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Abstract

This research reveals new insights into the climatic drivers of anomalies in land surface
phenology (LSP) across the entire European forest, while at the same time establishes
a new conceptual framework for predictive modelling of LSP. Specifically, the Random
Forest method, a multivariate, spatially non-stationary and non-linear machine learn-5

ing approach, was introduced for phenological modelling across very large areas and
across multiple years simultaneously: the typical case for satellite-observed LSP. The
RF model was fitted to the relation between LSP anomalies and numerous climate
predictor variables computed at biologically-relevant rather than human-imposed tem-
poral scales. In addition, the legacy effect of an advanced or delayed spring on autumn10

phenology was explored. The RF models explained 81 and 62 % of the variance in
the spring and autumn LSP anomalies, with relative errors of 10 and 20 %, respec-
tively: a level of precision that has until now been unobtainable at the continental scale.
Multivariate linear regression models explained only 36 and 25 %, respectively. It also
allowed identification of the main drivers of the anomalies in LSP through its estimation15

of variable importance. This research, thus, shows clearly the inadequacy of the hith-
erto applied linear regression approaches for modelling LSP and paves the way for a
new set of scientific investigations based on machine learning methods.

1 Introduction

Vegetation phenology has emerged as an important focus for scientific research in the20

last few decades. The interest in vegetation phenology is twofold: inter-annual record-
ing of the timing of phenological events allows quantification of the impacts of climate
change on vegetation; and a greater understanding of phenological responses enables
meaningful projections of how ecosystems will respond to future changes in climate
(Morisette et al., 2008; Menzel, 2002; Peñuelas and Filella, 2001; Peñuelas, 2009). Al-25

though different approaches have been devised for the study of vegetation phenology
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(Rafferty et al., 2013), the characterisation and modelling of vegetation phenology at
global or regional scales has been undertaken mainly through the use of long-term
time-series of satellite-sensor vegetation indices (termed land surface phenology, LSP,
to reflect that satellite-observed phenology includes all land covers). Most studies of
LSP analyse trends in phenological events across years (Delbart et al., 2008; Jeong5

et al., 2011; Karlsen et al., 2007; Myneni et al., 1997; Jeganathan et al., 2014), but
more recent studies present process-based models to uncover cause–effect relation-
ships between long-term trends in phenology and its key driving variables (Ivits et al.,
2012; Maignan et al., 2008a, b; Stöckli et al., 2008, 2011; Zhou et al., 2001). This last
group of studies focuses on changes in phenology produced by average changes in10

weather (mainly trends in warming). However, anomalies in LSP arising as a conse-
quence of the inter-annual variability in weather are relatively unstudied, with model-
based studies of this phenomenon being scarce (van Vliet, 2010).

A higher frequency in the occurrence of extreme climatic events has been observed
in Europe, especially for summer temperatures (Luterbacher et al., 2004; Barriopedro15

et al., 2011). The summers of 2003 and 2010 in western and eastern Europe, respec-
tively, were the warmest in the last 500 years (Barriopedro et al., 2011). Species and
ecosystems respond more rapidly to these anomalies in weather than average climatic
changes in most climatic scenarios (Zhao et al., 2013). Maignan et al. (2008b) and
Rutishauser et al. (2008) reported that the LSP greening occurred 10 days earlier in20

2007 than the average over the past three decades as a consequence of an exception-
ally mild winter and spring. The study of the impacts of extreme inter-annual weather
events on vegetation through the modelling of anomalies in spring and autumn phe-
nologies can increase our knowledge about climate-driven changes in phenology, act-
ing as natural experiments in climate change scenarios (Rafferty et al., 2013). On the25

other hand, the modelling of LSP has been less explored compared to the modelling
of individual plant species, and there are many aspects that remain to be understood,
which limits comprehensive understanding of LSP and, therefore, of phenology at re-
gional or global scales. A more complete modelling of LSP considering the inter-annual
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variation across large areas would include the capacity to interpret observations and
make meaningful projections in relation to disturbances and their subsequent impacts
(Morisette et al., 2008).

Modelling efforts to characterize LSP have generally relied on simple functions (usu-
ally linear) of meteorological drivers, such as average temperature and precipitation (Iv-5

its et al., 2012), growing degree days (GDD) (de Beurs and Henebry, 2005), light and
temperature (Stöckli et al., 2011), minimum temperature, photoperiod, vapour pres-
sure deficit (Jolly et al., 2005; Stöckli et al., 2008), or minimum relative humidity (Brown
and de Beurs, 2008). However, there is lack of understanding on number of impor-
tant aspects, such us the multivariate influence of meteorological variables (tempera-10

ture, precipitation, solar radiation) driving phenology, or the effect of additional drivers
in the modelling of autumnal phenophases (Morisette et al., 2008). For instance, Fu
et al. (2014) found a “cause–effect relationship” between an earlier leaf senescence
and an earlier spring flushing in leaves of warmed samples of Fagus sylvatica and
Quercus robur. This legacy effect of spring phenology has been reported in recent15

studies using modified environments and plant species, but it has not been studied
using LSP data. This latter aspect is particularly pertinent for studies that focus on
inter-annual variation in phenology and could potentially contribute to increased knowl-
edge of how climate change is affecting autumn phenology. On the other hand, many
studies investigating the sensitivity of phenological events to climate variation use cal-20

endar seasonal or monthly mean climatic variables, which operate on human calendar
scales (Maignan et al., 2008b), instead of using daily data to build climatic variables
meaningful at biological scales (Pau et al., 2011). Pau et al. (2011) in a recent re-
view highlighted the importance of using daily models related to vegetation circadian
time scales and how climate change has influenced daily minima and maxima dis-25

