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Abstract 
Coarse-resolution remotely sensed images are high in tem-
poral repetition rates, but their low spatial resolution limits 
their application in updating land cover maps. Our proposed 
land cover updating method involves the use of coarse-reso-
lution images to update fine-resolution land cover maps. The 
method comprises change detection and sub-pixel mapping 
methods. The current coarse-resolution image is unmixed, 
and the previous fine-resolution map is spatially degraded 
to produce current and previous class fraction images. A 
change detection method is applied to these fraction images 
to create a fine-resolution binary change/non-change map. 
Finally, a sub-pixel mapping method is applied to update the 
fine-resolution pixel labels that are changed in the change/
non-change map. The proposed method is compared with a 
pixel-based classification method and two sub-pixel mapping 
methods. The proposed method maintains most of the spatial 
patterns of land cover classes that are unchanged in the 
previous and current images, whereas other methods cannot. 

Introduction
Remotely sensed images can provide reliable land cover in-
formation at different scales and are the primary data utilized 
in the production and updating of land cover maps. At the 
global scale, coarse-resolution images, such as those obtained 
with a moderate-resolution imaging spectroradiometer (MO-
DIS), have been applied to build land cover products, such 
as the MODIS land cover product (Friedl et al., 2002). Coarse-
resolution images are high in temporal repetition rates, which 
allow the timely updating of land cover maps and the creation 
of long-term land cover products. However, the spatial resolu-
tion of coarse-resolution images is low. Coarse-resolution land 
cover products fail to satisfy regional-scale land cover re-
source and landscape analyses. At the regional scale, fine-res-
olution remotely sensed images are the primary data utilized 
to generate land cover maps. For instance, Landsat images at a 
spatial resolution of 30 m are utilized to produce and update 
the National Land Cover Database (NLCD) of the United States 
(Homer et al., 2007). However, owing to the tradeoff between 
spatial and temporal resolution, fine-resolution images have 
their limitations because they are often acquired at a rela-
tively low temporal resolution. The land cover products from 
fine-resolution images are derived only from remotely sensed 
data acquired during one or several years, and these products 
represent the land cover characteristics of a specific period. 
Therefore, they lack not only long-term but also timely land 
cover change information.

Using a current coarse-resolution image and a previous 
fine-resolution map to timely update fine-resolution land 

cover products at the regional scale is meaningful and chal-
lenging. This task necessitates the use of multi-resolution im-
ages, which provide mutually supplementary land cover infor-
mation at different scales. A popular approach that combines 
fine-resolution and coarse-resolution images is the use of 
coarse-resolution images that cover the entire area as the pri-
mary data source, as well as fine-resolution images that cover 
a part of the area as training samples. Braswell et al. (2003) 
combined coarse-resolution and fine-resolution images to 
extract land cover fraction images at the sub-pixel scale using 
soft classification, which predicts land cover class fractional 
information within each coarse-resolution pixel. The fine-res-
olution images were utilized to train endmember signatures, 
and the coarse-resolution images were utilized for spectral 
unmixing. Lu et al. (2011) integrated MODIS and Landsat im-
ages to map a fractional forest cover in the Brazilian Amazon. 
MODIS images were unmixed to forest fraction images, whereas 
Landsat images were utilized to calibrate the forest fraction 
images. However, the aforementioned methods can only detect 
land cover fraction within each coarse-resolution pixel and 
cannot produce fine-resolution land cover maps.

Sub-pixel mapping (SPM) or super-resolution mapping 
is a technique that transforms a coarse-resolution image or 
a spectral unmixing result into a fine-scale hard classifica-
tion map by dividing pixels into sub-pixels and assigning 
different classes to these sub-pixels (Foody, 2006; Atkinson, 
2009). SPM provides more information than spectral unmix-
ing during the downscaling of coarse-resolution images 
because SPM can specify the location of each class within the 
coarse pixels. Generally, SPM adopts mono-temporal coarse-
resolution remotely sensed images as input. In fact, SPM is an 
ill-posed inverse problem of transforming a coarse-resolution 
fraction image to a fine-resolution land cover map, and SPM 
accuracy is influenced by the uncertainty in determining fine-
resolution pixel labels (Nguyen et al., 2006; Ling et al., 2010). 
The combination of a current coarse-resolution image and a 
previous fine-resolution land cover map is useful in reducing 
SPM uncertainty. Ling et al. (2011) developed a sub-pixel scale 
land cover change mapping method by using a current coarse-
resolution remotely sensed image and a previous fine-resolu-
tion land cover map. This method was directly used on land 
cover fraction images obtained by spectral unmixing applied 
to remotely sensed images; fraction image errors reduced the 
accuracy of the result. 

The integration of a previous fine-resolution land cover 
map into land cover classification and map updating accuracy 
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has been developed in recent years. Previous studies have 
shown that pixel-based classification methods that integrate 
previous land cover map information outperform methods that 
independently classify images. Xian et al. (2010) updated 2001 
NLCD impervious surface products to 2006 through a change 
detection method with Landsat imagery. Chen et al. (2012) 
proposed an automatic approach to update land cover maps. 
With the application of a change detection method to the 
previous map and current image (Chen et al., 2011), the afore-
mentioned land cover map updating approaches are simpli-
fied to update only the labels of changed pixels in the current 
image. However, these methods require that current remotely 
sensed images have a spatial resolution as fine as that of the 
previous land cover map and that the advantage of coarse-res-
olution images with a high temporal resolution be ignored.

