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Multiple	comparison	procedures	are	commonly 
used to test for “signifi cant” diff erences between treatment 
means in experiments, even in cases where the set of treatments 
has clear structure and has been derived with obvious questions 
in mind. In these cases, the use of an MCP is inappropriate, as 
has been pointed out a multitude of times (e.g., Swallow, 1984; 
Little, 1978). To quote Swallow (1984), MCPs “were devel-
oped for cases where the treatment set lacked structure, that 
is, where the treatments were just a collection of varieties or 
perhaps chemicals with no particular inter-relationships. Most 
treatment designs are not of this type. Usually, the treatment 
set has a structure, and the statistical analysis should recognize 
that structure.” Th is can be achieved by specifying appropri-
ate contrasts between the treatments, with each contrast 
addressing a particular question of interest to the researcher; in 
many cases, these contrasts can be chosen to be “orthogonal” 
(mutually independent) but this is not essential. Journals oft en 
encourage researchers to thus tailor their statistical analysis to 
the objectives of the research, but the specifi cation of appropri-
ate contrasts is not a skill easily acquired by researchers and 
help from a biometrician is not always available, so this encour-
agement is oft en to no avail. As an example of such advice, in 
the instructions to authors of Agronomy Journal (September, 
2012), the statistical methods section is largely devoted to 
warning of the limitations of MCPs, with the closing state-
ment, “[w]hen treatments have a logical structure, orthogonal 
contrasts among treatments should be used.”

Th us, the long-running debate on the relative merits of the 
many diff erent MCPs is relevant only to the minority of studies 
in which such a procedure is appropriate.

I fi rst introduce some necessary statistical terminology, then 
discuss the general topic of MCPs in relation to various types of 
error rate and in relation to the levels of conservatism of some 
of the better known MCPs. Th e idea of inconsistency is then 
introduced and discussed, with particular attention being paid 
to Fisher’s restricted least signifi cant diff erence (LSD) procedure, 
the MCP most commonly used in Agronomy Journal. Next, 
the implication of the choice of MCP for required sample 
size (estimated using a power analysis) is discussed. Finally, 
a practical solution to the problem of best choice of MCP is 
described. Th is consists of using the simplest of procedures, the 
unrestricted LSD procedure, with the proviso that it be regarded 
as an hypothesis formulation tool, with any interesting pairwise 
hypotheses thus formulated requiring testing in a second, 
independent experiment.

RESULTS AND DISCUSSION
Types of Statistical Error

In drawing statistical conclusions from an experiment, the 
hope is that all of your decisions will be correct. For example, 
if there is truly no diff erence (between two treatment means, 
for example), then the correct decision is to decide that there is 
no diff erence (Table 1). Similarly, if there is truly a diff erence, 
then the correct decision is to decide that there is a diff erence 
(Table 1).

In real life, not all decisions will be correct, and statisticians 
refer to two types of error that you can make. Loosely speaking, 
one error is to fi nd things that are not there, and the second is 
to not fi nd things that are there. Th ese errors are sometimes 
referred to as false positives and false negatives, respectively.

Formally, the fi rst type of error (Type I) is to erroneously declare 
a null eff ect to be real or non-zero (Table 1). If your statistical 
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test has a 5% level of significance, this means that it has been 
constructed so that the probability of making a Type I error is 0.05 
(or 5%). With a 1% level test, the Type I error rate is 0.01 (or 1%).

Conversely, a Type II error is to fail to find a real (non-zero) 
effect (Table 1). When designing your experiment, you may carry 
out a “power analysis” to determine the sample size required to 
reduce the Type II error rate to a specified low level. The “power” 
of the test is the probability of deciding that there is a non-zero 
difference when the difference truly is non-zero; that is, the 
power is the inverse of the Type II error rate (so the two add up 
to 1.00). (More details on power analysis are given below.)

