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Summary

The preferential solvation parameters of tricin in {ethanol (1) + water (2)} binary 
mixtures were obtained from their thermodynamic properties by means of the 
inverse Kirkwood-Buff integrals method. Tricin is very sensitive to specific solvation 
effects, so the preferential solvation parameter by ethanol (1), x1,3, is negative in the 
water-rich mixtures but positive in all the other compositions at temperatures from 
293.15, to 313.15 K. It is conjecturable that in water-rich mixtures the hydrophobic 
hydration around the aromatic and methyl groups of the drug plays a relevant role 
in the solvation. The higher drug solvation by ethanol in mixtures of similar solvent 
proportions and in ethanol-rich mixtures could be due mainly to polarity effects. In 
these mixtures, the drug would be acting as Lewis acid with the ethanol molecules 
because this co-solvent is more basic than water.
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Resumen

Solvatación preferencial de tricin en mezclas etanol 
 + agua a varias temperaturas

Los parámetros de solvatación preferencial del tricina en mezclas {etanol (1) + agua 
(2)} se obtuvieron a partir de las propiedades termodinámicas de solución, mediante 
el método de las integrales inversas de Kirkwood-Buff. La tricina es muy sensible a 
los efectos de solvatación específicos, por lo que el parámetro de solvatación prefe-
rencial, x1,3, es negativo en las mezclas ricas en agua, pero positivo en todas las otras 
composiciones a temperaturas desde 293,15 hasta 313,15 K. Se puede establecer que 
en mezclas ricas en agua la hidratación hidrofóbica alrededor de los grupos aromá-
ticos y metilo del fármaco tiene un papel relevante en la solvatación. La mayor solva-
tación del fármaco por etanol se presenta en mezclas de proporción intermedia y en 
mezclas ricas en etanol, esto podría deberse principalmente a los efectos de la pola-
ridad. En estas mezclas, el fármaco actuaría como ácido de Lewis con las moléculas 
de etanol, puesto que este codisolvente es más básico que el agua.

Palabras clave: Tricina, IKBI, etanol, solvatación preferencial.

Introduction

Tricin (5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)chromen-4-one) (Figure 1) 
is a flavone often found in the outer layer of cereal crops, has also been associated with 
reduction in cancer. In a mouse model of intestinal cancer, addition of tricin to the diet 
(0.2%, which was about 6 mg per mouse per day) resulted in 33% fewer intestinal ade-
nomas [1]. In another study, dietary tricin was found to inhibit inflammation-induced 
colon cancer in mice [2]. Additional beneficial health effects of tricin are summarized 
in a recent review [3].

In foods tricin is mainly found in whole cereal grains, such as rice, barley, oat, and 
wheat, also, in medicinal plants such as Artemisia copa [4]. However, higher levels of 
tricin and its derivatives are often found in other nonedible tissues, such as leaves and 
grain hulls. Because of the potential therapeutic use of tricin and its derivatives, extrac-
tion from such nonedible sources has been proposed [5]. Tricin has also recently been 
found as a component of lignin in some species, particularly monocots [6].
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Figure 1. Molecular structure of tricin.

Within the context of this article, the studies of the solubility of drugs in solvent mix-
tures have as their purpose the modeling of the solubilities, with the aim of reducing 
the number of experimental tests, and in the best case, to bring them to zero [7-12]. 
Cheng  et al. [13] determined the solubility of Tricin in {ethanol (1) + water (2)} cosol-
vent mixtures at diferent temperatures. Some thermodynamic functions associated to 
the dissolution of this drug were obtained, but nothing about the drug is preferentially 
solvated by water and by ethanol in the aqueous solvent mixtures. Nevertheless, more 
insight into the interactions of the drug molecules with those of the components of the 
mixed solvent would help in the choice of better co-solvents for the enhancement of 
drug solubilities in aqueous media [14-16].