proportionately. However, the modelling of LSP considering its potentially complicated
relationship with climate in a multidimensional feature space (i.e. high number of mul-
tivariate climatic drivers at biological scales) might not be possible using traditional
linear regression models (de Beurs and Henebry, 2005). In this sense, phenological
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modelling may benefit from machine learning techniques such as the Random For-
est (RF) method (Breiman, 2001), reducing uncertainties and bias (Zhao et al., 2013).
RFs have the potential to identify and model the complex non-linear relationships be-
tween phenology and climate, being able to handle a large number of predictors and
determine their importance in explaining phenology. RFs has been applied with very5

promising results to other fields of ecology and biological sciences (Lawler et al., 2006;
Archibald et al., 2009; Darling et al., 2012), as well as to the simulation of phenologi-
cal shifts under different climatic change scenarios (Lebourgeois et al., 2010), but the
potential for modelling climate-driven changes in phenology is still to be explored.

Understanding the effect of inter-annual climatic variation on LSP is an essential step10

to establish a plausible link between recent climate variability and vegetation phenolog-
ical responses at global or regional scales, and importantly to make reliable forecasts
about future vegetation responses to different future climatic scenarios. The aim of this
study is, therefore, to provide an explanation of the observed anomalies in LSP of the
entire European forest during the last decade, identifying the main climatic drivers of15

spring and autumnal LSP at the continental scale. Our research offers new insights
into the study of LSP by modelling the climate-driven anomalies in phenology, rather
than trends, and using innovative multivariate non-linear machine learning techniques
to evaluate multiple climatic predictors at biological scales, and non-climatic predictors
such as the legacy effect of the date of spring onset in leaf senescence. Climate pre-20

dictors used range from monthly average values of temperature (max, min and avg),
precipitation, short wave radiation and day length; trimestral cumulated values such
as growing degree days or chilling requirements, among others; to the date of specific
events such as the first freeze or the last freeze. Moreover, we considered flexible bi-
ological time scales in the analysis between climatic and phenological events rather25

than fixed calendar dates.
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2 Materials and methods

2.1 Data

Three sources of data were used for this research: (i) satellite sensor derived tem-
poral composites of MERIS Terrestrial Chlorophyll Index (MTCI), (ii) temperature and
precipitation data from the European Climate Assessment and Data (ECA&D) project5

(http://www.ecad.eu) and (iii) surface radiation daylight (DAL) data and surface incom-
ing shortwave (SIS) radiation data from the Climate Monitoring Satellite Application
Facilities (CM SAF, http://www.cmsaf.eu).

We used weekly composites of MTCI data at 1 km spatial resolution from 2002 to
2012. This dataset was supplied by the European Space Agency and processed by10

Airbus Defence and Space. Daily temperature (mean, minimum and maximum) and
daily precipitation data were derived from the European Climate Assessment & Dataset
(ECA&D) time-series (version 10.0) with spatial resolution of 0.25◦ ×0.25◦, covering the
period from 2002 to 2011 (Haylock et al., 2008). The CM SAF DAL version CDR v001
(Müller and Trentmann, 2013) and SIS version CDR v002 (Posselt et al., 2011, 2012)15

were derived from Meteosat satellite sensors at a spatial resolution of 0.05◦ ×0.05◦.

2.2 Phenology extraction and anomalies computation

The time-series of MERIS MTCI data was used to estimate both the onset of green-
ness (OG) and end of senescence (EOS). The yearly values of OG and EOS were
estimated for each image pixel of the study area using the methodology described in20

Dash et al. (2010). These satellite derived LSP had a strong spatio-temporal correla-
tion with ground observations (thousands of deciduous tree phenology records of the
Pan European Phenology network, PEP725) (Rodriguez-Galiano et al., 2015a).

The anomalies in the LSP for a given year were defined as the difference from
the long-term mean, normalized by the standard deviation across years. The value25

of the targeted year was excluded in the computation to enhance the inter-annual vari-
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ation (Saleska et al., 2007). To match the spatial resolution of the ECA&D dataset,
the LSP anomalies for each year were resampled to spatial resolution of 0.25◦ ×0.25◦

by extracting the median of all the LSP anomaly values within this area after exclud-
ing the areas with less than 50 LSP estimates and the non-forest pixels according
to the Globcover2005 and Globcover2009 land cover maps (http://due.esrin.esa.int/5

page_globcover.php). Globcover was selected for its greater consistency with MERIS
MTCI time-series and its high geolocational accuracy (< 150 m) (Bicheron et al., 2011).

2.3 Computation of climatic predictors

A suite of climatic predictors were identified for each 0.25◦ ×0.25◦ grid cell associated
with the occurrence of positive or negative anomalies in LSP. Schwartz et al. (2006)10

found that most phenophases of plant observations in Europe correlated significantly
with climatic predictors of the month of onset and the two preceding months. The dif-
ferent climatic measures were computed based on the 30 and 90 days previous to the
Julian date (see previous section) of the phenological event at each pixel which expe-
rienced an anomaly in phenology in a given year (Fig. 1). The chilling requirements for15

spring modelling were an exception, as the period for its computation starts 90 days
before the date of onset. Relative differences of the climatologies were computed to
capture the inter-annual variability in climate at the pixel level for every predictor and to
facilitate the modelling of climate-driven variation in phenology. The analysis included
31 and 27 predictor-related measures for spring and autumn modelling respectively.20