This study proposes a novel land cover map updating 
method that involves the use of a current coarse-resolution 
image and a previous fine-resolution land cover map to up-
date fine-resolution land cover maps. The proposed method 
comprises a change detection method and an SPM method. 
The change detection method is utilized to detect which fine-
resolution pixels are changed in each coarse-resolution image 
pixel, whereas SPM is used to label only the changed fine-
resolution pixels instead of all the fine-resolution pixels in 
the image. The proposed method was validated on the basis 
of synthetic multi-spectral and Landsat images by comparison 
of the proposed method with a hard classification method and 
two SPM methods. 

Methods
The proposed method comprises a change detection method 
and an SPM method. The change detection method is used to 
produce a fine-resolution binary change/non-change map. SPM 
is utilized to label only the changed fine-resolution pixels ac-
cording to the binary change/non-change map.

Change Detection Method
Change detection techniques can be grouped into two 
categories. One category involves detecting binary change/
non-change information, and the other category involves 
detecting the “from - to” change trajectory. In this study, fine-
resolution pixel change/non-change information is detected 
on the basis of coarse- and fine-resolution images. Although 
several remote sensing techniques have been successfully 
used in change detection, most of them focus on the change 
“between” classes measured in a crisp way through which 
each pixel label is changed or unchanged in different images. 
When the spatial resolution of a remotely sensed pixel is 
coarse, the pixel is usually not pure and comprises different 
land cover classes. Therefore, crisp change detection methods 
are inappropriate for coarse-resolution image change detec-
tion. Rather, the significance arises in the way that land cover 
fractions within each pixel may change in different images. 
Spectral unmixing applied to coarse-resolution images can 
generate land cover fraction images that represent land-cover 
area proportions within each pixel at the sub-pixel scale. 
Fraction image-based change detection methods quantify the 
change in different classes within each pixel by comparing 
the fraction images acquired at different times, so these meth-
ods are suitable for the change detection of coarse-resolution 
remotely sensed images (Lu et al., 2004a). In this study, the 
fraction image-based change detection method is applied to 
detect sub-pixel land cover change information by comparing 
a pair of current and previous fraction images. 

Current fraction images are produced by applying spectral 
unmixing to the current coarse-resolution image. Previous 
studies have confirmed that linear spectral mixture analysis 
(LSMA) can extract land cover fractions that represent area 

proportions of the endmembers within the pixel and can be 
applied in land cover fractional change detection (Roberts et 
al.,1998; Ju et al., 2003; Lu et al., 2004b). In this study, LSMA 
is applied to current coarse-resolution images to generate cur-
rent land cover fraction images.

The previous coarse-resolution fraction images are spatial-
ly degraded on the basis of the previous fine-resolution land 
cover map with the use of a mean filter (Foody et al., 2002; 
Tatem et al., 2003; Wang et al., 2014). We assume C classes in 
the previous map. C fine-resolution binary category maps are 
first produced. In the kth (k = 1, …, C) fine-resolution land cov-
er category map, a value of 1 is assigned to the fine-resolution 
pixel if it belongs to class k; otherwise, a value of 0 is assigned 
to it. The scale factor between the size of the coarse-resolution 
image pixel and the pixel in the fine-resolution map is defined 
as s, and each coarse-resolution pixel contains s2 fine-resolu-
tion pixels (sub-pixels). Each of the C fine-resolution binary 
category maps is then spatially degraded with a mean filter 
that has an s × s fine-resolution pixel window to generate a 
previous coarse-resolution fraction image of that class.

After the current and previous coarse-resolution fraction 
images are produced, the change/non-change information of 
each class in every coarse-resolution pixel can be obtained. A 
fraction differencing image for each class is produced by ap-
plication of a subtraction operation to the current and previous 
fraction images of that class. Assume that Fk,pre and Fk,cur are the 
previous and current fraction images of class k. ΔFk is the frac-
tion differencing image of class k and is calculated as follows:

 ΔFk = Fk,pre – Fk,cur . (1)

In implementing change/non-change detection on each 
fraction differencing image, establishing a threshold level 
to define the land cover change of that class in each coarse-
resolution pixel is necessary. In this study, the threshold 
is determined through the use of training images (Lu et al., 
2004b). These training images include a pair of a previous 
fine-resolution map and a current coarse-resolution remotely 
sensed image of a training region. The previous training im-
age is acquired temporally close to the previous data as the 
input of proposed model, and the current training image is 
acquired temporally close to the current data as the input of 
proposed model. The previous fine-resolution training map is 
spatially degraded into the previous training fraction images, 
and the current coarse-resolution training image is unmixed 
into the current training fraction images. The training fraction 
differencing images are obtained from the pair of previous 
and current training fraction images according to Equation 1. 
The selection of thresholds for each class is based on statisti-
cal analysis of unchanged land-cover sample plots within the 
training fraction differencing image of that class, in consid-
eration of the fact that unchanged land covers have normally 
distributed histograms in fraction differencing values (the 
mean value is close to zero), whereas changed land covers do 
not. Assume that SDk is the standard deviation of the values 
of pixels that cover the unchanged sample plots in the train-
ing fraction differencing image of class k. The land cover 
fraction change/non-change threshold value for class k, called 
Tk, equals to 3 × SDk (Lu et al., 2004b).

