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The work aims at the experimental and theoretical study of the mechanism of meltblowing.
Meltblowing is a popular method of producing polymer microfibers and nanofibers en masse in the
form of nonwovens via aerodynamic blowing of polymer melt jets. However, its physical aspects are
still not fully understood. The process involves a complex interplay of the aerodynamics of turbulent
gas jets with strong elongational flows of polymer melts, none of them fully uncovered and
explained. To evaluate the role of turbulent pulsations (produced by turbulent eddies in the gas jet)
in meltblowing, we studied first a model experimental situation where solid flexible sewing
threadlines were subjected to parallel high speed gas jet. After that a comprehensive theory of
meltblowing is developed, which encompasses the effects of the distributed drag and lift forces, as
well as turbulent pulsations acting on polymer jets, which undergo, as a result, severe bending
instability leading to strong stretching and thinning. Linearized theory of bending perturbation
propagation over threadlines and polymer jets in meltblowing is given and some successful
comparisons with the experimental data are demonstrated. © 2010 American Institute of Physics.

[doi:10.1063/1.3457891]

I. INTRODUCTION

In meltblowing the key flow element is a polymeric liq-
uid jet stretched by a high speed gas flow. Meltblowing as a
technological process for polymer microfiber and nanofiber
production is relatively unexplored. Its fluid- and aerody-
namics attracted some limited attention in the research litera-
ture (some references will be mentioned below). Therefore,
its most important peculiarities have not been analyzed in-
depth yet. A brief survey of the recent works devoted to
meltblowing reveals the following. Several important experi-
mental works'? and references therein demonstrate that
polymer jet configurations in meltblowing are extremely
transient and nonstraight at already several centimeters from
the hole exits in die nosepiece, the jet-jet interactions are
significant and merging of neighboring jets is quite possible.
Thermal regimes and polymer rheology have a strong effect.
Also, turbulence of the surrounding gas flow can have a very
significant effect on the final characteristics of the meltblown
nonwovens. However, it is improbable that polymer jet char-
acteristics in meltblowing are determined by turbulent eddies
alone. Indeed, the results of the experiments1 show that the
initial sections of the jets in meltblowing (of the order of 4
cm) are straight, even though the turbulent pulsations are the
strongest in the surrounding high-speed gas flow. The jet
bending pattern is thus inconsistent with the one driven
solely by turbulent eddies. Therefore, rheological behavior of
polymeric liquid is expected to have a significant effect on
jet dynamics. Also, the interaction with the surrounding gas
flow cannot be reduced to only the effect of turbulent eddies,
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and the interaction with the mean flow can be very signifi-
cant. In addition, a realistic description of the dynamics of
bending perturbations should account for the interplay of the
above-mentioned factors, which determine the pattern of
bending perturbation propagation over polymer jets.

A number of defects in the meltblown nonwovens and
drawbacks of the technology in general are rooted in the
process fluid- and aerodynamics. Currently, the so-called
roping (formation of streak-like structures in the webs and
mats) is typically attributed to an uncontrolled turbulence.
Such drawbacks of the process as the so-called fly (contami-
nation of the surrounding gas by short and extremely thin
fibers which do not connect to the fiber network) are gener-
ally attributed to too violent blowing conditions. These as-
sumptions have, however, never been substantiated by either
theoretical or experimental elucidation of the physical
mechanisms of the process. The appearance of the so-called
shots most probably results from the excessively high tem-
peratures, when capillary breakup sets in (this situation is
also insufficiently understood in the literature). The experi-
mental data available in the literature are mostly descriptive
and did not allow full recognition of the underlying physics
and delineation of different effects responsible for the final
parameters of meltblown nonwovens.

The theoretical works on meltblowing initially concen-
trated on the simplest model of a single straight jet.3 How-
ever, later on, the first steps were done in the direction of the
quasi-one-dimensional equations of polymer nonstraight jets
moving in gas,‘"5 even though these works were seemingly
unrelated to any preceding works on such jets discussed be-
low, and did not result in a comparable model. Some prelimi-
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nary steps were taken to mimic turbulence.® In a series of
publicationsHO the idea that stretching and bending of liquid
jets in meltblowing is due exclusively to the turbulent pulsa-
tion field in the surrounding gas, which is responsible for the
fluctuating gas drag force acting on the jet, was developed in
full detail. Nevertheless, the aerodynamic effect of the dis-
tributed lift force was disregarded, and no realistic (vis-
coelastic) rheological behavior of polymeric liquids was ac-
counted for in the meltblowing context.

Flapping flags and ropes in gas or water flows attracted
some interest in fluid mechanics as an example of flow-
induced vibrations of deterministic  (nonturbulent)
character.'" ™" These works targeted a detailed deterministic
description of flows about flapping ropes and flags, even in-
cluding lateral forces resulting from shedding the von Kar-
man vortex street in one case. In the other cases, the von
Karman street-related forces were neglected as insignificant
for the overall dynamics. All these works also accounted for
the bending stiffness of flexible flags and ropes, even though
in most cases it was relatively small in reality. This approach
resulted in the fourth order PDE governing flag or rope dy-
namics, which does not allow an easy insight in the physical
reasons of flapping, even though the obstruction comes from
the higher order term which is negligible in many cases.