The predictor include temporal average values of temperature (Tmax, Tmin and Tavg),
precipitation, surface radiation daylight (DAL) and surface incoming shortwave radia-
tion (SIS); temporal cumulated predictors such as growing degree days, chilling, pre-
cipitation, SIS and DAL; and the date of specific events such as the onset of greenness
(legacy effect for autumn phenology modelling) the first freeze or the last freeze, as well25

as the difference between both dates (freeze period) for the modelling of autumn only.
Growing degree days were computed using temperature thresholds of 0 and 5◦. Chill-
ing requirements were computed as the sum of negative temperatures (temperatures

11840

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11833/2015/bgd-12-11833-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11833/2015/bgd-12-11833-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php


BGD
12, 11833–11861, 2015

Modelling anomalies
in the spring and

autumn land surface
phenology

V. F. Rodriguez-Galiano
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

below 0◦). Freeze predictors were computed using temporal windows of 90 days only,
and were defined as dates with minimum temperatures lower than −2 ◦C (Schwartz
et al., 2006).

2.4 Modelling LSP anomalies

Conventional statistical models such as linear regression are inappropriate for investi-5

gating the drivers of anomalies in phenology because many of the relationships are
likely to be non-linear. In this sense, machine learning methods have emerged as
complementary alternatives to conventional statistical techniques. Within the branch
of machine learning techniques, regression trees are particularly suitable when com-
pared to global single predictive models, allowing for multiple regression models using10

recursive partitioning (Breiman et al., 1984). Assembling a single global model might
not be representative of the phenomenon under study when there are many predictors
which interact in complicated, non-linear ways and may vary spatially. An alternative
approach is to sub-divide, or partition, the space into more homogeneous regions of
similar characteristics. Regression trees use a sum of squares criterion to split the data15

into successively more homogeneous subsets. Therefore, different regression models
can be fitted to different data subsets, which can represent different responses con-
trolled by different drivers (Lawler et al., 2006; Archibald et al., 2009). For the purpose
of this paper, this latter property makes regression trees particularly advantageous.

Different approaches have been proposed in the last few years to increase the predic-20

tive ability of regression tree models. Among all of them RFs are probably the most pop-
ular technique due to the simplicity of their applicability, interpretability of the models,
and the robustness of predictions (Rodriguez-Galiano et al., 2015b). The RF method is
an innovative machine learning approach that can perform multivariate non-linear re-
gression, combining the performance of numerous regression tree algorithms to predict25

the anomalies in OG and EOS. The RF method receives a subset of (x) input vectors,
made up of one phenology anomaly value and the values of the corresponding climatic
predictors considered in the regression. RF builds a number K of regression trees (in-
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dividual regression models) and averages the results (Breiman, 2001). After K such
trees {T (x)}K1 are grown, the RF regression predictor becomes:

f̂ K
rf

(x) =
1
K

K∑
k=1

T (x)

More details regarding the performance and the specific characteristics of a RF model
can be seen in Rodriguez-Galiano et al. (2014, 2015b).5

The locations with anomalies in LSP greater than 1 (positive and negative) were
selected to build a RF predictive model on OG and EOS. Anomaly values of OG or
EOS for each year were combined together with the different climatic predictors. The
anomaly in OG was assessed as an extra predictor to evaluate the legacy effect of an
advanced or delayed spring in the modelling of EOS. The values of these variables at10

the selected years and locations (spatiotemporal model) were combined into a set of
input feature vectors (3900 feature vectors for the spring model and 3124 for autumn)
as an input to the RF algorithm. These feature vectors were divided equally into two
subsets, one for the training of the models and one as an additional test to the one
internally computed by RF (oob) to evaluate performance. RF models composed of15

2000 trees were grown using different subsets of predictors, varying the number of
random predictors from 1 to 9. Random Forest method within the package implemented
in the R statistical software was used to build the different models (Liaw and Wiener,
2002).

2.5 Selection of the most important predictors20

The RF method can use the oob subset to estimate the relative importance of each
predictor in the model. This property is especially useful for the present research, but
also for other multivariate biological studies, where it is important to know the physi-
cal drivers of the phenomenon under investigation (Lawler et al., 2006; Archibald et al.,
2009). However, the inclusion of different measures of climatic drivers may imply a large25
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increase in the dimensionality of the datasets being used, as these variables are ob-
tained by applying multiple functions or measures to the temperature, precipitation and
radiation time-series. On the one hand, more information may be useful for the mod-
elling process; on the other hand, an excessive number of correlated predictors or
features can overwhelm the expected increase in accuracy and may introduce addi-5

tional complexity limiting the ability of the method to point to possible cause–effect
relationships between anomalies in phenology and their drivers, making interpretation
challenging.

A feature selection approach, based on the ability of the RF to assess the relative im-
portance of the predictors, was used to identify the minimum number of drivers which10

can better explain spring or autumn anomalies in phenology. To assess the impor-
tance of each climatic driver, the RF switches one of the input predictors while keeping
the rest constant, and it re-evaluates the performance of the model measuring the
decrease in node impurity (Breiman, 2001). The differences were averaged over all
2000 trees. In order to reduce the number of drivers the least important predictor was15

removed iteratively at different steps. Then, a 5-fold cross-validation was applied to ob-
tain a stable estimate of the error of the model built after predictor deletions. Finally,
the model with a better trade-off between number of predictors and error was chosen
as the basis for interpreting the likely drivers of changes in phenology.