The fine-resolution binary change/non-change map is 
created after the fraction change/non-change threshold for 
each class is determined with the use of the training data. 
The change or non-change of each fine-resolution pixel is 
determined as follows. We assume that bi is the ith coarse-
resolution pixel in the current image, and ai,j is the jth fine-
resolution pixel in bi. We also assume that the label of ai,j in 
the previous map is class k. First, we determine whether the 
fraction value of class k in bi is changed by comparing the 
value of coarse-resolution i in the fraction differencing image 
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ΔFk (called ΔFk,i) and the threshold value Tk. If ΔFk,i falls in 
the range of −Tk to Tk, the fraction value of class k in bi is 
unchanged; otherwise, the fraction value of class k in bi is 
changed. We make the simple assumption that if the fraction 
value of class k in bi is unchanged, then all the fine-resolution 
pixels labeled as class k in bi  in the previous map are un-
changed; therefore, the fine-resolution pixel ai,j is labeled as 
“unchanged” in the fine-resolution binary change/non-change 
map. Likewise, if the fraction value of class k in bi is changed, 
all the fine-resolution pixels labeled as class k in bi in the 
previous map are changed, and the fine-resolution pixel ai,j 
is labeled as “changed” in the fine-resolution binary change/
non-change map. 

Sub-pixel Mapping
SPM is an approach to predict fine-resolution pixel (or sub-
pixel) labels within each coarse-resolution pixel. SPM is 
essentially a hard classification technique at a finer spatial 
resolution than that of the input coarse-resolution remotely 
sensed image. Several SPM methods have been proposed in 
recent years (Table 1). These methods include pixel-swapping 
algorithm (Atkinson, 2005; Foody and Doan, 2007; Makido 
et al., 2007; Li et al., 2011; Tong et al., 2013; Xu and Huang, 
2014), Hopfield neural networks (Tatem et al., 2003; Ling et 
al., 2010; Muad and Foody, 2012), spatial attraction model 
(Mertens et al., 2006; Ge et al., 2009; Shen et al., 2009; Ling 
et al., 2013), Markov random field (Kasetkasem et al., 2005; 
Tolpekin and Stein, 2009; Ardila et al., 2011; Li et al., 2012; 
Wang and Wang, 2013), spatial-spectral managed model (Ling 
et al., 2012; Li et al., 2014), spatial regularization (Villa et al., 
2011), indicator kriging (Boucher and Kyriakidis, 2007; Wang 
et al., 2014), interpolation model (Ling et al., 2013), multiple-
point simulating model (Ge, 2013), particle swarm optimiza-
tion (Wang et al., 2012), and supervised fuzzy c-means-based 
model (Li et al., 2012). 

Spatial-spectral managed SPM algorithm (SSMA) is a simple 
yet effective method that can be applied directly to remotely 
sensed images. SSMA is utilized in this study to label current 
fine-resolution pixels marked as changed pixels in the fine-
resolution change/non-change map, rather than labeling all 
current fine-resolution pixel labels in the entire image as tra-
ditional SPM methods do. SSMA comprises three parts: a spatial 
term, a spectral term, and a balance parameter. The spatial term 
is the regularization term aiming to make the solution smooth. 
The spectral term is the data term to preserve information of 
the original coarse-resolution image. The balance parameter is 
utilized to balance the contribution of the spatial and spectral 

terms. 
We assume that the coarse-resolution image is y, and y 

contains B bands with each band containing n pixels. The 
output of SPM is a fine-resolution land cover map (c). The goal 
function (E) of SSMA is characterized as:

 E = λ · Espatial + Espectral (2)

where Espatial is the spatial term, Espectral is the spectral term, 
and λ is the balance parameter. 

The SSMA spatial term aims to maximize the spatial cor-
relation of neighboring fine-resolution pixels based on the 
assumption that spatially proximate observations of a given 
property are more similar than distant observations (Verhoeye 
and De Wulf, 2002; Makido and Shortridge, 2007; Atkinson, 
2009). The spatial term for fine-resolution pixel j in coarse-
resolution pixel i, ai,j, is computed as:
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where N(ai,j) is a symmetric neighborhood system that includes 
all fine-resolution pixels inside a square window whose center 
is ai,j (ai,j itself is not included in the window); d(ai,j, al) is the 
Euclidian distance between ai,j and al(al ∈ N(ai,j));c(ai,j) and c(al) 
are the land cover class labels of fine-resolution pixels ai and 
al. δ(c(ai,j), c(al)) is defined as:
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The spectral term is utilized to preserve information of the 
original coarse-resolution image. Assume that yi is the observed 
pixel spectral value of pixel bi in y, μi is the synthetic coarse-
resolution pixel spectral vector of pixel bi. Assume that the 
spectrum measured by a sensor is a linear combination of the 
spectra of all components within the pixel, μi is calculated as:
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C
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(5)

where θki is the proportion of class k in pixel bi; θki is calcu-
lated from label map c which is the SSMA intermediate result 
in each iteration, by dividing the number of fine-resolution 

Table 1. Sub-Pixel MaPPing (SPM) MeThod naMeS and iMPorTanT MaTheMaTical VariableS definiTion

SPM and variables names Definition

PSA Pixel-swapping algorithm based SPM

SSMA Spatial–spectral managed SPM

CD_SSMA Land cover map updating method that incorporates change detection and SSMA

MDC Minimum distance classifier

y Current coarse-resolution image

c Current fine-resolution land cover map outputted from SPM 

ΔFk Fraction differencing image of class k

Tk Land cover fraction change/non-change threshold value for class k in ΔFk

bi The i-th coarse-resolution pixel in the current image

ai,j The j-th fine-resolution pixel in bi.

c(ai,j) The land cover class label of the fine-resolution pixel ai,j

s Scale factor between the size of the coarse-resolution image pixel and the pixel in the fine-resolution map

λ Balance parameter in SSMA and CD_SSMA
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pixels labeled as class k in pixel bi by total fine-resolution 
pixel number, i.e., s2, in bi; and μk is the endmember spec-
tral vector of class k. The SSMA spectral term for pixel bi is 
expressed as

 Espectral(bi) =(yi – μi)T(yi – μi) (6)

where T is the transposition operation. Therefore, the goal 
function (E) of SSMA is calculated as:

 
E E c a E bspatial

i j
i j

spectral
i

i

= ⋅ ( ) + ( )∑ ∑λ ( ),
,

. (7)

SSMA optimization is achieved by minimizing the goal func-
tion through simulated annealing (Geman and Geman, 1984). 