It was mostly overlooked that meltblowing is kindred to
propagation of high speed liquid jets in gas environment, and
the latter process has been understood in full detail in the
1980s. The works on high speed jets propagating in gas en-
vironment represent a good starting point for the study of
meltblowing. Friction and heat transfer coefficients for
straight cylindrical bodies (threadlines) moving in gas were
measured experimentally and calculated theoretically in the
framework of the boundary layer theory in numerous papers
and monographs,lg’zo which contain many empirical correla-
tions and/or theoretical formulae for the corresponding fric-
tion coefficient and Nusselt number. They were successfully
applied to calculate the drag force and heat flux on straight
liquid jets moving in gas in the melt, dry or wet spinning
processes. These correlations can be equally used locally in
studies of meltblowing when the velocity determining drag
and heat transfer should be understood as a relative velocity
between rapidly moving gas and slower polymeric jet.

It is emphasized that the dynamics of liquid jets rapidly
moving in gas is much richer than just propagation and thin-
ning of straight jets characteristic of melt spinning, and so
should be the dynamics of meltblowing. Indeed, the theoret-
ical study of high speed liquid jets moving in gas began with
the seminal works of Weber and Debye and Daen.?""* In this
case a rather complicated, three-dimensional (3D) problem
on dynamic interaction of liquid jet and gas stream arises,
where coupled evolution of the jet shape (which can become
nonstraight) should also be determined. In Ref. 22 in the
framework of the linear stability theory, it was shown that
the inviscid liquid jets of circular cross-section are prone to
planar bending if the jet velocity is sufficiently high. Such
bending instability leads to an exponential growth of small
bending perturbations. The instability is determined by a pe-
culiar gas pressure distribution over the jet surface: gas pres-
sure on the convex parts of the jet is lower than on the
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concave ones, which results in a distributed lateral lift force
promoting further bending. The resulting distributed lift
force is related rather to the potential (or mean) flow aero-
dynamics than to turbulent eddies and was not accounted for
in Refs. 7-10 and several works on flag or rope flapping. The
linear theory of Debye and Daen” did not account for vis-
cosity or viscoelasticity of liquid in the jet, possible large
amplitudes of bending perturbations and their 3D (as in the
experiments) rather than planar shape. It is practically impos-
sible to address any of these factors in the framework of the
Navier—Stokes equations or the corresponding 3D equations
for the rheologically complex liquids due to a huge geomet-
ric complexity of the problem and complicating physical fac-
tors. That was the reason for the development of the general
quasi-one-dimensional equations of liquid jets moving in gas
in.2%% These equations were successfully used to describe
the bending instability threshold and the whole nonlinear
bending process of such jets including incorporation of the
rheological effects and, in particular, viscoelasticity charac-
teristic of polymer solutions and melts. In the present work
this approach is applied to description of meltblowing and
prediction of the characteristics of this process.

An additional process which is formally kindred to melt-
blowing is electrospinning of polymer nanofibers, where jet
bending results from the electric Coulombic repulsion
force.”* % The latter is proportional to the local curvature of
the jet axis, which is similar to the distributed aerodynamic
lift force.***

Meltblowing is an aerodynamically-driven process, in
which polymer jets are accelerated and stretched by high
speed gas streams (planar or axisymmetric, in general
nonisothermal, subsonic turbulent jets). The aerodynamics of
the mean flow in such jets is fairly well understood in the
framework of the classical semiempirical turbulence
models®”* and will be accounted for in the theoretical ap-
proach developed below.

The present work, the first of two (the accompanying
part is in Ref. 30), is devoted to basic physical mechanisms
responsible for meltblowing. To concentrate on the aerody-
namic forces and the corresponding small (linearized) bend-
ing perturbations, a model situation of blowing of a solid,
nonstretchable and flexible threadline is treated here. Melt-
blowing of polymer jet under isothermal and nonisothermal
conditions with the account for polymer viscoelasticity and
large (finite) perturbations is tackled in the accompanying
paper.30 In the present paper Sec. II describes model experi-
ments with solid flexible threadlines with the goal to eluci-
date the important physical aspects relevant in the context of
meltblowing. In particular, we elucidate experimentally the
peculiarities of turbulent fluctuations transmitted to the
threadline where they result in visible bending perturbation.
Propagation of these perturbations over the threadline is also
studied in the experiments of Sec. II, which reveal a blow-up
flapping region. A linearized theoretical model dealing with
propagation of small bending perturbations over threadlines
is given in Sec. III. Some comments on comparison of the
theoretical predictions with the experimental data for thread-
lines are given in Sec. IV. Conclusions are drawn in Sec. V.
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Tuler used with gas blowing at 35 bar (263.9 m/s-cf. the Appen-
::g::)gw" ight dix). The threadline was vigorously flapping under such con-

source

2

\—threadline

ditions. The time series for the lateral threadline displace-
ments at two locations are depicted in Fig. 2. Two specific
positions were chosen for illustration. Figure 2(a) shows the
evolution at x=10.4 c¢m and Fig. 2(b) shows the evolution at
x=14.82 cm. It is emphasized that the dc part of the lateral
displacement caused by a slight uncontrolled tilt of the gas
jet axis relative to the vertical was subtracted from the data
in Fig. 2 using fast Fourier transformation (FFT) of the re-

inder = corded signal.
FFT of the time series for the lateral displacements of
ccb PC the threadline corresponding to the time intervals of 3 s (two
camera shorter sections of the data of about 1.5 s are shown in Fig.

FIG. 1. Schematic of the experimental setup.

