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Measurement and Control of Current/Voltage
Waveforms of Microwave Transistors Using a
Harmonic Load–Pull System for the Optimum
Design of High Efficiency Power Amplifiers

Denis Barataud, Fabrice Blache, Alain Mallet, P. Philippe Bouysse, Jean-Michel Nebus, Jean Pierre Villotte,
Juan Obregon, Jan Verspecht,Member, IEEE,and Philippe Auxemery

Abstract—One of the most important requirements that RF and
microwave power amplifiers designed for radiocommunication
systems must meet is an optimum power added efficiency (PAE)
or an optimal combination of PAE and linearity. A harmonic
active load–pull system which allows the control of the first
three harmonic frequencies of the signal coming out of the
transistor under test is a very useful tool to aid in designing
optimized power amplifiers. In this paper, we present an active
load–pull system coupled to a vectorial “nonlinear network”
analyzer. For the first time, optimized current/voltage waveforms
for maximum PAE of microwave field effect transistors (FET’s)
have been measured. They confirm the theory on high efficiency
microwave power amplifiers. The proposed load–pull setup is
based on the use of three separated active loops to synthesize
load impedances at harmonics. The measurement of absolute
complex power waves is performed with a broadband data
acquisition unit. A specific phase calibration of the set-up allows
the determination of the phase relationships between harmonic
components. Therefore, voltage and current waveforms can be
extracted. The measurement results of a 600 gate periphery GaAs
FET (Thomson Foundry) exhibiting a PAE of 84% at 1.8 GHz
are given. Such results were obtained by optimizing the load
impedances at the first three harmonic components of the signal
coming out of the transistor. Optimum conditions correspond
to a class F operation mode of the FET (i.e., square wave
output voltage and pulse shaped output current). A comparison
between measured and simulated current/voltage waveforms is
also presented.

Index Terms—Active loop technique, high-efficiency power
amplifiers, load–pull/source–pull, microwave and RF transistors,
time–domain characterization, vectorial nonlinear network ana-
lyzer, voltage/current waveforms.

I. INTRODUCTION

DUE to the expansion of mobile communications systems,
the need for high efficiency microwave power ampli-

fiers has emerged. Future generations of mobile telephones
require very small size batteries. As a consequence, power
amplifiers, which are the most critical element for the power
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Fig. 1. Class F operation of FETs: voltage/current waveforms.

Fig. 2. Nonlinear equivalent circuit of FET.

Fig. 3. Principle of the “substitute generator technique.”
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Fig. 4. Simulated time domain waveforms at the intrinsic level.

dissipation budget, must be able to yield high efficiency at
very low bias voltages. To optimize the operating conditions of
semiconductor devices (for example FET’s and HBT’s which
are expected to be used in such applications) a very quick
and accurate optimization tool is increasingly necessary. A
harmonic load–pull system coupled to a fully and accurately
calibrated vectorial “nonlinear network” analyzer (VNNA)
reveals to be very attractive because optimum operating condi-
tions of the device under test (DUT) can be easily, quickly and
methodically obtained as explained in this paper. The proposed
measurement system can be viewed as a temporal load–pull
setup because it allows the control and measurement of cur-
rent/voltage waveforms at both ports of the DUT. Although
measurements of microwave time domain waveforms in a 50
environment have already been performed and reported [1]–[5]
the optimization of voltage/current waveforms for maximum
added power or PAE by monitoring the load impedances at the
first three harmonics generated by the DUT has never been
reported to our knowledge.

II. PRELIMINARY CONSIDERATIONS ONHIGH EFFICIENCY

CLASS F OPERATION OF MICROWAVE FETS

It is necessary to know current/voltage waveforms at both
ports of any transistor to understand the operation. Time
domain waveforms allow circuit designers to have an accurate
insight into the operating mode of transistors. Furthermore,
voltage/current waveforms provide a very good understanding
and visualization of the main nonlinear phenomena (like
generation of harmonics or saturation mechanisms).