The professor Marcus addressed this problem by means the inverse Kirkwood-Buff 
integral (IKBI) method [17,18]. Where the results are expressed in terms of the pref-
erential solvation parameter x3,1 for the solute tricin (3) by the component solvents 
ethanol (1) and water 82):

            x x x xL
1 3 3 1 1 2 3, , ,= − =−  (1)

where x3,1 is the local mole fraction of 1 in the surroundings of the solute 3 and x1 
is its mole fraction in the bulk solvent mixture. 3 is preferentially solvated by 1 when 
x3,1 > 0, otherwise by 2. Negligible preferential solvation is indicated when | x3,1| ≤ 
0.01, but values x3,1 ≈ x2 signify x3,1 ≈ 1 or complete selective solvation of 3 by 1. The 
magnitude and shape of the x3,1 = f (x1) curve provide the desired information on the 
relative strength of the interactions of 3 with 1 and with 2 in their mixture. 
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In order to apply the IKBI method, the solubility data need to be transformed into 
standard molar Gibbs energies of transfer from one of the components, say 2, into the 
mixture 1+2. If x2 is the solubility as a function of the solvent composition, then:

        ∆tr 3,2 1 2
oG → +

+

=










RT
x

x
ln ,

,

3 2

3 1 2

 (2)

Theoretical

Preferential solvation

The IKBI approach depends on obtaining the Kirkwood-Buff integrals as follows [17-22]

   G RT V x V D QT1 3 3 2 2, /= − +  (3)

   G RT V x V D QT2 3 3 1 1, /= − +  (4)

Here G1,3 and G2,3 are the Kirkwood-Buff integrals (in cm3 mol-1) as obtained from the 
thermodynamic data: the isothermal compressibility of the solvent mixtures, κt (in 
GPa-1), and standard partial molar volume of solute in this mixture, V3 (in cm3 mol-1). 
The functions

D and Q (in kJ mol-1, as is RT) are given in equations (5) and (6), and depend on 
the first derivative of standard molar Gibbs energies of transfer, ΔtrGo, and the second 
derivative of the excess Gibbs energy of mixing of the two solvents, GE

1+2, with respect 
to the composition [23, 24].
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A final quantity that is required is the correlation volume around 3, Vcor, within which 
preferential solvation takes place and the local mole fraction, xL

1,3, is defined [18, 25].

           V r x V x Vcor
L L= + −( ) + −
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This volume involves one solvation shell and depends on the size of the solute molecule 
(its radius, r3 in nm, equation 8) plus a distance of one mean solvent diameter from the 
surface of the solute.

    r
V

N A
3

21
33

3 10
4

=
×
p

 (8)

The resulting correlation volume, in cm3 mol-1, the numerical coefficients of which 
relate sizes to volumes, requires iteration, since it involves the local mole fractions of 
the two solvents.

Finally, the resulting preferential solvation parameter is then:

        x
x x G G

x G x G Vcor
3 1

1 2 1 3 2 3

1 1 3 2 2 3
,

, ,

, ,

=
−( )

+ +
 (9)

However, the correlation volume requires iteration, because it depends on the local 
mole fractions [19, 26, 27]. 

Results and discussion
The experimental solubility of tricin (3) in {ethanol (1) + water (2)} mixtures (Fig. 2) 
was taken from the literature [13]. 
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Figure 2. Experimental molar solubility of Tricin in {ethanol (1) + water (2)} mixtures at different 
temperatures; (■=293.15 K; ●=298.15 K; ▲=303.15 K; ♦=308.15 K; ○= 313.15 K). Data taken 
from Cheng et al. (2016) [6]. (106 x3).
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The solubility increases with temperature in all cases indicating that the dissolution 
process is endothermic. The highest solubility of tricin (3) expressed as a mole fraction 
were obtained in near ethanol (1) at T = 313.15 K, whereas the lowest values were 
found in pure water (2) at 293.15 K (Figure 2).

On the other hand, Fig. 2 depict the solubility profiles as a function of the polarity of 
the mixtures, expressed by their solubility parameters (mix). For a binary mixture mix 

is calculated from the solubility parameters of the pure solvents (1 = 26.5 MPa1/2 and 
2 = 47.9 MPa1/2 [28, 29]).

The solubility parameter of solute, estimated according to the groups contribution 
method proposed by Fedors [21], is 3 = 34.44 MPa1/2 (Table 1). Usually, the maxi-
mum solubility of a substance is found in a solvent or mixture of solvents with polarity 
similar to that of the solute. This behavior has been described by Delgado and Marti-
nez in several investigations [30-37]. However, the experimental data did not present a 
maximum in a mixture but in pure ethanol (1).