Il. EXPERIMENTS WITH FLEXIBLE THREADLINES

A sketch of the experimental setup is shown in Fig. 1. It
consists of a compressed gas (nitrogen at 25-40 bar) cylinder
used to create blowing jet. High pressure tubing led to the
nozzle (500 wm inner diameter) issuing the gas jet. A sew-
ing threadline (mean diameter 110 wm, straightened by
ironing before the experiments) was attached to the nozzle
(Fig. 1). Blowing was directed downward and the nozzle
positioning was adjusted using a moving stage with a ruler
relative to the charge-coupled device (CCD) camera which
was fixed (Fig. 1). A high speed CCD camera (MotionScope-
Redlake Tmaging Corporation) was used for high speed im-
aging. It was operated at 500 fps using a shutter speed of
1/8500-1/10000 s. When gas was blowing and the threadline
was flapping, the high speed imaging was conducted for a
number of segments of the threadline. At any new elevation
of the threadline suspension point, a delay of 5 mins (suffi-
cient for the transients fading) was adopted before data ac-
quisition at that location. The images recorded with the high
speed CCD camera were processed using the interface of
MATLAB-R2007A. In addition, DSLR Nikon D70s camera was
used at a very high shutter speed (1/4-1/6 s) to record the
whole envelope of the flapping threadline at a single still
image.

As a basic variant, a L=19.3 cm-long threadline was

2) was done using the corresponding MATLAB routine. The
absolute values of the Fourier coefficients obtained are plot-
ted against frequency in Figs. 3(a) and 3(b). It is seen that the
spectral band covered was up to 250 Hz, with the spectrum
being continuous. It is emphasized that the recorded signal
obtained from the CCD operated at 500 fps, as well as its
processing with FFT involving frequencies up to 250 Hz,
precluded probing frequencies higher than those in Figs. 3(a)
and 3(b) (up to 250 Hz). However, a very significant and
gradual decrease in the signal amplitudes for the high-
frequency harmonics allows one to assume that there are no
significant higher frequency modes. Indeed, Figs. 3(a) and
3(b) show that above the frequency of about 167 Hz, the
Fourier coefficients become negligible compared to those
with frequencies less than 167 Hz, and thus, the importance
of the whole high-frequency range in the compound signal is
expected to be small. This is illustrated in Figs. 3(c) and 3(d)
where the Fourier series with a truncated spectrum with fre-
quencies less than 167 Hz (and the cut-off of the spectral
band with frequencies above 167 Hz) and the corresponding
Fourier coefficients from Figs. 3(a) and 3(b) are plotted ver-
sus experimental data. It is clearly seen that the experimental
data are reproduced fairly well in spite of the truncated spec-
trum.

It is emphasized that the unperturbed threadline is verti-
cal in the experimental setup of Fig. 1, i.e. potentially repre-
sents itself a kind of a pendulum. The eige_nfrequency of the
pendulum-like oscillations @,=(27)"'Vg/L, with g being
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FIG. 2. Lateral displacements of the threadline at two locations: (a) x=10.4 cm and at (b) x=14.82 cm from the nozzle.
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FIG. 3. Absolute values of the Fourier coefficients corresponding to the lateral displacement of the threadline at (a) x=10.4 cm [Fig. 2(a)] and (b) x
=14.82 cm [Fig. 2(b)]. (c) Lateral displacement at x=10.4 cm reconstructed using the Fourier series with the truncated spectrum. The calculated displace-
ment is shown by symbols, the experimental data by solid line. (d) Same as (c) but at x=14.82.

gravity acceleration and the factor (277)~! included for com-
parison with the frequency in Figs. 3(a) and 3(b). Taking the
pendulum length within the range L=1-20 cm (since any
part of the threadline can be excited), we find prS Hz.
These are too low frequencies to cause resonances with the
oscillations in Figs. 2 and 3, and thus can be excluded from
consideration.

The character of the time series for lateral displacements
of the threadline depicted in Fig. 2 can be also elucidated
using the corresponding autocorrelation functions. The latter
were calculated using standard MATLAB routine and are plot-
ted in Fig. 4. It is clearly seen that the autocorrelation func-
tion rapidly decays and approaches zero-a clear sign of a
chaotic process.

The threadline is subjected to turbulent perturbations of
the surrounding turbulent gas jet. Denote by U,(0) the exit
velocity of the gas jet, by d, the nozzle diameter, and by v,
the kinematic viscosity of gas. Define the Reynolds number
as Req=U,(0)dy/ v,. Then, the turbulence Taylor microscale
in the axisymmetric gas jet according to Ref. 31 is equal to
A=1.23 Reg”zx. Take for the estimate Ug(0)=230 m/s and
dy=0.05 cm. Then, for air Rey=7667. Therefore, at x
=1 cm, turbulent eddy scales are of the order of A

=0.014 cm, and at x=10 cm, they are of the order of A
=0.14 cm. The corresponding frequencies are of the order
of”” @=U,(0)/\, which is 10°~10° Hz, well above the fre-
quency band characteristic of the threadline oscillations (Fig.
3). On the other hand, the large eddies in the system gas
jet/threadline are of the order of L=10 cm, and their fre-
quencies w=Uy(0)/L are 10° Hz. This is still significantly
higher than the frequency band in Fig. 3.