It is now well accepted that FET’s exhibit their best per-
formances in terms of PAE at-band when they are operated
under class F conditions [6]. Theoretically speaking, a tran-
sistor is operated under class F conditions if the input voltage
is purely sinusoidal, the output voltage is a quasisquare wave
signal and the output current is pulse shaped. The PAE of
the transistor is optimized if the overlap between the output
current and the output voltage is minimized (Fig. 1). As a
consequence, the power dissipated by the device is minimized.
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Fig. 5. Simulated time domain waveforms at the extrinsic level.

It is easy to perform simulations to get the optimal combi-
nation of current and voltages depicted in Fig. 1 [7]. Nev-
ertheless, the control and optimization of the appropriate
waveforms by experimentation is very difficult and requires a
sophisticated and fully calibrated setup (part II of the paper).
The originality of the work reported in this paper lies in the fact
that the optimization of waveforms corresponding to a class F
operation of FET’s has been reached by experimentation.

The simulation and the optimization of PAE of transistors
operated under class F conditions can be performed in a
straightforward manner by using any commercially available
nonlinear software and applying what we call the “substitute
generator technique” [8].

First, a nonlinear electrical model of FET must be ex-
tracted (for example, pulsed and pulsed parameter
measurements can be performed for that purpose [9]) (Fig. 2).
Then, generators are connected to both ports of the transistor
(Fig. 3). The input generator supplies a purely sinusoidal
voltage while the output generator supplies a quasisquare
waveform signal.

Taking into account only three harmonic components, it has
been demonstrated [10] that for a fixed drain bias voltage
the optimum voltage necessary to maximize the ratio

is given by the expression

(1)

where represents the magnitude of the
fundamental component of

If is maximized and equal to PAE will
be optimized.

Probes are also connected to the transistor in order to
determine the associated currents. The equivalent optimum
load impedances of the embedding circuit are determined by
nonlinear analysis. They are given by

(2)
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Fig. 6. Block diagram of a VNNA coupled to an harmonic load–pull setup.

where and are the complex th harmonic compo-
nents of the output voltage and current.

The conditions must obviously be verified
(Re denotes the real part).

Figs. 4 and 5 show respectively the simulated optimum
voltage and current waveforms and the associated dynamic
load lines at the intrinsic and extrinsic ports of the transistor.
An optimum PAE of 80% with a power gain of 17 dB and an
output power of 110 mW have been obtained at a drain bias
voltage of 6 V.

III. D ESCRIPTION OF THETIME DOMAIN

WAVEFORMS MEASUREMENT SYSTEM

For the extraction of time domain waveforms the measure-
ments of the following signals are necessary:

(3)

(4)

(5)

(6)

A conventional vector network analyzer is not sufficient
because it can only provide complex power wave ratios at

the fundamental and harmonic frequencies

1) The magnitude of the power waves can be measured by
using a selective power meter.

2) The determination of the phase relationships between the
harmonic components of the power waves remains the
most difficult problem encountered.

Let us assume that is taken as a phase reference,
then must
be accurately known in order to determine time domain
waveforms

For that, a vectorial “nonlinear network” analyzer, operating
up to 40 GHz, and a specific phase calibration procedure are
required [10]. A block diagram of the measurement system is
sketched in Fig. 6.

A fully synchronized four channel down converter has been
built based on sampling technology. Four couplers are used
to detect the incident and scattered waves at both ports of the
DUT. Attenuators are used to bring the level at the input of the
broadband down convertor below10 dBm. This is necessary
to assure linearity of the samplers in the down convertor.

The broadband down converter uses the harmonic mixing
principle to convert RF fundamental and harmonics into IF
fundamental and harmonics. Four data acquisition modules
(ADC converters) with a sampling rate of 10 MHz are used to
digitize IF signals. At the output of the down convertor circuit,
the useful mixing products at frequencies below 4 MHz rep-
resent an image of the input RF spectrum (0.9–40 GHz) [11].
Three active loops are used to synthesize load impedances at
the first three harmonics of the signal coming out of the DUT
[12].

By the active loop technique, the loads at harmonic frequen-
cies can be independently adjusted by varying both the gain
and the phase shift of each loop. At the fundamental frequency

by using the mismatching technique [13], the synthesized
impedances are automatically focused in the optimum load
impedance area.

At harmonic frequencies and any load-
impedances in the Smith chart can be synthesized and it
is possible to reach high reflection coefficient to simulate high
efficiency operating classes.