3 Results20

Random Forest method, a multivariate, spatially non-stationary and non-linear machine
learning approach, was applied to phenological modelling across very large areas and
across multiple years simultaneously: the typical case for satellite-observed LSP. The
RF model was fitted to the relation between LSP anomalies and numerous climate pre-
dictor variables computed at biologically-relevant rather than human-imposed temporal25

scales. We restricted our climate data choices to daily data (average, minimum and
maximum temperatures, precipitation and radiation) to account for integrative forcing
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(that is, growing degree days, chilling requirements as well as cumulative precipita-
tion and radiation), computed from the exact day of the phenological event backwards,
rather than using the absolute fixed dates of the calendar months. Numerous models
were built on the basis of different predictor combinations considering different temporal
windows prior to the spring and autumn phenological events (see Sect. 2.3). The per-5

centage of variation (pseudo-R2) explained by different climatic-LSP models is shown
in the Supplement (Tables S1, S2 and S3). No previous studies have investigated in
depth the parametrization of GDD for LSP and climate inter-comparison, unlike for
ground phenological studies (Snyder et al., 1999). Although, we did not carry out an
exhaustive analysis of the optimum GDD parametrization, our results showed a sys-10

tematic pattern in spring models, presenting slightly larger pseudo-R2 for models which
used 0 ◦C as a threshold for the computation of GDD (rather than 5 ◦C). Regarding, the
length of the temporal windows for climatic function computation, spring models using
30 and 90 days for the computation of averaged and cumulative functions were more
accurate, whereas for autumn models with 90 day-averaged predictors outperformed15

the rest.
The main drivers of anomalies in LSP were identified through the application of a fea-

ture selection procedure (see section “selection of the most important predictors”). Fig-
ure 2 shows the relative error in the prediction of different models after removing the
least important predictor. Spring models were more accurate than autumn, with median20

relative error values of 10 to 27 % (12 to 1 predictor), vs. 26 to 60 % of autumn (14 to 1
predictor). Figure 3 shows the pseudo-R2 of the models as well as the relative impor-
tance of each predictor. Spring models (explained a percentage of the variance up to
81 % (Fig. 3a), whereas autumn explained up to 61 % (Fig. 3b). Regarding the relative
importance of the drivers, the same ranking in importance was observed within the dif-25

ferent models of each phenophase, which reflected the stability in the RF importance
estimation, and a high reliability of the results. To interpret the main climatic drivers
of the anomalies in phenology, simplified models with reduced number of predictors
were selected for spring and autumn, respectively. The spring model was composed
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of 6 predictors (pseudo-R2 = 0.77 and median relative error of 10 %) and the autumn
model of 5 predictors (pseudo-R2 = 0.59 and median relative error of 28 %). Our results
suggest that anomalies in the onset on greenness (LSP) of temperate forest species
are mainly driven by daily temperature (but not necessarily the GDD), with the most
important driver being the minimum temperature of the 30 days prior to onset. Pho-5

toperiod was also important, the most accurate empirical prediction was obtained by
a combined temperature-radiation forcing, integrating the SIS of the previous 90 days.
For senescence, temperature was suggested to be more important than photoperiod in
controlling the senescence process (Yang et al., 2012; Vitasse et al., 2009; Jeong and
Medvigy, 2014; Archetti et al., 2013), with the most important drivers being the date of10

the first freeze and the accumulation of chilling temperatures. However, we did not ob-
serve a legacy effect of a much earlier or later spring onset on the date of senescence.
Autumn models that included the anomaly in the onset of greenness did not outperform
the remaining models (see Tables S2 and S3) and the relative importance was low in
comparison with other drivers.15

4 Discussion

The selection and computation of the climatic predictors is an important step of phe-
nological modelling. Most of studies on the sensitivity of phenological events to climate
used human calendar scales, that is, seasonal or monthly calendar mean or cumulative
climate predictors (Menzel et al., 2006; Schwartz et al., 2006; Maignan et al., 2008a, b),20

overlooking the importance of biological time-scales in phenology. However, with the
increased availability of daily climatic datasets, current and future studies might benefit
from the use of daily information to model the drivers of plants’ circadian time-scales
(Pau et al., 2011). Our study advanced in the modelling of vegetation phenology by
improving the temporal matching between LSP anomalies and the preceding climatic25

conditions using daily data and biological scales. Regarding, the length of the tempo-
ral windows for climatic function computation, Menzel et al. (2006) showed that most
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phenological phases of plant species in Europe correlate significantly with mean tem-
peratures of the month of onset and the two preceding months. However, in our study,
when end of senescence was considered, a consistent divergent effect was observed
between spring and autumn. From a computational point of view, considering larger
temporal windows for calculating averages would induce a smoothing effect, degrad-5

ing the information in the predictors, whereas cumulative functions such as GDD or
chilling requirements would not be affected by this effect. However, we observed a di-
vergent response between spring and autumn and consistent throughout the models of
each phenophase suggests that a biological explanation for this phenomenon might be
plausible. Autumn phenophases might be driven by longer-term changes in weather,10

while for spring the average conditions of the 30 days previous to the date of onset play
a more important role (Tables S1–S3).