Land Cover Map Updating by Integrating Change Detection and SPM
The proposed land cover map updating method that incorpo-
rates change detection and SSMA (CD_SSMA) is a modification of 
SSMA. Compared with SSMA, CD_SSMA adopts the fine-resolution 
binary change/non-change map and the previous fine-resolution 
map as base maps to update the fine-resolution pixel labels. CD_
SSMA determines if the fine-resolution pixel is changed before 
labeling this fine-resolution pixel. If a fine-resolution pixel is 
detected as “changed” in the binary change/non-change map, 
this fine-resolution pixel is labeled according to the SSMA goal 
function; if a fine-resolution pixel is detected as “unchanged” 
in the binary change/non-change map, this fine-resolution pixel 

is labeled according to the previous fine-resolution land cover 
map. The flowchart of CD_SSMA is shown in Figure 1.

Methods for Comparison
CD_SSMA was compared with a hard classification method and 
two SPM methods. Minimum distance classifier (MDC) was 
employed as the hard classification method to generate the 
pixel-based classification map. The pixel-swapping algorithm 
(PSA) (Atkinson, 2005) and SSMA were utilized as SPM meth-
ods for comparison. PSA is a widely used SPM method. In the 
PSA initialization step, the fine-resolution pixels of each class 
within each coarse-resolution pixel are randomly labeled ac-
cording to the numbers calculated with the use of land cover 
fraction images, which are the output of a spectral unmixing 
model. In each iteration, two fine-resolution pixels with differ-
ent land cover labels are randomly selected from each coarse-
resolution pixel. If swapping these two fine-resolution pixels 
increases the land cover spatial dependence of the land cover 
map, these two fine-resolution pixels are swapped. PSA stops 
when a fixed number of iteration is reached. MDC, PSA, and 
SSMA adopt a coarse-resolution mono-temporal image as input.

Experimental Results
Experiment on Synthetic Multi-spectral Images
A synthetic multi-spectral image was used as the current 
coarse-resolution image to avoid spectral signature bias in 
deriving the endmember signatures. The previous and current 

Figure 1. Flowchart of cd_SSMa.
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fine-resolution land cover maps were obtained from NLCD 
2001 and 2006, respectively. NLCD is a land cover classifica-
tion scheme that has been applied consistently at a spatial 
resolution of 30 m across the United States. NLCD is based 
primarily on unsupervised classification of Landsat satel-
lite data. NLCD 2001 and 2006 are strictly geo-registered to 
the Albers Equal Area projection grid (Homer et al., 2004). 
In this study, the original 16 land cover classes in NLCD 2001 
and 2006 were combined and reclassified into five classes, 
namely, Water-Wetlands, Developed-Barren, Forest, Shru-
bland-Herbaceous, and Planted/Cultivated.

Both the previous map obtained from NLCD2001 and the 
current map obtained from NLCD2006 contain 800 × 800 pixels 
of the same area located in Charlotte, North Carolina. The pre-
vious map is used as CD_SSMA input. The current map is used 
not only as the reference map for model validation, but also 
to produce the current coarse-resolution multi-spectral image. 
The number of bands was set to 4 to simulate the fine-resolu-
tion multi-spectral images. The five endmember signature DN 
values were set to [380, 490, 300, 320]T, [310, 335, 235, 260] 

T, [250, 410, 180, 390]T, [230, 360, 320, 345]T, and [450, 220, 
120, 170] T. The spectral response of each class was assumed 
to be normally distributed in each waveband. The covariance 
matrixes for all the classes were set to 600·M, where M is a 4 
× 4 matrix of 1. The coarse-resolution multi-spectral images 
were then generated by spatially degrading the fine-resolution 
multi-spectral image with a mean filter with scale factor s = 5 
and  s = 10 (Tolpekin and Stein, 2009). 

The training images used to determine the land cover frac-
tion change/non-change threshold values were also obtained 
from NLCD2001 and NLCD2006. The previous and current fine-
resolution training maps contain 4,000 × 4,000 pixels near the 
study area. The current coarse-resolution multi-spectral image 
was produced on the basis of the current fine-resolution 
training map with the use of the same method as that used to 
produce the multi-spectral testing data as CD_SSMA input. 

The parameters of the different SPM methods were set. 
Neighborhood window size, which is the length of the square 
side of the neighborhood, was set to 5 in PSA (Makido and 
Shortridge, 2007) and 7 in both SSMA and CD_SSMA (Ardila 
et al., 2011). Balance parameter λ in SSMA and CD_SSMA was 
set empirically. If λ is small, the result maps are unsmoothed 
with isolated patches; if λ is large, the result maps are over-
smoothed with rounded patches. In this study, λ = 80 was set 
at s = 5, and λ = 5 was set at s = 10. 

