lower comparison-
wise Type I error rate but would pay an even higher price in
terms of an increased Type II error rate.

The logical next step in this sequence of possible natural
units is the research program, consisting of several projects.
Here the MCP to use would be even more conservative!

Or, if your statistician is particularly keen on not making
errors of the Type I variety, he or she may want the natural
unit to be the lifetime of your statistician. This would have

Table 2. Mean oat grain yields from four fictitious experiments, one
per bear, with data analysis carried out by Goldilocks using the Fisher’s
restricted LSD procedure. The pooled standard error of the mean
(SEM), overall F value, and its significance are also presented, and the
last row gives the “significance” of the difference between MiteyOat
and TrustyOat for each experiment (reproduced from Saville and
Rowarth, 2008).

Mean oat grain yield

Baby Mama Papa Grandpa

Oat cultivar Bear Bear  Bear Bear
kg/ha
WonderOat 5030 5030 5030 5030
Various no. | 5160 5260 5460 5760
MegaOat 4910 4910 4910 4910
MiteyOat 4450 4450 4450 4450
TrustyOat 5550 5550 5550 5550
FlakeyOat 4870 4870 4870 4870
Various no.2 5120 5120 4520 4320
TrendyOat 4910 4910 4910 4910
Statistics
SEM 200 200 200 200
Overall F value 243 257 382 5.98
Significance of overall F ns * ok ok
LSD(5%) ns 588 588 588
LSD(1%) ns ns 801 801
LSD(0.1%) ns ns ns 1080
Difference, MiteyOat — TrustyOat ~ ns * wk Hokk

* Significant at 0.05 probability level; ns, not significant.
** Significant at the 0.01 probability level.
*#%* Significant at the 0.001 probability level.

particularly dire consequences in terms of your hope of
achieving a statistically significant effect!

In conclusion, I would argue that for the researcher, the
individual comparison is the natural unit. Once you depart
from it, there is no natural stopping point (experiment, project,
rescarch program, lifetime, ...?). Consequently, in ad hoc
situations, the unrestricted LSD should be used with the full
understanding that the false discovery rate is whatever the
researcher chooses his or her Type I error rate to be.

Inconsistency of Multiple Comparison Procedures

In general, the more conservative an MCP, the more
inconsistent it is. The term inconsistency is now defined, and its
undesirability is explained.

By definition, an MCP is called inconsistent if for any
two treatment means, the probability of judging them to be
“significantly” different depends on either the number of
treatments included in the analysis or the values of the other
treatment means (Saville, 1990).

Goldilocks and the Four Bears

To illustrate this idea, I will use an example from Saville and
Rowarth (2008), including their Table 1.

In this fictitious example, I borrowed the terminology of
Carmer and Walker (1982) and Saville (1985) and considered the
case of a statistician, Goldilocks, who has analyzed data for four
clients, Baby Bear, Mama Bear, Papa Bear, and Grandpa Bear (the
lateer has recently come to live with the family). The Bears are
all keen porridge eaters and each had performed an experiment
with eight oat (Avena sativa L.) cultivars in an attempt to increase
their oat production. All four experiments were laid out in a
randomized complete block design with four replications. By
coincidence, each experiment included six common cultivars,
and these cultivars happened to have identical oat yield data in
all four experiments (Table 2). The other two cultivars differed
between the experiments and their names are not specified; their
oat yield data differed in their means but not in their standard
deviations between experiments. Goldilocks’ statistical analysis
using Fisher’s restricted LSD procedure for each of the four
experiments is summarized in Table 2 in terms of mean oat yield
for each cultivar, the pooled standard error of the mean (SEM)
(which turned out to be 200 in all four experiments), the overall #
value and its significance, and the LSD for 5%, 1%, and 0.1% level
tests. To illustrate the notion of inconsistency, the significance
of the difference between two of the cultivars, MiteyOat and
TrustyOat, as determined by Goldilocks using the Fisher’s
restricted LSD procedure, is also included.