Understanding the drivers of anomalies in LSP amidst background inter-annual vari-
ation is a critical aspect of global change science (de Beurs and Henebry, 2005; Zhao
et al., 2013). To this end, the RF method is particularly pertinent, as it allows the as-15

sessment of the importance of the predictors (Fig. 2). Our findings reveal that the
accuracy of growing degree day-based models is overestimated using linear regres-
sion models and that non-linear multivariate relationships between temperature (es-
pecially minimum temperature) and radiation are needed to describe the relations be-
tween phenology and climatic drivers. This supports the findings of Stöckli et al. (2011)20

who explained temperate phenology using a combination of light and temperature. The
highlighted importance of minimum temperatures might be related to the fact that min-
imum temperature is a better indicator of climatic changes than either the average
or maximum temperature (Jolly et al., 2005; Duncan et al., 2014). Regarding GDD,
although it has been applied extensively to predict vegetation phenophases, it is cur-25

rently debated whether such models can detect when multiple environmental drivers
are required to initiate a phenological event, or detect drivers that are relatively static
across time, such as photoperiod (Stöckli et al., 2011). Our results support this hypoth-
esis and also showed that the role of GDD alone in driving spring phenology might
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be overestimated when linear models were considered. GDD had the largest linear
association with vegetation phenology changes, while the linear correlation between
LSP and others drivers that were revealed as very important by the RF was small (see
Tables 1 and 2). A simple linear analysis between GDD and phenology could ignore
complex non-linear associations between phenology and predictors as well as syner-5

gies between climatic drivers. Regarding the senescence phase, the autumn models
had a weaker predictive power compared the spring models. There is still lack of clear
understanding of mechanism autumn senescence, however, temperature, and particu-
larly the dates of freeze, has been suggested as major driver for autumn phenology.

The RF method provided an important alternative over simple, but less accurate10

analysis based on linear regression for the analysis of changes in spring and autumn
phenology. A further comparison with a linear regression analysis suggested that there
might be a non-linear relationship between the anomalies in LSP and the climatic
drivers. Multivariate linear regression models were also fitted from the same combi-
nation of predictors selected as optimal by Random Forest. Multivariate linear models15

explained only 36 and 26 % of the variance in spring and autumn phenology anomalies
across the continental scale. Additionally, a linear regression between predicted values
from RF and observed anomalies in phenology produced R2 values equal to 0.90 and
0.68 for spring and autumn LSP anomalies, respectively (Fig. 4a and b). On the other
hand, the correlations between the predictions of linear regression models and obser-20

vations were much weaker, with R2 values of 0.39 and 0.25 (Fig. 4c and d). Linear
models under-predicted the positive anomalies and over-predicted the negative.

A new approach to model changes in LSP was presented in this paper based on
the application of the RF model to a set of climate predictors at biological scales.
This new modelling technique has numerous advantages for the modelling of climate-25

driven changes in LSP. It is a non-parametric multivariate method which allows for
non-linear relationships between (compared to traditional linear models) phenology
and climate and can consider a large number of climatic predictors in the modelling
process. This provides potential opportunity to capture the impact of all possible envi-
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ronmental/climatic drivers on vegetation phenology. The proposed method can recog-
nize complex patterns between LSP and climate at multiple locations and times, inte-
grating them into a unique overall model, rather than generating multiple models over
a geographical area and for different years. Additionally it is data-driven, which means
that there is no need to incorporate previous knowledge about the specific responses5

of vegetation to different predominant climatic controls (i.e. temperature, rainfall, and
photoperiod), allowing climatic drivers to automatically shift both temporally and spa-
tially. Therefore, it is highly generalizable, being applicable to different biogeographical
regions where the phenology is controlled by different factors. This flexibility or gen-
eralization capacity of RF models to transition from one driver to another without the10

need for a model change also promotes its application to different climate change sce-
narios. We succeeded in modelling the anomalies in LSP phenology as observed from
satellite-sensors in the European Forest, while using the same type of input data, the
same model, and the same model parameters for the entire European continent.

The Supplement related to this article is available online at15

doi:10.5194/bgd-12-11833-2015-supplement.
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Table 1. Correlations between the predictors used in the modelling of spring anomalies. Signif-
icant correlations between the anomalies and the predictors are given in bold (p < 0.05).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 Anom. 1.00 −0.40 −0.43 −0.11 −0.09 −0.12 −0.10 −0.11 −0.10 0.24 −0.03 −0.03 −0.03
2 GDD090 −0.40 1.00 0.93 0.11 0.14 0.11 0.13 0.11 0.15 −0.64 0.00 −0.01 −0.01
3 GDD590 −0.43 0.93 1.00 0.11 0.10 0.11 0.10 0.11 0.11 −0.47 −0.01 −0.01 −0.01
4 MTG30 −0.11 0.11 0.11 1.00 0.99 1.00 0.99 1.00 0.98 −0.05 0.89 0.89 0.89
5 MTG90 −0.09 0.14 0.10 0.99 1.00 0.98 1.00 0.99 1.00 −0.13 0.88 0.88 0.88
6 MTX30 −0.12 0.11 0.11 1.00 0.98 1.00 0.99 0.99 0.98 −0.04 0.89 0.89 0.88
7 MTX90 −0.10 0.13 0.10 0.99 1.00 0.99 1.00 0.99 1.00 −0.11 0.89 0.89 0.89
8 MTN30 −0.11 0.11 0.11 1.00 0.99 0.99 0.99 1.00 0.98 −0.06 0.89 0.89 0.89
9 MTN90 −0.10 0.15 0.11 0.98 1.00 0.98 1.00 0.98 1.00 −0.15 0.88 0.88 0.88
10 FF 0.24 −0.64 −0.47 −0.05 −0.13 −0.04 −0.11 −0.06 −0.15 1.00 −0.01 0.00 0.00
11 FF −0.03 0.00 −0.01 0.89 0.88 0.89 0.89 0.89 0.88 −0.01 1.00 1.00 1.00
12 LF −0.03 −0.01 −0.01 0.89 0.88 0.89 0.89 0.89 0.88 0.00 1.00 1.00 1.00
13 PF −0.03 −0.01 −0.01 0.89 0.88 0.88 0.89 0.89 0.88 0.00 1.00 1.00 1.00
14 CRR90 −0.14 0.23 0.16 0.20 0.25 0.19 0.23 0.21 0.26 −0.25 −0.01 −0.01 −0.02
15 MRR30 −0.04 0.01 0.01 0.97 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88
16 MRR90 −0.04 0.01 0.01 0.96 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88
17 CSIS90 −0.33 −0.12 0.03 0.02 −0.03 0.03 −0.03 0.02 −0.04 0.28 −0.04 −0.04 −0.04
18 MSIS30 −0.16 −0.06 0.04 0.00 −0.03 0.00 −0.03 0.01 −0.03 0.11 −0.05 −0.05 −0.05
19 MSIS90 −0.16 −0.06 0.04 0.00 −0.03 0.00 −0.03 0.01 −0.03 0.11 −0.05 −0.05 −0.05
20 CDAL90 −0.04 0.04 0.06 0.31 0.30 0.32 0.30 0.31 0.29 0.03 0.00 0.00 0.00
21 MDAL30 −0.06 −0.05 0.03 −0.01 −0.04 −0.01 −0.04 0.00 −0.03 0.06 −0.06 −0.06 −0.06
22 MDAL90 −0.06 −0.05 0.03 −0.01 −0.04 −0.01 −0.04 0.00 −0.03 0.06 −0.06 −0.06 −0.06
23 GDD030 −0.45 0.67 0.74 0.17 0.10 0.18 0.10 0.16 0.10 −0.24 0.00 −0.01 −0.01
24 GDD530 −0.46 0.64 0.75 0.15 0.09 0.16 0.09 0.14 0.09 −0.26 −0.01 −0.01 −0.01
25 CRR30 −0.12 0.18 0.16 0.28 0.29 0.27 0.28 0.29 0.30 −0.16 −0.01 −0.01 −0.01
26 CSIS30 −0.31 −0.11 0.03 0.07 0.02 0.08 0.02 0.06 0.02 0.26 −0.03 −0.03 −0.03
27 CDAL30 −0.03 0.05 0.06 0.31 0.31 0.32 0.31 0.31 0.30 0.01 0.00 0.00 0.00
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Table 1. Continued.