The CD_SSMA training images are shown in Plate 1. A mean 
filter was used to spatially degrade the previous fine-resolu-
tion training map. LSMA was utilized to unmix the current 
coarse-resolution training image. Comparing the previous and 
current fraction images obtained from the training images and 
applying the supervised change detection method (Lu et al., 
2004b) to the images helped determine the land cover fraction 
change/non-change threshold values of the fractional change 
for each class (Table 2). 

Plate 1 also shows the classification and SPM results, which 
differ significantly. The class boundaries in the MDC result 
are serrated and rough because the hard classification map is 
produced at the pixel scale and the mixed pixels are labeled 
as monotypes regardless of the spatial patterns of land cover 
classes within mixed pixels. In the PSA and SSMA results, 
the land cover patches are aggregated into rounded patches 
because SPM maximizes the spatial correlation of neighbor-
ing fine-resolution pixels. Many speckle artifacts in salt-
and-pepper appearance can be seen in the PSA result. This is 
because the fine-resolution pixel number of a class, which 
is determined by class fractions of that class in the coarse-
resolution pixel, is very few, and these fine-resolution pixels 
are characterized as speckle artifacts in the result map. In PSA, 

swapping a pair of fine-resolution pixels within the coarse-
resolution pixel does not change class fractions. By contrast, 
such speckle artifacts are mostly eliminated by SSMA in which 
the land cover fractions can be changed before and after SPM 
(Kasetkasem et al., 2005; Tolpekin and Stein, 2009; Ling et al., 
2012; Li et al., 2014). The CD_SSMA result matches the refer-
ence map better than the other results. The speckle artifacts 
are eliminated, and the spatial pattern of the linear-shaped 
Developed-Barren class, which is unchanged in the previous 
and current maps, is preserved in the zoomed area because 
CD_SSMA incorporates a change detection method and pre-
serves the unchanged fine-resolution pixel labels. The scale 
factor plays an important role in the results. With the increase 
in the scale factor, the MDC map becomes coarse and the PSA 
and SSMA maps acquire more aggregated patches. By contrast, 
the CD_SSMA result does not change significantly.

A quantitative comparison was conducted with Kappa 
value, quantitative disagreement (QD), and allocation disagree-
ment (AD) to assess the match between the reference land 
cover map and the resulting land cover map. QD is the differ-
ence between the reference and resulting maps caused by a 
less-than-optimal match in the proportions of categories. AD 
is the difference between the reference and resulting maps 
caused by a less-than-optimal match in the spatial allocation 
of categories given the proportions of the categories in the 
reference and resulting maps. Low values of QD and AD show a 
good match between the resulting and reference maps (Pontius 
and Millones, 2011). Overall accuracy (OA) calculated from the 
change/non-change matrix was utilized to quantify the match 
between the real change/non-change map and the resulting 
change/non-change map. The real change/non-change map is 
produced by a per-pixel comparison of the reference and pre-
vious maps, whereas the resulting change/non-change map is 
produced by a per-pixel comparison of the resulting and previ-
ous maps. The accuracies of the different methods are shown 
in Table 3. The Kappa and OA values for all the methods are 
higher at s = 5 than at s = 10, and the QD and AD values for all 
the methods are lower at s = 5 than at s = 10 except for the QD 
value for SSMA. This result shows that coarsening the current 
coarse-resolution remotely sensed image always reduces the 
accuracy of different methods in land cover map updates. The 
Kappa values of CD_SSMA are approximately 0.20 higher than 

Table 2. land coVer fracTion change/non-change ThreShold ValueS for 
differenT claSSeS for SynTheTic iMageS

s=5 s=10

Threshold 
value

Water-Wetlands 0.1043 0.0612

Developed-Barren 0.1995 0.1301

Forest 0.0432 0.0290

Shrubland-Herbaceous 0.0835 0.0543

Planted/Cultivated 0.0618 0.0473

Table 3. accuracieS of The differenT MeThodS uSing SynTheTic iMageS

Kappa QD AD OA

S = 5

MDC 0.6753 0.0289 0.2050 0.7806

PSA 0.7071 0.0080 0.2055 0.8008

SSMA 0.7200 0.0390 0.1619 0.8110

CD_SSMA 0.9172 0.0088 0.0513 0.9507

S = 10

MDC 0.5336 0.0535 0.2660 0.7004

PSA 0.5188 0.0094 0.3442 0.6747

SSMA 0.5527 0.0211 0.3016 0.6997

CD_SSMA 0.7774 0.0103 0.1514 0.8575
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Plate 1. Training images, previous map, reference map, change map, and result maps of different methods using a synthetic multi-
spectral image: (a) Training images, (b) Previous map, reference map, and change map, and (c) Results map.
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those of the other methods, and the OA values of CD_SSMA are 
approximately 0.15 higher than those of the other methods at 
s = 5 and s = 10. The QD and AD values for MDC are high; this 
finding reveals the influence of the mixed pixel problem on 
pixel-based classification. The AD value for PSA is extremely 
high; this result shows that the uncertainty of the spatial 
locations of different land cover classes is the main factor that 
affects accuracy. The QD and AD values for CD_SSMA are lower 
than those of SSMA, MDC, and PSA at s = 5 and s = 10 (except 
for the QD value of PSA). Thus, CD_SSMA is effective to predict 
the locations of land cover classes at the sub-pixel scale.