In an ideal experiment, you are able to minimize the chance 
of both types of error. In real life, resources are limiting, so if 
you specify a low chance of one type of error, you automatically 
increase the chance of the other type of error; for example, if you 
decide to reduce the chance of a Type I error by insisting on a 
1% significant difference rather than a 5% significant difference 
(before you report the difference as non-zero), then you increase 
the chance of a Type II error (not finding a truly non-zero 
difference). The only way to reduce both chances is to do more 
work or adopt a more sophisticated experimental design, perhaps 
involving a fancy block layout to reduce the residual error term.

When studying error rates associated with different MCPs, 
statisticians have found it relatively easy to study experiments in 
which there are truly no effects but have found it less convenient 
to study experiments in which there are real effects (which can 
occur in an infinite variety of ways). As a result, statisticians in 
general have spent more time studying Type I errors than Type 
II errors. Researchers, on the other hand, are often more worried 
about not detecting a real effect, so are more concerned about 
Type II errors than Type I errors. There has therefore historically 
been a difference in mind set—statisticians have tended to be 
more preoccupied with Type I errors, while researchers have 
tended to be more preoccupied with Type II errors.

Traditional Hypothesis Testing Scenario
The traditional hypothesis testing scenario goes something 

like the following:
A group of researchers has an idea (or hypothesis), such as 

“legumes outyield nonlegumes.”
The researchers plan an experiment to test this idea (hypoth-

esis); for example, they may decide to include six treatments, 
consisting of three legumes and three nonlegumes.

Their biometrician advises that the “contrast” (comparison) 
corresponding to the idea (hypothesis) of interest is the aver-
age of the treatment mean yields for legumes minus that for 
nonlegumes. This is a pre-specified contrast. For information on 
how to match ideas (hypotheses) to contrasts or comparisons, 
see Cochran and Cox (1957) or Saville and Wood (1991).

After the data have been collected, an analysis of variance 
(ANOVA) is performed that includes this contrast. An F 
test of the hypothesis “true contrast value = 0” is performed 
as part of the ANOVA; this is either significant or not.

Conclusion: The idea (hypothesis) that “legumes outyield non-
legumes” is either confirmed, or not, by the experiment.

What if There Are No Prior Ideas?

If there are no prior ideas (hypotheses), there are two cases 
that occur. The first, rather trivial case is that the experiment 
involves only two treatments (here there is presumably a prior 
plan, which is to compare the two treatments). In this case, there 
is good news!—statisticians agree on how to statistically compare 
the two treatment means (use an ANOVA, which, by default, 
includes an F test of the hypothesis “true difference between the 
two treatment means = 0”).

The second case is that the experiment involves more than 
two treatments, but there are no prespecified contrasts (or ideas/
hypotheses) (here the researcher presumably did have reasons for 
doing the experiment, but the underlying ideas have not been 
articulated). In this case, there is bad news—statisticians do not 
agree on how to statistically compare the treatment means (two 
at a time) and have suggested scores of different MCPs, which 
have been the subject of great controversy since the 1950s.

Multiple Comparison Procedures

Essentially, MCPs are an attempt at simultaneously 
formulating and testing pairwise comparison hypotheses 
using data from a single experiment. Statisticians view this as 
similar to data-dredging. They think, “what if all treatments 
are truly equal?” and worry about the number of false 5% 
level significances, or Type I errors, that can occur in this case 
(e.g., with 20 treatments, there are 20C2 = 20 ´ 19/2 = 190 
comparisons, so with a Type I error rate of 0.05, there would be, 
on average, 190 ´ 0.05 = 9.5 Type I errors).

Such thinking about the probability of committing Type I 
errors in the null case generates a desire to build conservatism 
into an MCP procedure. The problem is: how much 
conservatism should be built into an MCP? Unfortunately, no 
one agrees on the answer. To date, scores of MCPs have been 
proposed, and new MCPs are currently being proposed, all with 
differing amounts of conservatism.