Astonishingly, the significance of the difference between
MiteyOat and TrustyOat varied widely among the four
experiments (from not significant to 0.1% significant), in spite of
the fact that their mean yields were identical, the pooled SEMs
were identical, and the residual degrees of freedom (21) were
identical among experiments. The reason for this variation can
be traced back to the decision on which two “various” cultivars
were included. When the two “various” cultivars had yields that
were similar to the experimental average, a low overall Fvalue
was calculated (Table 2). When the two “various” cultivars
had extreme yields (one low, one high), a high overall Fvalue
was calculated (Table 2). That is, the mean yields for the two
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Fig. I. Cultivar mean oat yields in Baby Bear’s experiment. Vertical
bars are SE bars (using pooled standard error of the mean of 200).
Note that the mean difference between MiteyOat and TrustyOat

is 1100 kg/ha, which is 5.5 times the SE, yet Fisher’s restricted LSD
procedure declares this difference to be not statistically significant.

“various” cultivars determined the statistical significance of
the overall Fvalue and hence the significance of the difference
between MiteyOat and TrustyOat. Such statistical subtleties
aside, however, one can imagine what Grandpa Bear would say
about the way in which Goldilocks had handed out significant
differences: “Why would Goldilocks be so kind to an old bear
but so unfair to a young fledgling-experimenter bear?”

This sort of inconsistency in the results is something that
no practicing biometrician would ever want to have to defend
(like: “would you like to share your office block with four angry
bears?”). In all four experiments, the # value for the comparison
of MiteyOat with TrustyOat is given by # = 1100/(200 x V2) =
3.889, which is 0.1% significant (given 21 df). It defies common
sense to override this simple test in Baby Bear’s experiment by
arguing that the other cultivar means are not sufficiently spread
out (hence alow F), so this comparison should be declared “not
significant.” This nonsignificant result also contradicts what a
journal reader would decide after inspecting a bar graph of the
results such as that shown in Fig. I; the usual rule of thumb is
that means that differ by more than about 3 SEs are significantly
different (P < 0.05), yet in this case the two means differ by 5.5
SEs, yet are declared to be not significantly different by Fisher’s
LSD procedure. The logical response of researchers such as
the Bears would be to ensure good results by including an old,
low-yielding oat cultivar in their trials (to increase the overall #
value). Thus the statistical procedure would lead to a nonsensical
waste of resources.

If the data from the four experiments were to be reanalyzed
using the unrestricted LSD procedure, then the significance of
the difference between MiteyOat and TrustyOat would be 0.1%
in all four experiments. That is, the unrestricted LSD procedure
is consistent; in fact, it is the only consistent procedure.

The Inconsistency of Other Multiple
Comparison Procedures

The four data sets given in Table 2 were constructed to
illustrate the inconsistency of Fisher’s restricted LSD procedure

Table 3. The significance of the difference between MiteyOat and
TrustyOat in Baby Bear’s experiment for multiple comparison proce-
dures of varying levels of conservatism.

Multiple comparison proceduret Significance
Fisher’s restricted LSD ns
Bonferroni *
Tukey’s HSD *
Student—-Newman—Keuls *
Duncan’s multiple-range test ok
Unrestricted LSD oK

* Significant at 0.05 probability level; ns, not significant.

** Significant at the 0.01 probability level.

*#* Significant at the 0.001 probability level.

T LSD, least significant difference; HSD, honest significant difference.

because it is the MCP most commonly used in Agronomy
Journal. Other well-known MCPs behave in a fairly consistent
manner between these four data sets, and different examples are
required to illustrate their inconsistency. Such examples are given
in Saville (1990) for Tukey’s HSD procedure.