Experiment on Landsat Images 
CD_SSMA was validated on Landsat multi-spectral imageries 
in this experiment. The study area is located near Sorriso 
(12°33'21"S and 55°42'31"W) in Mato Grosso State, Brazil. 
This area is in the Brazilian Amazon Basin, which is mainly 
covered by tropical forests and has undergone a massive 
deforestation process in recent years. A Thematic Mapper 
(TM) image acquired on 11 July 1988 with a spatial resolution 
of 28.5 m was employed to produce the previous land cover 
map. A Landsat Enhanced Thematic Mapper+ (ETM+) image 
acquired on 18 July 2005 with a spatial resolution of 30 m 
was utilized to produce the reference land cover map. The TM 

Figure 2. SPM and classification results of different methods using Landsat images.
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image was geo-registered to the ETM+ image and resampled 
at a spatial resolution of 30 m. The registration error between 
the TM and ETM+ images was less than 0.5 pixel. The TM 
and ETM+ images were subset with 2,880 × 2,000 pixels and 
then manually digitized to the previous and reference maps 
with forest and non-forest classes in the maps. In addition, 
the ETM+ image (red and near-infrared bands) was spatially 
degraded into the coarse-resolution image with a mean filter 
with the scale factor s = 8 to simulate the first two bands of 
MODIS image at a spatial resolution of 250 m. 

The previous and current fine-resolution training images 
with 1,600 × 1,600 fine-resolution pixels were obtained from 
the same TM and ETM+ images located near the study area. 
The previous fine-resolution training image was manually 
digitized to the previous training land cover map, which was 
then spatially degraded into the previous fraction images 
with a mean filter at s = 8. The current fine-resolution train-
ing image was spatially degraded into the coarse-resolution 
multi-spectral images with a mean filter at s = 8, which was 
then unmixed into current fraction images with the use of 
LSMA. Comparison of the pair of previous and current train-
ing fraction images with the use of the supervised change 
detection method (Lu et al., 2004b) shows that the land cover 
fraction change/non-change threshold values were 0.1585 for 
both forest and non-forest. The neighborhood window size 
values in PSA, SSMA, and CD_SSMA were set similar to those 
in the synthetic image experiment. λ = 1 was set in SSMA and 
CD_SSMA through numerous trials.

As can be seen in Figure 2, MDC generates aggregated and 
discontinuous patches. The small linear object in the zoomed 
area is eliminated because of the coarse resolution of the re-
motely sensed image. In the PSA result, the linear object is dis-
continuous. In the SSMA result, the linear object is eliminated 
because of the spatial smoothing effect. By contrast, the linear 
object is mostly preserved in the CD_SSMA result. Quantitative 
analysis shows that the Kappa and OA values of CD_SSMA are 
higher than those of other methods (Table 4). Although the QD 
value of CD_SSMA is approximately 0.003 higher than that of 
MDC and SSMA, the AD value of CD_SSMA is approximately 0.01 
lower than that of the other methods.

Table 4. accuracieS of The differenT MeThodS uSing landSaT iMageS

Kappa QD AD OA

MDC 0.8862 0.0147 0.0429 0.9524

PSA 0.8890 0.0203 0.0326 0.9471

SSMA 0.8993 0.0142 0.0336 0.9522

CD_SSMA 0.9116 0.0181 0.0239 0.9570

Conclusions
CD_SSMA, a sub-pixel scale land cover map updating method 
that integrates change detection and SPM, was developed in 
this study. CD_SSMA utilizes current coarse-resolution images 
with high temporal resolution and previous land cover maps 
with fine spatial resolution to update land cover maps with 
high temporal and fine spatial resolutions. Unlike other SPM 
methods that directly label all the fine-resolution pixels in 
the image, CD_SSMA employs a change detection method to 
produce a fine-resolution binary change/non-change map and 
only updates the fine-resolution pixels that are changed in the 
binary change/non-change map through the use of SSMA. The 
spatial patterns of the unchanged fine-resolution pixels in the 
previous map can be preserved in the CD_SSMA result.

The proposed method was tested on synthetic multi-spec-
tral and Landsat images by comparing the proposed method 
with a hard classification method and two SPM methods, 

namely, PSA and SSMA. The results show that the hard clas-
sification method generates land cover maps with serrated 
boundaries because of the coarse resolution of the remotely 
sensed image. PSA generates land cover maps with speckle 
artifacts, and SSMA generates land cover maps with over-
smoothed boundaries. CD_SSMA generates land cover maps 
that are close to the reference map and preserves most of the 
spatial patterns of the unchanged classes. Quantitative analy-
sis shows that the CD_SSMA results have higher Kappa values 
and lower allocation disagreement values in all experiments 
by comparison with the results of the other methods. 

The accuracy of CD_SSMA is related to the number of 
constraints. First, CD_SSMA requires that the registration error 
between the previous fine-resolution land cover map and the 
current coarse-resolution image be strictly controlled because 
mis-registration will reduce the change detection accuracy. 
Furthermore, training images are necessary to obtain the 
threshold value for the identification of unchanged classes in 
every coarse-resolution pixel. Unsupervised threshold deter-
mination methods that can be applied without image training 
must be developed. Finally, the balance parameter in the SPM 
procedure of CD_SSMA was set by trials. A comprehensive 
study that involves the automatic estimation of the optimal 
balance parameter value is required in the future.

Acknowledgments
This work was supported in part by the Natural Science 
Foundation of China under Grant No. 41301398, in part by 
the National Basic Research Program (973 Program) of China 
under Grant No. 2013cb733205 and in part by Natural Sci-
ence Foundation of Hubei Province for Distinguished Young 
Scholars under Grant No. 2013CFA031.
References
Ardila, J.P., V.A. Tolpekin, W. Bijker, and A. Stein, 2011. Markov-

random-field-based super-resolution mapping for identification 
of urban trees in VHR images, ISPRS Journal of Photogrammetry 
and Remote Sensing, 66(6):762–775.