14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 Anom. −0.14 −0.04 −0.04 −0.33 −0.16 −0.16 −0.04 −0.06 −0.06 −0.45 −0.46 −0.12 −0.31 −0.03
2 GDD090 0.23 0.01 0.01 −0.12 −0.06 −0.06 0.04 −0.05 −0.05 0.67 0.64 0.18 −0.11 0.05
3 GDD590 0.16 0.01 0.01 0.03 0.04 0.04 0.06 0.03 0.03 0.74 0.75 0.16 0.03 0.06
4 MTG30 0.20 0.97 0.96 0.02 0.00 0.00 0.31 −0.01 −0.01 0.17 0.15 0.28 0.07 0.31
5 MTG90 0.25 0.96 0.96 −0.03 −0.03 −0.03 0.30 −0.04 −0.04 0.10 0.09 0.29 0.02 0.31
6 MTX30 0.19 0.96 0.96 0.03 0.00 0.00 0.32 −0.01 −0.01 0.18 0.16 0.27 0.08 0.32
7 MTX90 0.23 0.96 0.96 −0.03 −0.03 −0.03 0.30 −0.04 −0.04 0.10 0.09 0.28 0.02 0.31
8 MTN30 0.21 0.96 0.96 0.02 0.01 0.01 0.31 0.00 0.00 0.16 0.14 0.29 0.06 0.31
9 MTN90 0.26 0.96 0.96 −0.04 −0.03 −0.03 0.29 −0.03 −0.03 0.10 0.09 0.30 0.02 0.30
10 FF −0.25 0.00 0.00 0.28 0.11 0.11 0.03 0.06 0.06 −0.24 −0.26 −0.16 0.26 0.01
11 FF −0.01 0.88 0.88 −0.04 −0.05 −0.05 0.00 −0.06 −0.06 0.00 −0.01 −0.01 −0.03 0.00
12 LF −0.01 0.88 0.88 −0.04 −0.05 −0.05 0.00 −0.06 −0.06 −0.01 −0.01 −0.01 −0.03 0.00
13 PF −0.02 0.88 0.88 −0.04 −0.05 −0.05 0.00 −0.06 −0.06 −0.01 −0.01 −0.01 −0.03 0.00
14 CRR90 1.00 0.20 0.20 0.01 0.06 0.06 0.53 0.04 0.04 0.09 0.07 0.77 0.11 0.58
15 MRR30 0.20 1.00 1.00 0.00 −0.03 −0.03 0.31 −0.03 −0.03 0.03 0.03 0.26 0.05 0.31
16 MRR90 0.20 1.00 1.00 0.00 −0.03 −0.03 0.31 −0.03 −0.03 0.03 0.02 0.26 0.05 0.31
17 CSIS90 0.01 0.00 0.00 1.00 0.80 0.80 0.16 0.57 0.57 0.22 0.22 0.12 0.96 0.15
18 MSIS30 0.06 −0.03 −0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06
19 MSIS90 0.06 −0.03 −0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06
20 CDAL90 0.53 0.31 0.31 0.16 0.06 0.06 1.00 0.05 0.05 0.11 0.10 0.78 0.28 0.99
21 MDAL30 0.04 −0.03 −0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05
22 MDAL90 0.04 −0.03 −0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05
23 GDD030 0.09 0.03 0.03 0.22 0.23 0.23 0.11 0.23 0.23 1.00 0.97 0.16 0.23 0.11
24 GDD530 0.07 0.03 0.02 0.22 0.24 0.24 0.10 0.23 0.23 0.97 1.00 0.15 0.24 0.10
25 CRR30 0.77 0.26 0.26 0.12 0.15 0.15 0.78 0.13 0.13 0.16 0.15 1.00 0.18 0.79
26 CSIS30 0.11 0.05 0.05 0.96 0.77 0.77 0.28 0.55 0.55 0.23 0.24 0.18 1.00 0.28
27 CDAL30 0.58 0.31 0.31 0.15 0.06 0.06 0.99 0.05 0.05 0.11 0.10 0.79 0.28 1.00
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Table 2. Correlations between the predictors used in the modelling of autumn anomalies. Sig-