Local interactions of random, high-frequency (compared
to those of the threadline) turbulent eddies in gas with mas-
sive threadline resembles those responsible for the Brownian
motion. In the latter case, multiple simultaneous tiny impacts
in different directions produce macroscopic displacement of
massive (submicron) particles on time scales much larger
than those of the individual impacts. In the turbulence con-
text this idea was developed by Taylor. In particular, a lateral
averaged displacement in time t produced by turbulent ed-
dies is*"? (A)=[2(v'®)7t]"2, where (v'?) is the correlation
of the lateral velocity pulsation and 7 the characteristic time
scale of large eddies. In turbulent jets all the pulsation veloc-
ity components, in particular, v’ (lateral) and u’ (longitudi-
nal) are of the same order. Thus, (v'?)=(u’v’). The charac-
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FIG. 4. Autocorrelation function for the time series for the lateral displacements of the threadline in Figs. 2(a) and 2(b) at (a) x=10.4 cm and (b) x

=14.82 cm.

teristic time scale of the large eddies is 7=(du/dy)~!, where u
is the mean longitudinal velocity component, and y is the
lateral coordinate. Therefore, (v'2)r=(u’'v')/du/dy=w,
where v, is the kinematic eddy viscosity which plays here the
role of the diffusion coefficient. In axisymmetric turbulent
jets the kinematic eddy viscosity is constant over the jet and
with a good accuracy is given by™ 1,=0.015U,(0)d,. Turbu-
lent eddies can push a threadline element at a certain location
only for the time of the order of the characteristic time 7, of
propagation of a bending perturbation over the threadline
(which plays the role of relaxation in this case). After that,
the excursion leaves the previous location and propagates
along the threadline. Therefore, we can estimate the ampli-
tude of the threadline lateral displacements as (A preadiine
=(2y,7,)"2. The speed of propagation of bending perturba-
tions along a stretched threadline is of the order of
[P/(Sp)]"?, where P is the tensile force in the threadline
cross-section, S is the cross-sectional area (oy,=P/S is the
longitudinal stress in the threadline cross-section), and p the
threadline density. Therefore, the characteristic time of
propagation of a bending perturbation over a threadline is
7,=L[P/(Sp)]""/%. The tensile forces P is evaluated as q,L
where q, is the longitudinal air drag imposed on the unit
length of the threadline. An appropriate expression for the
drag force is given by Refs. 19 and 20 as

2U030>_0'8]

g

q,= 0.65wa0ng3( (1)
where p, and v, are the gas density and kinematic viscosity,
U, is the gas velocity relative to the unperturbed threadline,
and ap=d,/2 is the cross-sectional radius of the threadline.
Taking for the estimate L=10 cm, S=7Td(2)/ 4=1.96
X107 cm? (for dy=0.05 cm), Uy=U,(0)=230 m/s and p
=0.786 g/cm’, we find for air 1=0.015U,(0)d,
=17.25 cm?/s, q,=23.5 g/s% and 7,=0.0256 s (the value is
in a very good agreement with the main threadline frequen-
cies in Fig. 3, which are of the order of 7. =39 Hz). There-
fore, (Agpreadiine’=0.94 cm, in a reasonable agreement with
the experimental data in Fig. 2. The result confirms that the

lateral threadline oscillations are imposed by multiple im-
pacts of large turbulent eddies and restricted by propagation
of bending perturbations along the threadline.

Another parameter of interest is the length of the thread-
line where flapping is the most vigorous. This requests a
definition of vigorous flapping in the experiment. Two differ-
ent definitions and methods based on them were used in the
present work. In the first one, the images of the free-end part
of the threadline were analyzed using high speed CCD im-
ages. The threadline cross-sections from which large lateral
displacements of the free-end part were visible are denoted
by arrows in the images (Fig. 5).

The flapping region depicted in Fig. 5 shows that propa-
gation of bending perturbations along the threadline serves
as a relaxation mechanism for lateral oscillations imposed by
turbulent eddies only in the strongly stretched part at the
beginning of the threadline, which supports practically the
whole air drag force. On the other hand, the free end of the
threadline is almost unloaded and imposes weak restrictions
on the lateral excursions driven by turbulent eddies. More-
over, bending perturbations entering there from the upper
part of the threadline can amplify with practically no restric-
tion, delivering their whole energy parcel into such lateral
motion. That is one of the reasons of the strong amplification
of the bending perturbations of the threadline close to the
free end, which results in flapping. Another reason for strong
amplification will be in the appearance of the distributed lift
force, which also diminishes the restricting effect of the
threadline tension and is discussed in detail in Sec. III.

Another method of determining a vigorously flapping
part of the threadline was based on the threadline envelope
photographed by DSLR Nikon D-70s camera (Fig. 6). This
method is capable of observations of almost the whole
threadline length (in distinction from the first method based
on CCD images), which allows an easy recognition of the
flapping part of the threadline (Fig. 6).

Comparison between the results of the two methods of
measuring the flapping part revealed the following. In the
experiment with a 18.5 cm long threadline subjected to
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FIG. 5. Flapping of a 19.3 cm long threadline, which was subjected to gas jet issued at 35 bar recorded by CCD. The arrows show the beginning of the
flapping part of the threadline. (a)-(c): Three different snapshots from the same experiment are shown to illustrate the different configurations recorded.

blowing at 35 bar (263.9 m/s), the flapping length found
averaging the data recorded by CCD camera was 1.82 cm.
On the other hand, the application of the method of Fig. 6
based on the data recorded by DSLR camera revealed the
length of the flapping end of the threadline as 1.76 cm.
Therefore, the results obtained by the two different methods
are sufficiently close. The slight difference in the values of
the flapping length found by the two methods can be attrib-
uted to the following reasons: (i) the pixel resolution of the
images obtained by DSLR camera is not sharp enough; (ii)
due to the 3D nature of flapping, the actual beginning cross-
section of the flapping part might be off by a few pixels from

FIG. 6. (Color online) Determination of the flapping part of the threadline.
The beginning of the flapping section is indicated by the inclined arrows.
Experiment with a 19 cm long threadline subjected to gas jet issued at 28
bar.

the one in the images; (iii) in spite of the fact that the thread-
lines were ironed and straightened prior to the observations,
they always possessed some local nonzero curvatures along
their length; and (iv) a certain inhomogeneity of the thread-
lines.

