
Abstract
During the past several years, point density covering
topographic objects with airborne lidar (Light Detection
And Ranging) technology has been greatly improved. 
This achievement provides an improved ability for recon-
structing more complicated building roof structures; more
specifically, those comprising various model primitives
horizontally and/or vertically. However, the technology for
automatically reconstructing such a complicated structure
is thus far poorly understood and is currently based on
employing a limited number of pre-specified building
primitives. This paper addresses this limitation by intro-
ducing a new technique of modeling 3D building objects
using a data-driven approach whereby densely collecting
low-level modeling cues from lidar data are used in the
modeling process. The core of the proposed method is to
globally reconstruct geometric topology between adjacent
linear features by adopting a BSP (Binary Space Partition-
ing) tree. The proposed algorithm consists of four steps: (a)
detecting individual buildings from lidar data, (b) cluster-
ing laser points by height and planar similarity, (c) extract-
ing rectilinear lines, and (d) planar partitioning and
merging for the generation of polyhedral models. This
paper demonstrates the efficacy of the algorithm for
creating complex models of building rooftops in 3D space
from airborne lidar data.

Introduction
Today, there are increasing demands for rapid and timely
compilation of three-dimensional building models from
remotely sensed data. Accurate acquisition and frequent
up-dating of such models becomes more important source
of information for decision making in support of numerous
applications, including geospatial database compilation, urban
planning, environmental study, and military training (Ameri,
2000). Traditionally, three-dimensional compilation of urban
features has been manually conducted under guidance of a
human operator using a Digital Photogrammetry Workstation
(DPW). Automation of such resource-intensive tasks has been
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a major focus of Photogrammetry and Remote Sensing for
many years.

In recent years, topographic airborne lidar (Light
Detection and Ranging) has been rapidly adopted as an
active remote sensing system that uses near-infrared laser
pulses (typically 1 to 1.5 mm) to illuminate man-made or
natural features on the terrain. The up-to-date lidar system
can collect elevation data at a vertical accuracy of 15 cm,
at a rate of higher than 100,000 pulses per second. This
ability allows the system to produce a dense array of
highly accurate and precise three dimensional elevation
models, which is a useful property for automating the
sophisticated tasks involved in building reconstruction.
This paper focuses on the issue of automated construction
of 3D building models from lidar data.

It is well understood that a general solution to the
building reconstruction system entails the collection of
modeling cues (e.g., lines, corners, and planes), which
represent the major components of building structure. By
correctly grouping those cues, geometric topology between
adjacent cues, describing a realistic roof shape, can be
created. A significant bottleneck hindering the reconstruc-
tion process is caused by the fact that extraction of modeling
cues is always disturbed by noise inherited from imaging
sensors and objects. The most disadvantageous feature of
lidar is characterized by irregular data acquisition, which
often makes extraction of modeling cues difficult. As shown
in Figure 1, the salient boundaries comprising building roof
structures, which are easily recognizable in the optical
imagery, are often distorted due to a variety of factors, 
most notably: scanning pattern, point spacing, surface
material properties, and object complexity. For this reason,
3D building reconstruction systems have performed most
effectively by constraining the knowledge of building
geometry either explicitly (model-driven reconstruction) or
implicitly (data-driven reconstruction) in order to recover
incomplete modeling cues.

The model-driven approach pre-specifies particular
types of building models so that geometric relations
(topology) across modeling cues are provided. By fitting
the model to observed data, the model parameters are
determined. A good example of model-driven reconstruc-
tion was presented by Maas and Vosselman (1999), who
were able to determine the parameters of a standard gable
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Figure 1. Lidar data acquisition property: the same
building acquired from (a) an airborne optical sensor,
and (b) lidar (see the lidar acquisition errors over the
building in the center of the image).

roof with small dorms through the analysis of invariant
moments from lidar points. In order to cope with more
complicated models, a number of different building
models are hypothesized and tested within partitioned
rectangles of existing ground planes, and a full description
of the roof model is generated by integrating the verified
parametric models (Brenner and Haala, 1998; Vosselman
and Dijkman, 2001).