nificant correlations between the anomalies and the predictors are given in bold (p < 0.05).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 Anom. 1 0.10 0.31 0.34 0.33 0.36 0.28 0.30 0.28 0.27 0.26 0.34 0.01
2 OGANO 0.10 1.00 0.06 0.08 0.14 0.16 0.05 0.15 0.02 0.07 0.05 0.19 −0.02
3 GDD030 0.31 0.06 1.00 0.97 0.54 0.58 0.94 0.53 0.88 0.42 0.87 0.62 −0.54
4 GDD530 0.34 0.08 0.97 1.00 0.53 0.60 0.86 0.49 0.80 0.37 0.80 0.59 −0.41
5 GDD090 0.33 0.14 0.54 0.53 1.00 0.98 0.49 0.95 0.54 0.90 0.36 0.85 −0.14
6 GDD590 0.36 0.16 0.58 0.60 0.98 1.00 0.49 0.92 0.54 0.85 0.37 0.84 −0.10
7 MTG30 0.28 0.05 0.94 0.86 0.49 0.49 1.00 0.56 0.93 0.44 0.94 0.63 −0.71
8 MTG90 0.30 0.15 0.53 0.49 0.95 0.92 0.56 1.00 0.61 0.93 0.43 0.89 −0.28
9 MTX30 0.28 0.02 0.88 0.80 0.54 0.54 0.93 0.61 1.00 0.58 0.78 0.60 −0.58
10 MTX90 0.27 0.07 0.42 0.37 0.90 0.85 0.44 0.93 0.58 1.00 0.28 0.73 −0.16
11 MTN30 0.26 0.05 0.87 0.80 0.36 0.37 0.94 0.43 0.78 0.28 1.00 0.61 −0.76
12 MTN90 0.34 0.19 0.62 0.59 0.85 0.84 0.63 0.89 0.60 0.73 0.61 1.00 −0.39
13 CHIL30 0.01 −0.02 −0.54 −0.41 −0.14 −0.10 −0.71 −0.28 −0.58 −0.16 −0.76 −0.39 1.00
14 CHIL90 −0.03 −0.04 −0.52 −0.40 −0.24 −0.20 −0.66 −0.36 −0.54 −0.24 −0.70 −0.48 0.91
15 FFN 0.34 0.01 0.25 0.24 0.12 0.14 0.24 0.12 0.20 0.09 0.26 0.19 −0.08
16 CRR30 0.07 0.02 0.09 0.11 0.05 0.07 0.04 −0.01 −0.09 −0.05 0.16 0.12 −0.05
17 MRR30 0.07 −0.05 0.10 0.11 0.13 0.13 0.10 0.13 0.12 0.13 0.08 0.13 0.00
18 MRR90 0.04 −0.07 0.11 0.10 0.09 0.09 0.09 0.09 0.07 0.05 0.09 0.12 0.01
19 CRR90 −0.05 0.06 0.03 0.07 −0.15 −0.11 −0.01 −0.18 −0.09 −0.31 0.08 0.04 −0.05
20 MSIS30 −0.05 −0.02 −0.09 −0.10 −0.07 −0.07 −0.02 0.02 0.03 0.02 −0.06 −0.02 −0.05
21 MSIS90 −0.05 −0.02 −0.09 −0.10 −0.07 −0.07 −0.02 0.02 0.03 0.02 −0.06 −0.02 −0.05
22 CSIS30 0.00 −0.10 −0.01 −0.03 0.04 0.02 0.02 0.07 0.23 0.17 −0.17 −0.07 0.09
23 CSIS90 −0.01 −0.11 0.01 −0.01 −0.05 −0.06 0.05 −0.01 0.14 0.07 −0.04 −0.12 −0.01
24 MDAL30 −0.08 0.01 −0.22 −0.23 −0.14 −0.14 −0.13 −0.03 −0.09 −0.03 −0.14 −0.06 −0.01
25 MDAL90 −0.08 0.01 −0.22 −0.23 −0.14 −0.14 −0.13 −0.03 −0.09 −0.03 −0.14 −0.06 −0.01
26 CDAL30 −0.09 −0.06 −0.11 −0.15 0.08 0.04 −0.09 0.09 0.17 0.23 −0.30 −0.08 0.17
27 CDAL90 −0.15 −0.10 −0.22 −0.25 −0.14 −0.19 −0.17 −0.11 −0.06 0.07 −0.24 −0.31 0.10
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Table 2. Continued.