Ordering of Multiple Comparison 
Procedures by Level of Conservatism

Of those MCPs that are commonly used by research workers, 
the three most conservative MCPs, in terms of the ability of the 
researcher to declare significant differences between means, are 
Bonferroni, Tukey’s honest significant difference (HSD), and 
Student–Newman–Keuls. These are all based on thinking about 
the experiment-wise Type I error rate, which is the probability 
that at least one Type I error occurs in an experiment that truly 
includes no treatment effects.

On the other hand, the least conservative MCPs are Duncan’s 
multiple-range test and the unrestricted LSD procedure. These 
are based on thinking about the comparison-wise Type I error 
rate, which is the probability of Type I error per null comparison.

Fisher’s restricted LSD procedure is somewhere in between the 
above extremes in terms of level of conservatism. If the overall F 

Table	1.	The	four	cases	that	can	occur	in	relation	to	a	statistically	based	
decision	concerning	whether	a	particular	difference	is	zero	or	not.	In	
two	cases	the	correct	decision	is	made	and	in	two	cases	an	error	occurs.

THE	TRUTH
No	difference Difference

DECISION
No	difference Correct	decision Type	II	error
Difference Type	I	error† Correct	decision‡

†	Probability	of	Type	I	error		=	0.05	(for	5%	level	significance	test).
‡	Probability	of	correct	decision	(above)		=	power	of	test.



732	 Agronomy	 Journa l 	 • 	 Volume	107, 	 I s sue	2	 • 	 2015

test is statistically significant, then it reduces to the unrestricted 
LSD procedure. Overall, it is variable in its level of conservatism.

What is the Natural Unit?
A related question is: “What is the natural unit for the 

statistical analysis?”
If the answer is the comparison (between any two treatment 

means), then the MCP to use is the unrestricted LSD 
procedure, which will falsely declare 5% of null differences to 
be significant. In this case, the comparison-wise Type I error 
rate is 5%. 

If the answer is the experiment, then the MCP to use is the 
more conservative Tukey’s HSD procedure, which will falsely 
declare a null difference to be significant in only 5% of null 
experiments. In this case, the experiment-wise Type I error rate 
is 5%. This MCP has a much reduced comparison-wise Type I 
error rate but pays the price of a much increased Type II error 
rate.

But why stop there? If the answer is the project, consisting 
of several experiments, then the MCP to use is an even more 
conservative, yet-to-be-invented procedure that will falsely 
declare a null difference to be significant in only 5% of null 
projects. This procedure would have an even lower comparison-
wise Type I error rate but would pay an even higher price in 
terms of an increased Type II error rate.

The logical next step in this sequence of possible natural 
units is the research program, consisting of several projects. 
Here the MCP to use would be even more conservative!

Or, if your statistician is particularly keen on not making 
errors of the Type I variety, he or she may want the natural 
unit to be the lifetime of your statistician. This would have 

particularly dire consequences in terms of your hope of 
achieving a statistically significant effect!

In conclusion, I would argue that for the researcher, the 
individual comparison is the natural unit. Once you depart 
from it, there is no natural stopping point (experiment, project, 
research program, lifetime, …?). Consequently, in ad hoc 
situations, the unrestricted LSD should be used with the full 
understanding that the false discovery rate is whatever the 
researcher chooses his or her Type I error rate to be.

Inconsistency of Multiple Comparison Procedures

In general, the more conservative an MCP, the more 
inconsistent it is. The term inconsistency is now defined, and its 
undesirability is explained.

By definition, an MCP is called inconsistent if for any 
two treatment means, the probability of judging them to be 
“significantly” different depends on either the number of 
treatments included in the analysis or the values of the other 
treatment means (Saville, 1990).