Table 1. Application of the Fedors’ method to estimate internal energy, molar volume, and Hildebrand 
solubility parameter of Tricin (3).

Group Group number V (cm3 mol-1) U (kJ mol-1)

-CH3 2 2 × 33.5 1 × 4.71

>C=O 1 1 × 10.8 1 × 17.4

>C= 1 1 × -5.5 1 × 4.31

-CH= 1 1 × 13.5 1 × 4.31

-OH 3 3 × 10 3 × 29.8

-O- 3 3 × 3.8 3 × 3.35

Phenyl (tetrasubstituted) 2 2 × 14.4 2 × 31.9

Ring closure 1 1 × 16.00 1 ×1.05

Conjugate bond 1 1×-2.2 1×1.67

Total 169.8 201.4

Solubility parameter (201410/169.8)1/2 34.44 MPa1/2

Preferential solvation

Standard molar Gibbs energy of transfer of tricin from neat water to {ethanol (1) + 
water (2)} mixtures is calculated and correlated to a non-regular polynomial from the 
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drug solubility data by using equation (10). Figure 3 shows the Gibbs energy of transfer 
behavior at 323.15 K. Thus, the coefficients of the polynomials are shown in Table 2.

           ∆ =









= + + + +→ +
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Table 2. Coefficients of the equation (10) applied to the Gibbs energy of transfer of tricin (3) from 
neat water (2) to {ethanol (1) + water (2)} mixtures at several temperatures.

Coefficient
kJ mol-1 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

a 0.00029 0.0023 0.0018 0.0032 0.0052

b -289.49 -282.36 -281.80 -285.37 -282.00

c 722.40 683.54 675.90 706.07 697.87

d -685.23 -624.59 -606.21 -654.99 -644.01

e 230.18 200.83 189.39 211.88 205.75
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Figure 3. Gibbs energy of transfer of tricin (3) from neat water (2) to {ethanol (1) + water (2)} co-
solvent mixtures at some temperatures (●=293.15 K; ◊=303.15 K; ∆=313.15 K).

Thus D values are calculated from the first derivative of polynomial models (Equation 
11) solved according to the co-solvent mixtures composition. This procedure was done 
varying by 0.05 in mole fraction of methanol but in the following tables the respective 
values are reported varying only by 0.10. 
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Q and RT κT values for {ethanol (1) + water (2)} binary mixtures, as well as the partial 
molar volumes of ethanol (1) and water (2), at the three temperatures considered here, 
were taken from the literature [22, 38, 39].

Otherwise, partial molar volumes of nonelectrolyte drugs are not frequently reported 
in the literature. This is because of the large uncertainty obtained in its determination 
due to their low solubilities, in particular in aqueous media. For this reason, in the 
first approach, the molar volume of tricin was considered as independent of co-solvent 
composition and temperature, as they are calculated according to the groups contri-
bution method proposed by Fedors [29]. On the other hand, the radius of the drug 
molecule was calculated by using equation 8, as r3 = 0.407 nm.

In order to apply the IKBI method, the correlation volume was iterated three times by 
using the equations (1), (7) and (9) to obtain the final values reported in Table 3. This 
property is almost independent on temperature in water-rich mixtures but increases to 
some extent in ethanol-rich mixtures. This would be expectable according to the varia-
tion of the respective molar expansibilities with the mixtures composition [40].

Table 3. Correlation volume (cm3 mol-1) for tricin in {ethanol (1) + water (2)} co-solvent mixtures 
at several temperatures after three iterations.