Interestingly, if six well-known MCPs are used to analyze
Baby Bear’s data in Table 2, the significance of the difference
between MiteyOat and TrustyOat varies markedly, from not
significant to 0.1% significant (Table 3). Fisher’s restricted
LSD procedure is at one extreme, yielding a nonsignificant
result. With the Bonferroni, Tukey’s HSD, or Student—
Newman-Keuls procedures, the difference between MiteyOat
and TrustyOat is 5% significant (Table 3). Using Duncan’s
multiple-range test, the difference is 1% significant, while
with the unrestricted LSD procedure, the difference is 0.1%
significant. This ordering of the significance levels of the results
from the various MCPs reflects their levels of conservatism and
inconsistency, except that Fisher’s restricted LSD is variable and
unfairly disadvantaged by this example and would more typically
be placed between Student-Newman—Keuls and Duncan’s
multiple-range test in the ordering.

In summary, the most conservative MCPs, such as Tukey’s
HSD, Bonferroni procedures, and the Student~Newman-—
Keuls test are also the most inconsistent procedures. Duncan’s
multiple-range test is the most consistent of the alternatives to
the unrestricted LSD procedure. More recently, in genomics
applications, the false discovery rate has been introduced by
Benjamini and Hochberg (1995) and developed further by
Storey and Tibshirani (2003) and others; such procedures, of
necessity, also suffer from the problem of inconsistency.

Effect of Choice of Multiple Comparison
Procedure on Sample Size Required

Statistics textbooks give various formulas for the
determination of sample size () using a power analysis, but these
formulas usually produce results similar to one another, which
is surprising because the line of reasoning varies considerably.
The common theme, however, is that they are normally based
on considerations of a #-test, which in the context of MCPs
means that they are appropriate for just one choice of MCP, the
unrestricted LSD procedure (which is a multiple #-test).

For example, the formula for sample size () that I use in
my statistics courses is based on assuming that the estimated
sample size () is relatively large, so percentiles of the normal
distribution (or equivalently the # distribution with residual
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degrees of freedom = 00) can be used in the formula. The proviso
is that if the resulting estimate for 7 turns out to be small, then
appropriate percentiles of # need to be substituted and a few
iterations performed. The formula is

2

n:2[(1.96+1.645)s
A

where s is the expected pooled standard deviation, A is the
minimum difference of interest (between two means), the
required significance of difference = 5% (two-tailed test), and
the required power of the test = 95% (probability of detecting
differences of >A).

Example: If I substitute s = 400 and A = 800, then the
estimated sample size is

(3.605><400
n=2|

2
] =7 replicates 2]

800
Asan aside, if there are to be eight experimental treatments
and seven replicates laid out in a randomized block design,
this means the residual degrees of freedom will be 7 x 6 = 42,
which is large enough for no adjustment to be required to the
percentiles of 7 used in Eq. [1] or [2].

More importantly, note that this estimated sample size only
applies if you plan on analyzing your data using the unrestricted
LSD procedure!

Sample Size Required with Tukey’s Honest
Significant Difference Procedure
For example, if the plan is to analyze data using Tukey’s HSD
procedure with eight experimental treatments, the formula for
the sample size () required is
2
- (3.03+1.645)s] 3]
A

where the constant 1.645 is unchanged because this relates to the
required power of 95%; however, the 1.96 is replaced by the value
of 3.03 (= 4.29/7/2, where 4.29 is obtained from standard tables
of the range for eight treatments, again assuming 0o residual
degrees of freedom).

Example for eight treatments: If I substitute s = 400 and A =
800, then the estimated sample size is

2

=11 replicates [4]

[4.675><400
n=2|——
800

Example for 20 treatments: If the plan is to include 20
experimental treatments, however, then the formula for the
sample size () required is

2

5 (3.5441.645)s
A

(5]

n=

where the original 1.96 is replaced by the value of 3.54 (= 5.01/
V2, where the 5.01 is obtained from standard tables of the
range for 20 treatments, again assuming oo residual degrees of

freedom). If I again substitute s = 400 and A = 800, then the
estimated sample size is

[5.185><400
n=2| "

2
] =14 replicates [6]
800

That is, the required sample size is seven replicates for the
unrestricted LSD, 11 replicates for Tukey’s HSD with eight
treatments, and 14 replicates for Tukey’s HSD with 20 treatments.
In the latter case, the researcher needs to have twice as many
replicates with Tukey’s HSD as with the unrestricted LSD.