14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 Anom. −0.03 0.34 0.07 0.07 0.04 −0.05 −0.05 −0.05 0.00 −0.01 −0.08 −0.08 −0.09 −0.15
2 OGANO −0.04 0.01 0.02 −0.05 −0.07 0.06 −0.02 −0.02 −0.10 −0.11 0.01 0.01 −0.06 −0.10
3 GDD030 −0.52 0.25 0.09 0.10 0.11 0.03 −0.09 −0.09 −0.01 0.01 −0.22 −0.22 −0.11 −0.22
4 GDD530 −0.40 0.24 0.11 0.11 0.10 0.07 −0.10 −0.10 −0.03 −0.01 −0.23 −0.23 −0.15 −0.25
5 GDD090 −0.24 0.12 0.05 0.13 0.09 −0.15 −0.07 −0.07 0.04 −0.05 −0.14 −0.14 0.08 −0.14
6 GDD590 −0.20 0.14 0.07 0.13 0.09 −0.11 −0.07 −0.07 0.02 −0.06 −0.14 −0.14 0.04 −0.19
7 MTG30 −0.66 0.24 0.04 0.10 0.09 −0.01 −0.02 −0.02 0.02 0.05 −0.13 −0.13 −0.09 −0.17
8 MTG90 −0.36 0.12 −0.01 0.13 0.09 −0.18 0.02 0.02 0.07 −0.01 −0.03 −0.03 0.09 −0.11
9 MTX30 −0.54 0.20 −0.09 0.12 0.07 −0.09 0.03 0.03 0.23 0.14 −0.09 −0.09 0.17 −0.06
10 MTX90 −0.24 0.09 −0.05 0.13 0.05 −0.31 0.02 0.02 0.17 0.07 −0.03 −0.03 0.23 0.07
11 MTN30 −0.70 0.26 0.16 0.08 0.09 0.08 −0.06 −0.06 −0.17 −0.04 −0.14 −0.14 −0.30 −0.24
12 MTN90 −0.48 0.19 0.12 0.13 0.12 0.04 −0.02 −0.02 −0.07 −0.12 −0.06 −0.06 −0.08 −0.31
13 CHIL30 0.91 −0.08 −0.05 0.00 0.01 −0.05 −0.05 −0.05 0.09 −0.01 −0.01 −0.01 0.17 0.10
14 CHIL90 1.00 −0.09 −0.04 0.00 0.01 −0.05 −0.08 −0.08 0.08 0.01 −0.04 −0.04 0.16 0.15
15 FFN −0.09 1.00 −0.10 0.05 0.04 −0.08 0.01 0.01 0.01 0.07 −0.05 −0.05 −0.08 −0.04
16 CRR30 −0.04 −0.10 1.00 0.12 0.04 0.51 −0.17 −0.17 −0.42 −0.25 −0.12 −0.12 −0.46 −0.25
17 MRR30 0.00 0.05 0.12 1.00 0.47 0.08 −0.03 −0.03 −0.02 −0.03 −0.03 −0.03 −0.02 −0.04
18 MRR90 0.01 0.04 0.04 0.47 1.00 0.06 −0.01 −0.01 −0.02 −0.04 −0.02 −0.02 −0.02 −0.08
19 CRR90 −0.05 −0.08 0.51 0.08 0.06 1.00 −0.04 −0.05 −0.14 −0.18 −0.05 −0.05 −0.20 −0.39
20 MSIS30 −0.08 0.01 −0.17 −0.03 −0.01 −0.04 1.00 1.00 0.56 0.66 0.88 0.88 0.05 −0.04
21 MSIS90 −0.08 0.01 −0.17 −0.03 −0.01 −0.05 1.00 1.00 0.55 0.66 0.88 0.88 0.05 −0.04
22 CSIS30 0.08 0.01 −0.42 −0.02 −0.02 −0.14 0.56 0.55 1.00 0.80 0.30 0.30 0.66 0.28
23 CSIS90 0.01 0.07 −0.25 −0.03 −0.04 −0.18 0.66 0.66 0.80 1.00 0.31 0.31 0.18 0.40
24 MDAL30 −0.04 −0.05 −0.12 −0.03 −0.02 −0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 −0.05
25 MDAL90 −0.04 −0.05 −0.12 −0.03 −0.02 −0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 −0.05
26 CDAL30 0.16 −0.08 −0.46 −0.02 −0.02 −0.20 0.05 0.05 0.66 0.18 0.05 0.05 1.00 0.41
27 CDAL90 0.15 −0.04 −0.25 −0.04 −0.08 −0.39 −0.04 −0.04 0.28 0.40 −0.05 −0.05 0.41 1.00
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Figure 1. Flow-chart illustrating the methodology.
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Figure 2. Relative error of the models fitted as a result of the feature selection approach. Me-
dian (interior horizontal line), mean (interior square), 1 and 99 % quantiles (edge of boxes),
range (extremes). Relative errors were calculated for the prediction of 1974 and 1576 indepen-
dent observations for spring (a) and autumn (b), respectively.
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Figure 3. Relative importance of each independent variable in predicting phenology anomalies.
Different models derived from the feature selection approach are represented in each column.
Numbers given within each column represent the pseudo-square correlation coefficient of each
model. Plots at the top and bottom represent the spring (a) and autumn anomalies (b), re-
spectively. The names of predictors follows the notation: prefix M and C represent the mean
and cumulated functions; TX, TN and TG: maximum, minimum and average temperature, re-
spectively; PP: precipitation; SIS: surface incoming shortwave radiation; DAL: surface radiation
daylight; GDD: growing degree days; CHIL: chilling requirements; FF, LF and PF: first, last and
period of freeze, respectively.
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Figure 4. Scatterplots between observed anomalies in LSP and the predictions calculated
using a selection of climatic predictors (see Figs. 2 and 3). Plots for spring phenology are shown
on the left panel (blue; a, c) and autumn on the right (red; b, d). Random Forest predictions are
given in the upper panel (a, b) and those of the linear regression in the bottom (c, d) panel.
The dashed lines represent an exact 1 : 1 relationship (expected fitting), the solid lines show
a linear regression of these data. The explained variances (percentage R2 of regression line)
are 90 % (spring Random Forest model), 68 % (autumn Random Forest model), 39 % (spring
Linear model) and 25 % (autumn linear model).
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