Atkinson, P.M., 2005. Sub-pixel target mapping from soft-classified, 
remotely sensed imagery, Photogrammetric Engineering & Re-
mote Sensing, 71(7):839–846.

Atkinson, P.M., 2009. Issues of uncertainty in super-resolution map-
ping and their implications for the design of an inter-comparison 
study, International Journal of Remote Sensing, 30(20):5293–5308.

Boucher, A., and P.C. Kyriakidis, 2007. Integrating fine scale informa-
tion in super-resolution land-cover mapping, Photogrammetric 
Engineering & Remote Sensing, 73(8):913–921.

Braswell, B.H., S.C. Hagen, S.E. Frolking, and W.A. Salas, 2003. A mul-
tivariable approach for mapping sub-pixel land cover distribu-
tions using MISR and MODIS: Application in the Brazilian Ama-
zon region, Remote Sensing of Environment, 87(2-3):243–256.

Chen, J., X. Chen, and X. Cui, 2011. Change vector analysis in posteri-
or probability space: A new method for land cover change detec-
tion, IEEE Geoscience and Remote Sensing Letters, 8(2):317–321.

Chen, X., J. Chen, Y. Shi, and Y. Yamaguchi, 2012. An automated ap-
proach for updating land cover maps based on integrated change 
detection and classification methods, ISPRS Journal of Photo-
grammetry and Remote Sensing, 71:86–95.

Congalton, R.G., 1991. A review of assessing the accuracy of classifi-
cations of remotely sensed data, Remote Sensing of Environment, 
37(1):35–46.

Foody, G.M., 2006. Sub-pixel methods in remote sensing, Remote Sens-
ing Image Analysis: Including the Spatial Domain, pp. 37–49.

Foody, G.M., and H.T.X. Doan, 2007. Variability in soft classification 
prediction and its implications for sub-pixel scale change detec-
tion and super resolution mapping, Photogrammetric Engineering 
& Remote Sensing, 73(8):923–933.

Foody, G.M., P.M. Atkinson, and J. Wiley, 2002. Uncertainty in Remote 
Sensing and GIS, Wiley Online Library.

66 J anuar y  2015  PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Friedl, M.A., D.K. McIver, J.C. Hodges, X. Zhang, D. Muchoney, A.H. 
Strahler, C.E. Woodcock, S. Gopal, A. Schneider, and A. Cooper, 
2002. Global land cover mapping from MODIS: Algorithms and 
early results, Remote Sensing of Environment, 83(1):287–302.

Ge, Y., 2013. Sub-pixel land-cover mapping with improved fraction 
images upon multiple-point simulation, International Journal of 
Applied Earth Observation and Geoinformation, 22:115–126.

Ge, Y., S. Li, and V.C. Lakhan, 2009. Development and testing of a sub-
pixel mapping algorithm, IEEE Transactions on Geoscience and 
Remote Sensing, 47(7):2155–2164.

Geman, S., and D. Geman, 1984. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 6(6):721–741.

Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan, 2004. De-
velopment of a 2001 National Land-Cover Database for the 
United States, Photogrammetric Engineering & Remote Sensing, 
70(7):829–840.

Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, 
A. McKerrow, J.N. VanDriel, and J. Wickham, 2007. Completion 
of the 2001 National Land Cover Database for the conterminous 
United States, Photogrammetric Engineering & Remote Sensing, 
73(4):337–341.

Ju, J., E.D. Kolaczyk, and S. Gopal, 2003. Gaussian mixture discrimi-
nant analysis and sub-pixel land cover characterization in remote 
sensing, Remote Sensing of Environment, 84(4):550–560.

Kasetkasem, T., M.K. Arora, and P.K. Varshney, 2005. Super-resolution 
land cover mapping using a Markov random field based approach, 
Remote Sensing of Environment, 96(3-4):302–314.

Li, X., F. Ling, and Y. Du, 2012. Super-resolution mapping based on 
the supervised fuzzy c-means approach, Remote Sensing Letters, 
3(6):501–510.

Li, X., Y. Du, and F. Ling, 2012. Spatially adaptive smoothing parame-
ter selection for Markov random field based sub-pixel mapping of 
remotely sensed images, International Journal of Remote Sensing, 
33(24):7886–7901.

Li, X., F. Ling, Y. Du, and Y. Zhang, 2014. Spatially adaptive superreso-
lution land cover mapping with multispectral and panchromatic 
images, IEEE Transactions on Geoscience and Remote Sensing, 
52(5):2810–2823.

Li, X., Y. Du, F. Ling, S. Wu, and Q. Feng, 2011. Using a sub-pixel map-
ping model to improve the accuracy of landscape pattern indices, 
Ecological Indicators, 11(5):1160–1170.

Ling, F., W. Li, Y. Du, and X. Li, 2011. Land cover change mapping 
at the subpixel scale with different spatial-resolution remotely 
sensed imagery, IEEE Geoscience and Remote Sensing Letters, 
8(1):182–186.

Ling, F., Y. Du, F. Xiao, and X. Li, 2012. Subpixel land cover map-
ping by integrating spectral and spatial information of remotely 
sensed imagery, IEEE Geoscience and Remote Sensing Letters, 
9(3):408–412.

Ling, F., X. Li, Y. Du, and F. Xiao, 2013. Sub-pixel mapping of remotely 
sensed imagery with hybrid intra- and inter-pixel dependence, 
International Journal of Remote Sensing, 34(1):341–357.