The method illustrated in Fig. 6 was applied to deter-
mine flapping lengths of threadlines of different lengths sub-
jected to the same blowing speed. The experiment began
with a 21 cm long threadline subjected to parallel gas jet
flow issued at 35 bar (263.9 m/s). After the transient effects
had faded, the corresponding flapping length was measured
as in Fig. 6. Then, blowing was ceased and the threadline
was cut shorter. Then, blowing was turned on once again and
the corresponding flapping length was measured. After that,
the procedure was repeated again and again until the thread-
line length of 10.1 cm. The results are shown in Fig. 7(a). It
can be seen that the experimental points are clearly subdi-
vided into two groups-one for shorter threadlines (10 to 16
cm long) and the other one-for the longer ones (16 to 21 ¢cm
long). In the “shorter” group the data suggest some variation
in the flapping length L; versus threadline length L, albeit it
might be caused by data scatter. Note that the shorter thread-
lines might be significantly affected by such end effects as
shedding vortices forming the von Karman street, as it was
suggested in Ref. 15. On the other hand, in the “longer”
group the flapping length is practically independent of the
threadline length L.

Using the well-known analytical solution for the axisym-
metric turbulent gas jets,zg’33 it is easy to evaluate the ratio
Upa/U,y(x) where U,y is the gas velocity value at points A and
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FIG. 7. (a) Flapping length vs threadline length. (b) Gas velocity at points A and A’ in Fig. 6 relative to the local axial velocity value Ug(x) for different

threadlines.

A’ in Fig. 6, and U,(x) is the local axial velocity of the gas
jet. The results are shown in Fig. 7(b). They demonstrate that
the part of the threadline preceding the flapping part is lo-
cated within the core of the surrounding gas jet correspond-
ing to the range of ugs/Uy(x) from 0.78 to 0.87, i.e., to the
gas velocity values of 78%—87% of the local axial gas jet
velocity in cross-section AA’.

In an additional experiment a 19 cm long threadline was
subjected to gas jets issued at different pressures from 24 to
40 bar with a step of 2 bar (blowing velocities U,(0)
=181.6-274.1 m/s, cf. the Appendix) and the flapping
length was measured using the method of Fig. 6. The results
are depicted in Fig. 8(a) in logarithmic scales. They reveal
the scaling L;~U,(0) at U,(0)=230 m/s. At U,(0)
>230 m/s the scaling changes to Ly~ U,(0)>*2. The values
of the ratio u,s/U,(x) in the cross-sections corresponding to
points A and A’ in Fig. 6 for all different blowing velocities
are shown in Fig. 8(b). They demonstrate that the part of the
threadline part preceding the flapping part is located within
the core of the surrounding gas jet corresponding to the
range of ugs/U,(x) from 0.75 to 0.95, i.e., to the gas velocity
values of 75%-95% of the local axial gas jet velocity in
cross-section AA’.

0.45 5
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£ 0.28 y = 1.0566x - 2.2663
o .
% 0.2
e 015
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g 0.1
= 005
Q T T T ]
2.2% 23 2.3% 24 245

log (Velocity)

lll. THEORETICAL: SOLID FLEXIBLE THREADLINE IN
PARALLEL HIGH SPEED GAS FLOW

Consider a solid flexible threadline subjected to parallel
high speed gas flow. The threadline is assumed to be non-
stretchable and with negligible bending stiffness. Its cross-
sectional radius a; is constant. In the unperturbed state the
threadline is straight and aligned in the flow direction and
does not move. The force balance in the threadline in this
state reads

dp
——+9q,=0, (2)
dx
where P=crxx7ra§ is the longitudinal force acting in the
threadline cross-section (with o, being the normal stress),
and q, is the distributed aerodynamic drag force acting on a
unit length of the threadline. An appropriate expression for
the drag force is given by Eq. (1) in Sec. II. The longitudinal
axis Ox is directed along the unperturbed threadline, with
x=0 corresponding to a certain “initial” cross-section which
is discussed in detail below.
The normal stresses in the threadline cross-sections are
of the elastic origin. Since the threadline stretchability is as-
sumed to be very low (which means that its Young’s modulus

o . (b)

0.9 1

e
[}
*»

*
*

UgalUq(x)

e
P
)

0.7

150 170 160 210 230 250 270 280
Nozzle Exit Velocity(m/s)

FIG. 8. (a) Flapping length vs the gas jet velocity at the nozzle exit. (b) Gas velocity at points A and A’ in Fig. 6 relative to the local axial velocity value U,(x)

for different blowing velocities.

Downloaded 23 Mar 2011 to 131.193.154.219. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



034912-8 Sinha-Ray, Yarin, and Pourdeyhimi

\ 4
\ 4
\ 4

\ 4
\ 4
\ 4

force from
large eddies
ft

\ 4
\4

»
'

\/
\ 4
\ 4

FIG. 9. Distributed forces acting on perturbed threadlines (and polymer jets)
subjected to high speed gas flow.

is sufficiently high), the static (and, further on, dynamic)
threadline elongation is assumed to be negligible, even
though the stress o, might be large.