Goldilocks and the Four Bears
To illustrate this idea, I will use an example from Saville and 

Rowarth (2008), including their Table 1.
In this fictitious example, I borrowed the terminology of 

Carmer and Walker (1982) and Saville (1985) and considered the 
case of a statistician, Goldilocks, who has analyzed data for four 
clients, Baby Bear, Mama Bear, Papa Bear, and Grandpa Bear (the 
latter has recently come to live with the family). The Bears are 
all keen porridge eaters and each had performed an experiment 
with eight oat (Avena sativa L.) cultivars in an attempt to increase 
their oat production. All four experiments were laid out in a 
randomized complete block design with four replications. By 
coincidence, each experiment included six common cultivars, 
and these cultivars happened to have identical oat yield data in 
all four experiments (Table 2). The other two cultivars differed 
between the experiments and their names are not specified; their 
oat yield data differed in their means but not in their standard 
deviations between experiments. Goldilocks’ statistical analysis 
using Fisher’s restricted LSD procedure for each of the four 
experiments is summarized in Table 2 in terms of mean oat yield 
for each cultivar, the pooled standard error of the mean (SEM) 
(which turned out to be 200 in all four experiments), the overall F 
value and its significance, and the LSD for 5%, 1%, and 0.1% level 
tests. To illustrate the notion of inconsistency, the significance 
of the difference between two of the cultivars, MiteyOat and 
TrustyOat, as determined by Goldilocks using the Fisher’s 
restricted LSD procedure, is also included.

Astonishingly, the significance of the difference between 
MiteyOat and TrustyOat varied widely among the four 
experiments (from not significant to 0.1% significant), in spite of 
the fact that their mean yields were identical, the pooled SEMs 
were identical, and the residual degrees of freedom (21) were 
identical among experiments. The reason for this variation can 
be traced back to the decision on which two “various” cultivars 
were included. When the two “various” cultivars had yields that 
were similar to the experimental average, a low overall F value 
was calculated (Table 2). When the two “various” cultivars 
had extreme yields (one low, one high), a high overall F value 
was calculated (Table 2). That is, the mean yields for the two 

Table	2.	Mean	oat	grain	yields	from	four	fictitious	experiments,	one	
per	bear,	with	data	analysis	carried	out	by	Goldilocks	using	the	Fisher’s	
restricted	LSD	procedure.	The	pooled	standard	error	of	the	mean	
(SEM),	overall	F	value,	and	its	significance	are	also	presented,	and	the	
last	row	gives	the	“significance”	of	the	difference	between	MiteyOat	
and	TrustyOat	for	each	experiment	(reproduced	from	Saville	and	
Rowarth,	2008).

	Oat	cultivar

Mean	oat	grain	yield
Baby	
Bear

Mama 
Bear

Papa	
Bear

Grandpa	
Bear

—————	kg/ha	—————
WonderOat 5030 5030 5030 5030
Various	no.	1 5160 5260 5460 5760
MegaOat 4910 4910 4910 4910
MiteyOat 4450 4450 4450 4450
TrustyOat 5550 5550 5550 5550
FlakeyOat 4870 4870 4870 4870
Various	no.	2 5120 5120 4520 4320
TrendyOat 4910 4910 4910 4910
Statistics
	 SEM 200 200 200 200
	 Overall	F	value 2.43 2.57 3.82 5.98
	 Significance	of	overall	F ns * ** ***
	 LSD(5%) ns 588 588 588
	 LSD(1%) ns ns 801 801
	 LSD(0.1%) ns ns ns 1080
	 Difference,	MiteyOat	–	TrustyOat	 ns * ** ***
*	Significant	at	0.05	probability	level;	ns,	not	significant.
**	Significant	at	the	0.01	probability	level.
***	Significant	at	the	0.001	probability	level.
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“various” cultivars determined the statistical significance of 
the overall F value and hence the significance of the difference 
between MiteyOat and TrustyOat. Such statistical subtleties 
aside, however, one can imagine what Grandpa Bear would say 
about the way in which Goldilocks had handed out significant 
differences: “Why would Goldilocks be so kind to an old bear 
but so unfair to a young fledgling-experimenter bear?”