Ling, F., Y. Du, F. Xiao, H. Xue, and S. Wu, 2010. Super-resolution 
land-cover mapping using multiple sub-pixel shifted remotely 
sensed images, International Journal of Remote Sensing, 
31(19):5023–5040.

Ling, F., Y. Du, X. Li, W. Li, F. Xiao, and Y. Zhang, 2013. Interpolation-
based super-resolution land cover mapping, Remote Sensing 
Letters, 4(7):629–638.

Lu, D., M. Batistella, E. Moran, S. Hetrick, D. Alves, and E. Brondizio, 
2011. Fractional forest cover mapping in the Brazilian Amazon 
with a combination of MODIS and TM images, International Jour-
nal of Remote Sensing, 32(22):7131–7149.

Lu, D., P. Mausel, E. Brondizio, and E. Moran, 2004a. Change de-
tection techniques, International Journal of Remote Sensing, 
25(12):2365–2407.

Lu, D., M. Batistella, and E. Moran, 2004b. Multitemporal spectral 
mixture analysis for Amazonian land-cover change detection, 
Canadian Journal of Remote Sensing, 30(1):87–100.

Makido, Y., and A. Shortridge, 2007. Weighting function alternatives 
for a subpixel allocation model, Photogrammetric Engineering & 

Remote Sensing, 73(11):1233–1240.
Makido, Y., A. Shortridge, and J.P. Messina, 2007. Assessing alterna-

tives for modeling the spatial distribution of multiple land-cover 
classes at sub-pixel scales, Photogrammetric Engineering & 
Remote Sensing, 73(8):935–943.

Mertens, K.C., B. De Baets, L.P.C. Verbeke, and R.R. De Wulf, 2006. A 
sub-pixel mapping algorithm based on sub-pixel/pixel spatial 
attraction models, International Journal of Remote Sensing, 
27(15):3293–3310.

Muad, A.M., and G.M. Foody, 2012. Super-resolution mapping of lakes 
from imagery with a coarse spatial and fine temporal resolution, 
International Journal of Applied Earth Observation and Geoinfor-
mation, 15:79–91.

Nguyen, M.Q., P.M. Atkinson, and H.G. Lewis, 2006. Superresolution 
mapping using a hopfield neural network with fused images, IEEE 
Transactions on Geoscience and Remote Sensing, 44(3):736–749.

Pontius, R.G., and M. Millones, 2011. Death to Kappa: Birth of quantity 
disagreement and allocation disagreement for accuracy assess-
ment, International Journal of Remote Sensing, 32(15):4407–4429.

Roberts, D.A., M. Gardner, R. Church, S. Ustin, G. Scheer, and R.O. 
Green, 1998. Mapping chaparral in the Santa Monica Mountains 
using multiple endmember spectral mixture models, Remote 
Sensing of Environment, 65(3):267–279.

Shen, Z., J. Qi, and K. Wang, 2009. Modification of pixel-swapping 
algorithm with initialization from a sub-pixel/pixel spatial at-
traction model, Photogrammetric Engineering & Remote Sensing, 
75(5):557–567.

Tatem, A.J., H.G. Lewis, P.M. Atkinson, and M.S. Nixon, 2003. Increas-
ing the spatial resolution of agricultural land cover maps using a 
Hopfield neural network, International Journal of Geographical 
Information Science, 17(7):647–672.

Tolpekin, V.A., and A. Stein, 2009. Quantification of the effects of 
land-cover-class spectral separability on the accuracy of Markov-
random-field-based superresolution mapping, IEEE Transactions 
on Geoscience and Remote Sensing, 47(9):3283–3297.

Tong, X., X. Zhang, J. Shan, H. Xie, and M. Liu, 2013. Attraction-
repulsion model-based subpixel mapping of multi-/hyperspectral 
imagery, IEEE Transactions on Geoscience and Remote Sensing, 
51(5):2799–2814.

Verhoeye, J., and R. De Wulf, 2002. Land cover mapping at sub-pixel 
scales using linear optimization techniques, Remote Sensing of 
Environment, 79(1):96–104.

Villa, A., J. Chanussot, J.A. Benediktsson, and C. Jutten, 2011. Spectral 
unmixing for the classification of hyperspectral images at a finer 
spatial resolution, IEEE Journal of Selected Topics in Signal Pro-
cessing, 5(3):521–533.

Wang, L., and Q. Wang, 2013. Subpixel mapping using Markov random 
field with multiple spectral constraints from subpixel shifted 
remote sensing images, IEEE Geoscience and Remote Sensing Let-
ters, 10(3):598–602.

Wang, Q., W. Shi, and L. Wang, 2014. Indicator cokriging-based sub-
pixel land cover mapping with shifted images, IEEE Journal of 
Selected Topics in Applied Earth Observation and Remote Sens-
ing, 7(1):327–339. 

Wang, Q., L. Wang, and D. Liu, 2012. Particle swarm optimization-
based sub-pixel mapping for remote-sensing imagery, Interna-
tional Journal of Remote Sensing, 33(20):6480–6496.

Xian, G., and C. Homer, 2010. Updating the 2001 National Land Cover 
Database impervious surface products to 2006 using Landsat im-
agery change detection methods, Remote Sensing of Environment, 
114(8):1676–1686.

Xu, Y., and B. Huang, 2014. A spatio–temporal pixel-swapping algo-
rithm for subpixel land cover mapping, IEEE Geoscience and 
Remote Sensing Letters, 11(2):474–478. 

(Received 26 September 2013; accepted 11 August 2014; final 
version 26 August 2014)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING J anuar y  2015  67