Moreover, the measurement of added power, PAE, AM/PM
and third order intermodulation versus input power is auto-
matically obtained by sweeping the input power driving the
device.

After calibration, the VNNA is able to measure the ampli-
tude and the phase of the harmonic components of the incident
and scattered power waves. Systematic amplitude and phase
errors due to the measurement channels are taken into account
and corrected.

The calibration sequence consists of three main steps:

1) TRL calibration for the correction of complex power
wave ratios ;
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Fig. 7. Measured voltage/current waveforms at a 6 V drain bias voltage (harmonic loads= 50 
).

2) absolute power measurements using an accurate power
meter, for the determination of ;

3) phase calibration which is a key point for which a
multiharmonic generator (SRD) is used. This generator
is used as a reference standard for phase calibration
in a similar way as a powermeter is used for the
amplitude calibration. Relationships between the phase
of harmonics are initially determined using a sampling
oscilloscope calibrated using the so-called “nose-to-
nose” procedure [14]. The phase calibration allows the
determination of the phase of the complex power waves

and

As error corrected complex power waves ,
are determined, voltage and current waveforms can be ex-
tracted:

(7)

(8)

(9)

(10)

are measured using programmable dc
power supplies.

(11)

(12)

(13)

(14)

where is equal to 50
By using the active loop principle, optimum load imped-

ances at harmonics can be accurately and methodically tuned
in order to maximize the PAE of the DUT. The key point of
the whole system is that load impedances at harmonics are
fully independent of the behavior of the transistor and the
power levels. Moreover, the tuning of a loop at one frequency
is independent of the loops at other frequencies. This makes
the optimization process of load impedances more easier and
more efficient.

IV. M EASUREMENT RESULTS

On-wafer measurements of a 600m gate periphery GaAs
MESFET (Thomson Foundry) have been performed using
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Fig. 8. Measured voltage/current waveforms at a 6 V drain bias voltage (optimized harmonic loads).

(a) (b)

Fig. 9. Measured voltage/current waveforms as a function of the input power. (a) Optimized load at the fundamental and harmonic loads are 50
 and
(b) optimized load at the fundamental and harmonics.
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Fig. 10. Measured and simulated power characteristics as a function of the input power.

a probe station. Fig. 7 shows measured and simulated volt-
age/current waveforms when the transistor is biased at a dc
drain voltage of 6 V and when the harmonic loads are 50
In this case, the MESFET exhibits an output power of 130
mW, a power gain of 14 dB and a power added efficiency
of 75%.

Fig. 8 shows the same kind of results obtained when har-
monic loads are optimized. The measured waveforms validate
the theoretical optimal combination of output current and
voltage required for a class F operation mode. In that case,
an optimum PAE of 84%, a power gain of 14.6 dB and an
output power of 130 mW were measured.

Fig. 9 shows measured voltage/current waveforms as a
function of the input power in both cases. (Fig. 9(a): harmonics
loads 50 ; Fig. 9(b): optimized harmonic loads.)

Fig. 10 shows power characteristics as a function of the
input power in the case of an optimized class F operation
mode. A good agreement between simulated and measured
curves is observed.

It has been clearly demonstrated by experimentation that
a quasisquare drain voltage yields the optimal PAE. Time
domain waveforms are very similar at the intrinsic and the
extrinsic level of the transistor because it operates at low
microwave frequencies (1.8 GHz).

V. CONCLUSION

The analysis and the measurement of time domain wave-
forms at transistor ports have proved to be very efficient and
well-suited for the optimization of high efficiency microwave
amplifiers.

Moreover, it would be possible to optimize class E am-
plifiers using the same method as described in this paper.
Generally speaking, the optimization of source impedances at
harmonics for high efficiency operation can be implemented.

The proposed novel measurement system is shown to be
also an important and valuable tool to aid in the modeling
of semiconductor devices. It is expected to provide valuable
information for the validation of nonlinear electrical models
of FET’s in the ohmic region where capacitors and
are strongly nonlinear functions of both and

The multiharmonic load–pull concept based on active loops
can be extended to the experimental study and optimization
of frequency multipliers or dividers. It can also be applied
to an extensive analysis of intermodulation in transistors

(two tone characterization (IM3) or noise power ratio (NPR)
measurements).
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