The threadline length is L, and at the free end x=L the
normal stress vanishes, i.e., oy |1 =0. Then, Eq. (2) is inte-
grated to yield the normal stress distribution along the unper-
turbed threadline

Oxx = &2)() . (3)

TTay

In particular, the largest stress is achieved in the “initial”
cross-section of the threadline at x=0, which is o
=0,(0)=q,L/(maj), since it supports practically the whole
aerodynamic drag applied to the threadline.

The solid flexible threadline is subjected to bending per-
turbations, which can result in lateral threadline motions due
to the appearance of the normal component q, of the aero-
dynamic force per unit threadline length related to the mean
flow.”>* This component is of the inviscid origin and re-
sembles a distributed lift force, which originates from the
unsteady Bernoulli equation for gas motion. Obviously, it is
not alone, since the unsteady Bernoulli equation in addition
produces the force component associated with the added
mass. However, in high speed flows the lift force is the domi-
nant one compared to the added mass effects, since only it is
proportional to U(z), whereas the additional force components
are only linear in Uy, It is emphasized, that we do not include
here the effect of the turbulent pulsations in the gas flow,
which will be accounted for separately.

As it is shown in Refs. 20-23, the distributed lift force is
proportional to the local curvature of the threadline axis, and
in the linear approximation (for small bending perturbations)
is given by

#H

== P U555, )
where H=H(x,t) represents the curved threadline axis. Note
that planar bending is considered here for simplicity, whereas
the generalization to the 3D bending is straightforward.zo'23
The distributed drag and lift forces acting on a perturbed
threadline subjected to gas flow are shown schematically in
Fig. 9. Random force imposed by turbulent pulsations is also
shown in Fig. 9 for completeness.

The linearized lateral momentum balance for the per-
turbed threadline in a high speed gas flow reads

J. Appl. Phys. 108, 034912 (2010)

A%
pwaga—tn =kP+q,, (5)

where p is the threadline density, V,=dH/dt is the lateral
local velocity of the threadline, and k=¢"H/dx> is the local
curvature.

Accounting for Eq. (4), Eq. (5) takes the following form:

2
&Z_I;I + [ng() O-xx(x)] 592_1—21 - O, (6)
at p ox
where gy(x) is given by Eq. (3).

Equation (6) is rather peculiar. It shows that in regards to
the lateral motion of the threadline, the distributed lift force
diminishes the effect of stretching imposed by the aerody-
namic drag. Correspondingly, if o> ngé, this equation is
hyperbolic at 0=x=x, where o-xx>ng§, and elliptic at
X+ =X =L where a’xx<ngé, since according to Eq. (3) the
normal stress decreases along the threadline. The transition
cross-section X, according to Eq. (3) is determined by the
condition

pu3- X )

Ty
which yields the length of the “elliptic” (flapping) part of the
threadline L; as

szL—X*

&(ZUOH())OXI. (8)

0.65\ v,

Equation (8) shows that the length of the “elliptic” part of the
threadline does not depend on its length L. On the other
hand, it increases with blowing speed as Ug'gl.
The fact that Eq. (6) changes type at x=x, makes it
kindred to the Tricomi equation, albeit different from it.
The general solution of Eq. (6) with o, given by Eq. (3)
is readily found by the method of characteristics as

H( t)—@“x dx _t}
o o [a.(L - x)/mag - p,Ugl/p

+Fl-f dx —t} )
o [aAL-x)/mag—p,Ugllp |

where @(-) and F(-) are arbitrary functions.

Perturbations on the threadline are imposed by turbulent
pulsations in the surrounding turbulent gas jet. The experi-
mental data discussed in Sec. II show that significant pertur-
bations of the threadline configuration are visible at some
distance from the suspended end of the threadline. In the first
approximation, it is assumed that at a certain relatively small
distance from the suspended end perturbations of frequencies
and amplitudes corresponding to the local turbulent pulsation
structure of the mixing layer in the gas jet are imposed on the
threadline, whereas down the threadline no new perturba-
tions are imposed, since the gas jet widens. This cross-
section of the threadline where bending perturbations are im-
posed is considered to be the “initial” one, and x=0 there. In
this cross-section it is assumed that the threadline is sub-
jected to small lateral perturbations generated in the mixing
layer of the gas jet, so that
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FIG. 10. Two snapshots of the threadline shape corresponding to the case with R=p,/p=0.00122, L/a,=100, the Reynolds number Re=2Uga,/ v,=40,
H,,,=0.01, and the dimensionless perturbation frequency Q=wlL/Uy=0.01 (for L=10 c¢m and Uy=10* cm/s, =10 Hz) at two different time moments. The
perturbation amplitude H and the longitudinal coordinate x are rendered dimensionless by L.

H|—o=Hy, exp(iot), dH/dx|o=0, (10)

where Hy,, (which is a complex number in the general case)
and real w are the corresponding mode amplitude and fre-
quency, and i is the imaginary unit.

The boundary conditions (10) fully determine the func-
tions ®(-) and F(-) in the “hyperbolic” part and reduce Eq.
(9) to the following threadline configuration

H(x,t) = Hy,, exp(iot)cos[ wI(x)]. (11)

The real function I(x) results from the evaluation of the in-
tegrals in Eq. (9) as

2pmag ) | (gL 2 g L-x)
I(x) = _qT 0{[(7]__&1(2) - ngé>/p:| - —'n'ag

12
- ng%)/p .

(12)
Note that
2p7'ra2 12
100)=0, I(x,)= —O{(q—’% - ngS)/p} . (13)
r a

The physically relevant solution for the threadline shape
in the “hyperbolic” part is given by the real part of Eq. (11).