This sort of inconsistency in the results is something that 
no practicing biometrician would ever want to have to defend 
(like: “would you like to share your office block with four angry 
bears?”). In all four experiments, the t value for the comparison 
of MiteyOat with TrustyOat is given by t = 1100/(200 ´ Ö2) = 
3.889, which is 0.1% significant (given 21 df). It defies common 
sense to override this simple test in Baby Bear’s experiment by 
arguing that the other cultivar means are not sufficiently spread 
out (hence a low F), so this comparison should be declared “not 
significant.” This nonsignificant result also contradicts what a 
journal reader would decide after inspecting a bar graph of the 
results such as that shown in Fig. 1; the usual rule of thumb is 
that means that differ by more than about 3 SEs are significantly 
different (P < 0.05), yet in this case the two means differ by 5.5 
SEs, yet are declared to be not significantly different by Fisher’s 
LSD procedure. The logical response of researchers such as 
the Bears would be to ensure good results by including an old, 
low-yielding oat cultivar in their trials (to increase the overall F 
value). Thus the statistical procedure would lead to a nonsensical 
waste of resources.

If the data from the four experiments were to be reanalyzed 
using the unrestricted LSD procedure, then the significance of 
the difference between MiteyOat and TrustyOat would be 0.1% 
in all four experiments. That is, the unrestricted LSD procedure 
is consistent; in fact, it is the only consistent procedure.

The Inconsistency of Other Multiple 
Comparison Procedures

The four data sets given in Table 2 were constructed to 
illustrate the inconsistency of Fisher’s restricted LSD procedure 

because it is the MCP most commonly used in Agronomy 
Journal. Other well-known MCPs behave in a fairly consistent 
manner between these four data sets, and different examples are 
required to illustrate their inconsistency. Such examples are given 
in Saville (1990) for Tukey’s HSD procedure.

Interestingly, if six well-known MCPs are used to analyze 
Baby Bear’s data in Table 2, the significance of the difference 
between MiteyOat and TrustyOat varies markedly, from not 
significant to 0.1% significant (Table 3). Fisher’s restricted 
LSD procedure is at one extreme, yielding a nonsignificant 
result. With the Bonferroni, Tukey’s HSD, or Student–
Newman–Keuls procedures, the difference between MiteyOat 
and TrustyOat is 5% significant (Table 3). Using Duncan’s 
multiple-range test, the difference is 1% significant, while 
with the unrestricted LSD procedure, the difference is 0.1% 
significant. This ordering of the significance levels of the results 
from the various MCPs reflects their levels of conservatism and 
inconsistency, except that Fisher’s restricted LSD is variable and 
unfairly disadvantaged by this example and would more typically 
be placed between Student–Newman–Keuls and Duncan’s 
multiple-range test in the ordering.

In summary, the most conservative MCPs, such as Tukey’s 
HSD, Bonferroni procedures, and the Student–Newman–
Keuls test are also the most inconsistent procedures. Duncan’s 
multiple-range test is the most consistent of the alternatives to 
the unrestricted LSD procedure. More recently, in genomics 
applications, the false discovery rate has been introduced by 
Benjamini and Hochberg (1995) and developed further by 
Storey and Tibshirani (2003) and others; such procedures, of 
necessity, also suffer from the problem of inconsistency.

Effect of Choice of Multiple Comparison 
Procedure on Sample Size Required

Statistics textbooks give various formulas for the 
determination of sample size (n) using a power analysis, but these 
formulas usually produce results similar to one another, which 
is surprising because the line of reasoning varies considerably. 
The common theme, however, is that they are normally based 
on considerations of a t-test, which in the context of MCPs 
means that they are appropriate for just one choice of MCP, the 
unrestricted LSD procedure (which is a multiple t-test).

For example, the formula for sample size (n) that I use in 
my statistics courses is based on assuming that the estimated 
sample size (n) is relatively large, so percentiles of the normal 
distribution (or equivalently the t distribution with residual 

Table	3.	The	significance	of	the	difference	between	MiteyOat	and	
TrustyOat	in	Baby	Bear’s	experiment	for	multiple	comparison	proce-
dures	of	varying	levels	of	conservatism.	