x1 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

0.00 790.74 791.26 791.60 792.09 792.87

0.10 814.11 810.66 808.86 812.33 813.15

0.20 938.40 939.33 941.50 944.50 946.85

0.30 1033.69 1036.60 1039.18 1041.04 1043.50

0.40 1115.76 1118.16 1119.75 1122.04 1124.45

0.50 1196.96 1197.75 1198.42 1202.63 1205.53

0.60 1281.26 1280.71 1281.36 1288.19 1292.30

0.70 1363.04 1364.41 1367.61 1376.55 1383.36

0.80 1428.86 1435.71 1443.43 1451.91 1462.05

0.90 1485.75 1493.95 1501.84 1507.52 1516.46

1.00 1560.82 1566.06 1571.22 1576.68 1582.68
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The preferential solvation parameter, x1,3 for ethanol (1) around tricin (3) is displayed 
in Fig. 4 at five temperatures. The values of x1,3 vary non-linearly with the proportion 
of ethanol (1) in the alcoholic mixtures (figure 4). The addition of ethanol to water 
causes a negative change in δx1,3 from pure water (2) up to the 0.20 in molar fraction of 
ethanol (1) reaching minimum values near to -0.08 at 0.05 in molar fraction of ethanol 
at 303.15 K. In this composition, water is preferred over ethanol around the tricin (3), 
this because possibly the structuring of water molecules around the non-polar groups of 
this drug leading to hydrophobic hydration of the aromatic and methyl groups (Fig.1), 
contributes to lowering of the net x1,3 to negative values in these water-rich mixtures. 
This behavior is observed at all study temperatures as can be seen in Table 4. Although, 
a clear influence of the temperature in water-rich mixtures is not perceived, in ethanol-
rich mixtures the solvation by ethanol increases with the increase in temperature what 
matches the solubility profile.

Table 4. x1,3, values of tricin (3) in {ethanol (1) + water (2)} co-solvent mixtures at several tem-
peratures.

x1 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

0.00 0.000 0.000 0.000 0.000 0.000

0.10 -0.070 -0.075 -0.078 -0.075 -0.075

0.20 -0.012 -0.013 -0.013 -0.012 -0.012

0.30 0.010 0.011 0.010 0.009 0.009

0.40 0.016 0.015 0.013 0.012 0.011

0.50 0.022 0.019 0.015 0.016 0.015

0.60 0.034 0.027 0.023 0.028 0.027

0.70 0.043 0.038 0.037 0.044 0.046

0.80 0.032 0.034 0.039 0.044 0.051

0.90 0.009 0.014 0.018 0.019 0.023

1.00 0.000 0.000 0.000 0.000 0.000

In the mixtures with composition 0.25 < x1 < 1.00, the local mole fraction of ethanol 
is greater than the one in the bulk and it increases with the temperature increasing. In 
this way, the co-solvent action may be related to the breaking of the ordered structure 
of water (hydrogen bonds) around the nonpolar moieties of the drug which increases 
the solvation of the tricin and has a maximum value near to x1 = 0.75, i.e. x1,3 = 0.052. 
On the other hand, although, as mentioned above, the maximum solubility was not 
achieved in a cosolvent mixture, whit would be expected theoretically, the maximum 
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solvation is achieved in mixtures with polarities similar to those of tricin (3), this factor 
could also be involved in these behaviors. 
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Figure 4. x1,3 values tricin (3) in {ethanol (1) + water (2)} co-solvent mixtures at several temperatu-
res. (●=293.15 K; ▲=298.15 K; □=303.15 K; ◊=308.15 K; ∆=313.15 K).

The tricin (3) could act in solution as Lewis acids due to the hydrogen atom in their 
–OH groups in order to establish hydrogen bonds with proton-acceptor functional 
groups in EtOH and water (oxygen atom in –OH). In addition, these drugs could act 
as Lewis bases due to free electron pairs in oxygen atoms of hydroxyl and alkoxy groups 
to interact with hydrogen atoms present in both solvents. In this context, tricin has 
three hydrogen-bonding donor and seven hydrogen-bonding acceptor groups. 

According to the preferential solvation results, it is conjecturable that in intermediate 
composition mixtures and ethanol-rich mixtures, tricin (3) is acting as Lewis acids with 
the ethanol molecules because this co-solvent is more basic than water as indicated by the 
Kamlet-Taft hydrogen bond acceptor parameters (), i.e. 0.75 for ethanol (1) and 0.47 for 
water (2) [41,42]. In this way, tricin would prefer ethanol (1) instead of water. This behav-
ior is similar to that presented by other drugs in aqueous cosolvent systems [27, 43, 44].
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Conclusions

Explicit expressions for local mole fraction of ethanol and water around of tricin were 
derived on the basis of the IKBI method applied to equilibrium solubility values of this 
drug in {ethanol (1) + water (2)} mixtures. According to the performed analyses, tricin 
is preferentially solvated by water (2) in water-rich mixtures but preferentially solvated 
by ethanol (1) in mixtures with intermediate composition and those rich in ethanol at 
all temperatures considered. 
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