On the other hand, in the “elliptic” part the characteris-
tics are imaginary, and Eq. (9) reduces to

H(x,t) = exp(iot){A exp[-iwl(x,)]exp[— wJ(x)]

+ B expliwl(x.)]exp[w](x)]}, (14)
where A and B are constants and
2pmal /(mra2) — p, U2 |2
J(x) = p o[ qrxz_qu( o) — U . (15)
d- Lpma, p
Note that
2 o U2\ 1”2
J(x,)=0, J(L)= M<M) . (16)
q- p

The constants are found via matching of Eq. (14) to Eq.
(11) at x=x,, which yields A=B=H,,/2. Then, the thread-
line shape in the “elliptic” part is given by

H(x,t) = Hy,, exp(iwt){cosh[ wJ(x)]cos[ wl(x.)]

+ 1 sinh[ wJ(x)]sin[ wI(x.,)]}. (17)

As in the “hyperbolic” part, the physically relevant result
for the “elliptic” part is given by the real part of Eq. (17). It
is emphasized that since dI/dx|,_, =dJ/dx|, =, the tran-
sition from the “hyperbolic” part to the “elliptic” part occurs
in the cross-section X=X, where dH/dx|X=x*=OO, i.e. the
threadline is oriented perpendicularly to the gas flow.

Two dimensionless snapshots of the threadline shape cal-
culated using Egs. (11), (12), (15), and (17) are plotted in
Fig. 10. It is clearly seen that the wavelength of the standing
perturbation wave in the “hyperbolic” part becomes shorter
as approaching to the transition cross-section x=x, (=0.695
in the present case). In the “elliptic” part after the transition
the perturbation amplitude increases very rapidly, which in
fact, rapidly violates the assumption of small perturbations.
A fully realistic prediction of the threadline shape in this part
can be achieved only in the framework of the fully nonlinear
theory. However, a practical approximation is probably the
one where the calculation is truncated at a cross-section x
>x, where the perturbed threadline length reaches the value
of the order of L (i.e., 1 in the dimensionless case).

The “explosive” behavior of the solution in the “elliptic”
part is a clear manifestation of the fact that the elliptic prob-
lem is solved there as an initial value problem. This results
from the matching condition imposed only at one side of the
interval at the transition from the “hyperbolic” part at x=X..
That means that in the “elliptic” part we are dealing with an
Hadamard-like problem, which is inevitably prone to fast
perturbation growth. Situations where physical problems re-
duce to the ill-posed Hadamard-like problems are not unique.
For example, the well-known capillary Rayleigh instability,
if treated in the quasi-one-dimensional, linearized approxi-
mation for small perturbati0n520 immediately reveals an
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Hadamard-like initial value problem for the Laplace equation
with surface-tension-related regularization for the short
waves.

Strong amplification of bending perturbation waves as
they pass from the “hyperbolic” (stretched) to the “elliptic”
(almost unstretched) part of the threadline is partially related
to the fact that the wave brings with itself a parcel of me-
chanical energy delivered to it by turbulent eddies in the
“initial” cross-section x=0. In the almost unloaded part, this
energy is released as kinetic energy of lateral excursions un-
restricted by longitudinal stretching and manifesting them-
selves as flapping. Also, the distributed lift force strongly
amplifies bending perturbations in the unloaded part of the
threadline. This effect also significantly contributes to flap-
ping.

In reality turbulent pulsations can affect threadline not
only at the “initial” cross-section but over a certain length.
Considering the effect of distributed turbulent pulsations
on threadlines separately from the effect of the distributed
lift force, we apply the formula for the oscillation magni-
tude (A greadiiney derived in Sec. II accounting for the fact
that the restrictive longitudinal tension diminishes in the x
direction. Therefore, (A preadiine(X))=[27,7(x)]"?, where v,
=0.015Uody, 7.(x)=L[ 0y (x)/p)]"""2, whereas o,,(x) is
given by Egs. (1) and (3). As a result, we find the threadline
envelope as

<Athreadline(x)>

~ ﬂ 1/4 UOdO 0.2025 % 1/4 1
=0.16 —_— VdoL—"7
Pe Vv L (1-x)

g
(18)

where x is rendered dimensionless by L. The result shows
that the shape of the threadline envelope should follow the
dependence (A cadiine) ~ (1=Xx)~"4 if only turbulent pulsa-
tions are accounted for, whereas distributed aerodynamic lift
force disregarded.

The theoretical predictions of this section are compared
to the experimental data in Sec. IV.

IV. DISCUSSION: SOME THEORETICAL PREDICTIONS
VERSUS EXPERIMENTAL DATA

The results for longer threadlines in Fig. 7(a) show that
the length of the flapping region L; does not vary with the
threadline length L. This is in agreement with the theoretical
prediction of Eq. (8).

The experimental data in Fig. 8 reveal the scaling L;
~U,(0) at U,(0)=230 m/s, which is close to the scaling
L¢~U,(0)*%" expected from Eq. (8). On the other hand, at
U,(0)>230 m/s the scaling changes to Lf~Ug(0)2‘42,
which deviates significantly from the predictions of Eq. (8).
A much stronger dependence of the aerodynamic drag on the
gas jet velocity at such high values of Uy(0) most probably
corresponds to a strong increase in the eddy turbulent viscos-
ity at higher blowing rates. The experiments in Ref. 19,
which established the expression for the aerodynamic drag
(1) used to derive Eq. (8) were conducted with threadlines
moving in stagnant air, which does not involve high levels of
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FIG. 11. (Color online) The envelope observed in the experiment with a 19
cm long threadline subjected to gas jet issued at 28 bar vs the prediction
accounting for only the effect of turbulent pulsations and disregarding dis-
tributed aerodynamic lift force.

the eddy turbulent viscosity in blowing jets. Therefore, de-
viations from Egs. (1) and (8) are thus expected at higher
blowing velocities, and it is remarkable that these equations
work rather accurately up to 230 m/s.