Multiple	comparison	procedure† Significance
Fisher’s	restricted	LSD ns
Bonferroni *
Tukey’s	HSD *
Student–Newman–Keuls *
Duncan’s	multiple-range	test **
Unrestricted	LSD ***
*	Significant	at	0.05	probability	level;	ns,	not	significant.
**	Significant	at	the	0.01	probability	level.
***	Significant	at	the	0.001	probability	level.
†	LSD,	least	significant	difference;	HSD,	honest	significant	difference.

Fig.	1.	Cultivar	mean	oat	yields	in	Baby	Bear’s	experiment.	Vertical	
bars	are	SE	bars	(using	pooled	standard	error	of	the	mean	of	200).	
Note	that	the	mean	difference	between	MiteyOat	and	TrustyOat	
is	1100	kg/ha,	which	is	5.5	times	the	SE,	yet	Fisher’s	restricted	LSD	
procedure	declares	this	difference	to	be	not	statistically	significant.
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degrees of freedom = ¥) can be used in the formula. The proviso 
is that if the resulting estimate for n turns out to be small, then 
appropriate percentiles of t need to be substituted and a few 
iterations performed. The formula is

( )
2

1.96 1.645
2 

s
n

é ù+ê ú= ê úDë û
 [1]

where s is the expected pooled standard deviation, D is the 
minimum difference of interest (between two means), the 
required significance of difference = 5% (two-tailed test), and 
the required power of the test = 95% (probability of detecting 
differences of >D).

Example: If I substitute s = 400 and D = 800, then the 
estimated sample size is

23.605  400
2  7 replicates

800
n

æ ö´ ÷ç= =÷ç ÷çè ø
 [2]

As an aside, if there are to be eight experimental treatments 
and seven replicates laid out in a randomized block design, 
this means the residual degrees of freedom will be 7 ´ 6 = 42, 
which is large enough for no adjustment to be required to the 
percentiles of t used in Eq. [1] or [2].

More importantly, note that this estimated sample size only 
applies if you plan on analyzing your data using the unrestricted 
LSD procedure!

Sample Size Required with Tukey’s Honest 
Significant Difference Procedure

For example, if the plan is to analyze data using Tukey’s HSD 
procedure with eight experimental treatments, the formula for 
the sample size (n) required is

( )
2

3.03 1.645
2 

s
n

é ù+ê ú= ê úDë û

 [3]

where the constant 1.645 is unchanged because this relates to the 
required power of 95%; however, the 1.96 is replaced by the value 
of 3.03 (= 4.29/Ö2, where 4.29 is obtained from standard tables 
of the range for eight treatments, again assuming ¥ residual 
degrees of freedom).

Example for eight treatments: If I substitute s = 400 and D = 
800, then the estimated sample size is

24.675 400
2 11 replicates

800
n

æ ö´ ÷ç= =÷ç ÷çè ø
 [4]

Example for 20 treatments: If the plan is to include 20 
experimental treatments, however, then the formula for the 
sample size (n) required is

( )
2

3.54 1.645
2 

s
n

é ù+ê ú= ê úDë û
 [5]

where the original 1.96 is replaced by the value of 3.54 (= 5.01/
Ö2, where the 5.01 is obtained from standard tables of the 
range for 20 treatments, again assuming ¥ residual degrees of 

freedom). If I again substitute s = 400 and D = 800, then the 
estimated sample size is

25.185  400 
2 14 replicates

800
n

æ ö´ ÷ç= =÷ç ÷çè ø
 [6]

That is, the required sample size is seven replicates for the 
unrestricted LSD, 11 replicates for Tukey’s HSD with eight 
treatments, and 14 replicates for Tukey’s HSD with 20 treatments. 
In the latter case, the researcher needs to have twice as many 
replicates with Tukey’s HSD as with the unrestricted LSD.

In general, the morals are that the calculation of sample 
size must be appropriate for the planned MCP and that this 
calculation should be performed routinely as part of the 
experimental design process.