In general, the morals are that the calculation of sample
size must be appropriate for the planned MCP and that this
calculation should be performed routinely as part of the

experimental design process.

The Practical Solution

The practical solution is as follows:

1. Abandon the idea of simultaneously formulating and test-
ing all possible pairwise comparison hypotheses using data
from a single experiment.

2. Instead, use the simplest MCP (the unrestricted LSD proce-
dure) to formulate new hypotheses at a known “false discov-
ery rate” (e.g., 5% of null comparisons), then independently
test these new hypotheses in a second experiment using an
appropriate set of preplanned pairwise comparisons.

3. This is normal scientific practice, so this solution fits well

with the way in which reputable scientists operate.

That is, on the basis of the discussion above and in Saville
(1985, 1990, 2003), the recommendation to researchers is that if
the use of a MCP is appropriate, the unrestricted LSD procedure
is the best choice given the proviso that it should be treated
solely as an hypothesis generating method, not as a method for
simultaneous formulation and testing of hypotheses.

This is a very similar conclusion to those reached
independently by others (e.g., Rothman, 1990; Perneger, 1998),
who have pointed out the undesirability of making adjustments
for multiplicity.

Cultivar Evaluation Trials

As an aside, agronomists who conduct annual series of
cultivar evaluation trials may find the formal structure of
hypothesis formulation (1 yr) and testing (next year) hard to
relate to. At the start of each season, they may have hypotheses,
of varying strengths of conviction, that certain cultivars are
the best in terms of yield or quality. These hypotheses will be
strengthened or weakened by the data from the current season.
Hence, they may prefer to view the process as one of “continuous
modification of hypotheses” by trial work over successive
seasons rather than as a more formal formulation and testing
of hypotheses. In this case, the same recommendation stands,
that this modification of hypotheses be done on the basis of the
unrestricted LSD rather than any other MCP.
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Advantages of Using the Unrestricted
Least Significant Difference Procedure

Advantages of using the unrestricted LSD procedure are as

follows:

1. It is the only consistent MCP.

2. It is the simplest procedure.

3. Its calculation is the easiest to check, so arithmetic errors are
minimized.

4. It is the most flexible MCP, catering to unequal sample sizes
and, if necessary, to unequal variances.

5. It has a constant Type I error rate (c.g,, 5%), with all other
MCPs having variable, nominal (in name only) Type I error
rates.

6. It has maximum power, so it has the greatest chance of gen-
erating an interesting new pairwise comparison hypothesis.

7. The required sample size is easily calculated and the formula
is given in standard statistics textbooks.

General Contrasts and Report Writing

This “practical solution” applies also to general contrasts (such
as legumes vs. nonlegumes), not just pairwise contrasts.

Within a single experiment, there may be a mix of prespecified
contrasts (perhaps including some pairwise comparisons) and
contrasts or comparisons that have become interesting as a result
of the experiment. For all contrasts (or ideas or hypotheses),
the key thing when writing a report on an experiment is to be
completely honest and to clearly describe which ideas you had
before the experiment and which ideas were formulated as a
result of the experiment. For preplanned pairwise comparisons
and general contrasts, your experiment confirms or denies each
hypothesis. For post-planned pairwise comparisons and general
contrasts, however, your experiment has led you to formulate
each hypothesis that needs to be confirmed or denied in a second
experiment.

CONCLUSIONS

In summary, I suggest using the same statistical procedurc in
all cases:

e preplanned pairwise comparisons

* preplanned general contrasts

* post-planned pairwise comparisons (the MCP case)

* post-planned general contrasts

The statistical procedure is the traditional F test of a contrast,
which is mathematically equivalent to carrying out a #-test of a
contrast, which is also equivalent to performing an LSD test (or,
more preciscly, a least significant contrast test). This suggestion,
of statistically analyzing both preplanned and post-planned
contrasts in an identical manner, is statistically defensible only
if the report on the experiment distinguishes clearly between
testing and forming ideas and hypotheses.
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