The comparison of the prediction of the effect of the
distributed turbulent pulsations to the experimentally ob-
served threadline envelope shown in Fig. 11 reveals the fol-
lowing. In the upper, hyperbolic part of the threadline where
bending is strongly restricted by longitudinal stretching and
the aerodynamic lift cannot be large, the envelope profile is
rather accurately described by the predicted dependence of
Eq. (18) (Agyreadiine ~ (1=%)7"4. On the other hand, in the
lower, elliptic part of the threadline the effect of turbulent
pulsations alone is insufficient to describe the observed flap-
ping amplitudes, which are mostly determined by the distrib-
uted aerodynamic lift force.

V. CONCLUSION

The experimental and theoretical study of threadline
blowing in this work revealed the following mechanism of
the process. Large turbulent eddies in the high speed gas jet
with the eddy frequencies of the order of 103 Hz impact the
threadlines introducing bending perturbations. It takes mul-
tiple rapid eddy impacts on a massive threadline to cause a
visible lateral excursion. The bending amplitude achieved
locally by the eddy bombardment is controlled by a much
slower (with the frequencies of about 10-100 Hz) propaga-
tion of bending perturbations along the stretched (by the
aerodynamic drag) threadline. Bending perturbations propa-
gate along the threadline and reach lower regions which are
practically unstretched/unloaded, since they do not support
the whole aerodynamic drag imposed on the threadline.
There, the restrictions on large amplitude bending imposed
by strong stretching are removed. Then, turbulence energy
stored in the bending perturbations of the threadline can be
released as the kinetic energy of a further bending. More-
over, bending perturbations of the unloaded threadlines are
strongly amplified by the distributed aerodynamic lift force.
As a result, the whole region close to the free unloaded
threadline end experiences flapping of high amplitude. Blow-
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ing threadlines are capable of simultaneous extracting kinetic
energy from both mean flow and turbulent pulsations in it.
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APPENDIX: VELOCITY OF GAS FLOW AT THE
NOZZLE EXIT

Gas flows from a high pressure cylinder to open atmo-
sphere (where it comes in contact with a threadline or poly-
mer jet) through a long uniform pipe of cylindrical cross-
section. Pressure drops are of the order of several tens of
bars, i.e., we are dealing with an adiabatic compressible gas
flow with friction. An approximate theory of such flows in
uniform cylindrical pipes based on the compressible Ber-
noulli equation with friction can be found in Ref. 34 (p. 138)
supplemented by standard isentropic formulae for gas
flows.*® The theory reduces to the following three equations:

)\2 2K L
S -=-2h|=|=f—=, (A1)
AN N/ e+ 1dg
P _ N 1 I
Py A [1=N(k=D/(k+ D1 =Nk = 1)/(+ 1))/ D7
(A2)
2 1/2
U, = <m) )\23.01. (A3)

In Egs. (A1)-(A3), \; and \, are the velocity coefficients at
the pipe entrance and exit, respectively, which are both less
than 1 in the subsonic flows we are dealing with, « is the
ratio of the specific heat at constant pressure to the specific
heat at constant volume, L and d are the pipe length and
cross-sectional diameter, respectively, f is the friction factor,
Poi is the stagnation pressure of gas in the cylinder, p, is the
atmospheric pressure, u, is the gas velocity at the pipe exit,
and a;; the adiabatic speed of sound in stagnant gas in the
cylinder. For the friction factor in smooth pipes, the follow-
ing expression (the Unwin formula) can be used:*

£=0.0025(1 + 3.6/d,), (A4)

where the pipe diameter d, is taken in inches. In the present
case dy=0.02" and thus £=0.45.

Equations (A1) and (A2) define the velocity coefficient
at the pipe exit N, through the pressure ratio py;/p, for any
pipe length. After that Eq. (A3) is used to find the corre-
sponding gas velocity u,. As the ratio py;/p, increases, the
value of N\, increases until N,=1 is inevitably reached at a
certain value of (pg;/p,).,» which corresponds to flow chok-
ing. At po1/p2> (poi/pa). velocity u, does not change and is
equal to u,.=[2/(k+1)]"%ay,.

The predicted exit velocity of gas is plotted in Fig. 12
versus pressure ratio. The utmost right point of about u,
=310.38 m/s at py/p,=47.91 corresponds to chocking. At
the pressure ratios py;/p,>47.91 the exit velocity will stay
the same u,=310.38 m/s due to chocking. The experimental
data in Fig. 12 were acquired using two flow measuring de-
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FIG. 12. Exit velocity vs pressure ratio for k=1.4, L/D=3000 and a;
=340 m/s. The predicted velocity is shown by the curve, the experimental
data-by symbols.

vices: one for the lower pressures py;/p, <25 with a higher
accuracy (digital flow meter FMA-5610 from Omega), and
another one for the higher pressures py;/p,>25 (Dwyer In-
struments rotameter with a float; with a lower accuracy). The
agreement of the predicted and measured velocities is very
good practically in the whole range.
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