The Practical Solution

The practical solution is as follows:
1. Abandon the idea of simultaneously formulating and test-

ing all possible pairwise comparison hypotheses using data 
from a single experiment.

2. Instead, use the simplest MCP (the unrestricted LSD proce-
dure) to formulate new hypotheses at a known “false discov-
ery rate” (e.g., 5% of null comparisons), then independently 
test these new hypotheses in a second experiment using an 
appropriate set of preplanned pairwise comparisons.

3. This is normal scientific practice, so this solution fits well 
with the way in which reputable scientists operate.

That is, on the basis of the discussion above and in Saville 
(1985, 1990, 2003), the recommendation to researchers is that if 
the use of a MCP is appropriate, the unrestricted LSD procedure 
is the best choice given the proviso that it should be treated 
solely as an hypothesis generating method, not as a method for 
simultaneous formulation and testing of hypotheses.

This is a very similar conclusion to those reached 
independently by others (e.g., Rothman, 1990; Perneger, 1998), 
who have pointed out the undesirability of making adjustments 
for multiplicity.

Cultivar Evaluation Trials

As an aside, agronomists who conduct annual series of 
cultivar evaluation trials may find the formal structure of 
hypothesis formulation (1 yr) and testing (next year) hard to 
relate to. At the start of each season, they may have hypotheses, 
of varying strengths of conviction, that certain cultivars are 
the best in terms of yield or quality. These hypotheses will be 
strengthened or weakened by the data from the current season. 
Hence, they may prefer to view the process as one of “continuous 
modification of hypotheses” by trial work over successive 
seasons rather than as a more formal formulation and testing 
of hypotheses. In this case, the same recommendation stands, 
that this modification of hypotheses be done on the basis of the 
unrestricted LSD rather than any other MCP.
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Advantages of Using the Unrestricted 
Least Significant Difference Procedure

Advantages of using the unrestricted LSD procedure are as 
follows:

1. It is the only consistent MCP.
2. It is the simplest procedure.
3. Its calculation is the easiest to check, so arithmetic errors are 

minimized.
4. It is the most flexible MCP, catering to unequal sample sizes 

and, if necessary, to unequal variances.
5. It has a constant Type I error rate (e.g., 5%), with all other 

MCPs having variable, nominal (in name only) Type I error 
rates.

6. It has maximum power, so it has the greatest chance of gen-
erating an interesting new pairwise comparison hypothesis.

7. The required sample size is easily calculated and the formula 
is given in standard statistics textbooks.

General Contrasts and Report Writing

This “practical solution” applies also to general contrasts (such 
as legumes vs. nonlegumes), not just pairwise contrasts.

Within a single experiment, there may be a mix of prespecified 
contrasts (perhaps including some pairwise comparisons) and 
contrasts or comparisons that have become interesting as a result 
of the experiment. For all contrasts (or ideas or hypotheses), 
the key thing when writing a report on an experiment is to be 
completely honest and to clearly describe which ideas you had 
before the experiment and which ideas were formulated as a 
result of the experiment. For preplanned pairwise comparisons 
and general contrasts, your experiment confirms or denies each 
hypothesis. For post-planned pairwise comparisons and general 
contrasts, however, your experiment has led you to formulate 
each hypothesis that needs to be confirmed or denied in a second 
experiment.

CONCLUSIONS
In summary, I suggest using the same statistical procedure in 

all cases:
•	 preplanned pairwise comparisons
•	 preplanned general contrasts
•	 post-planned pairwise comparisons (the MCP case)
•	 post-planned general contrasts

The statistical procedure is the traditional F test of a contrast, 
which is mathematically equivalent to carrying out a t-test of a 
contrast, which is also equivalent to performing an LSD test (or, 
more precisely, a least significant contrast test). This suggestion, 
of statistically analyzing both preplanned and post-planned 
contrasts in an identical manner, is statistically defensible only 
if the report on the experiment distinguishes clearly between 
testing and forming ideas and hypotheses.
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