The data-driven method reconstructs the boundary of
polyhedral building models by grouping extracted lines,
corners and planes with minimal use of prior knowledge
of the generic building model. As the modeling cues,
plane clusters are obtained by the Hough transformation
(Vosselman, 1999); RANSAC (Brenner, 2000); orthogonal
projection of point clouds (Schwalbe et al., 2005); and
region growing (Rottensteiner et al., 2005). Also, linear
features are extracted by intersecting planes detected and
the analysis of height discontinuity (Vosselman, 1999);
approximating the boundary of planes (Alharthy and
Bethel, 2004). The Gestalt laws (proximity, symmetry,
parallelism, and regularity) are often used for bridging
the gaps between extracted features in order to recon-
struct the model topology (Hu, 2003) or to snap adjacent
planes (Alharthy and Bethel, 2004). In order to impose
geometric regularity on reconstructed models, additional
constraints are used in which: (a) a set of rules for inter-
secting adjacent planes are pre-determined (Hofman, 2004);
(b) the roof structure is restricted to the dominant building
orientation (Vosselman, 1999; Schwalbe et al., 2005); or
(c) orientations of building outlines are derived from an
existing ground plan (Brenner, 2000). A global optimality
of shape regularity is achieved by the Minimum Descrip-
tion Length (MDL) principle (Weidner and Förstner, 1995).

Many buildings in modern cities exhibit a very high
degree of shape complexity, being comprised of a mixture of
various building primitives, with multiple stories and many
roof super-structures (chimneys, air vents, water tanks, roof
fences, etc.). Under these circumstances, particular types of
pre-defined models become problematic to accommodate
high variations in building shapes (Brenner, 2005). On the
other hand, strong constraints in analyzing topological
relations and grouping adjacent model cues, which are
commonly used in data-driven reconstruction, may degrade
the robustness of reconstruction systems if the fragmentary
level of cue extraction becomes higher and roof super
structures are located around the border of adjacent roof
primitives. Using an existing ground plan to sub-divide

a building region of interest into a set of rectangles can
greatly reduce the complexity of the building reconstruction
process (Brenner 2000; Vosselman and Suveg 2001). How-
ever, as building complexity becomes higher, pre-assump-
tions of coherent relations between roof structures and the
ground plan may be invalid

The main objective of this paper is to present a new
partitioning framework, where data-driven linear features
optimally subdivide a building object into piecewise plane
clusters with no use of existing ground plans. Thus, 3D roof
structures are reconstructed by collecting plane clusters so
that fragmented linear cues can be implicitly recovered. In
the following section, the major components comprising the
suggested building reconstruction system are explained.
Afterwards, experimental results from topographic lidar data
containing various types of building objects are discussed.
Finally, we draw conclusions with recommendations for
future work.

Proposed Method
Overview
The boundary of a building object with planar facets is
decomposed into collections of more primitive elements
(i.e., modeling cues) such as facets, edges, and vertices.
A generic model of 3D buildings can be represented based
on a combined topological and geometric description of the
building object. Here, the topology of building models is
obtained by recovering a set of relations that indicate how
the faces, edges, and vertices are connected to each other,
while the geometry can be specified by estimating appropri-
ate geometric parameters (perimeter, intersecting angle, area,
orientation, location, etc.) of modeling cues. The purpose of
our research is to automatically model building objects by
recovering both topological and geometrical relations across
modeling cues, primarily relying on the information driven
from lidar data only, but with minimal use of a priori
knowledge on targeted building shapes. This data driven
approach is more amenable to describing variants of build-
ing shapes than is the use of pre-specified model primitives.
However, a scientific challenge in the data-driven technique
may lie in a reliable grouping of modeling cues that are
fragmented with unpredictable order. This fragmentation can
be due to many reasons, including the noise inherited from
the sensor, disadvantageous backscattering properties and
object complexity. In order to resolve this problem, we
suggest a unique framework for globally grouping incom-
plete features extracted from a given data space that yields
successively finer approximations of the building object.

The method consists of four steps: (a) building detec-
tion, (b) point-wise clustering, (c) linear cue extraction, and
(d) building rooftop reconstruction. The functional elements
of the proposed building reconstruction system are schemat-
ically illustrated in Figure 2. The main purpose of the
building detection process are to classify the lidar data
into building and non-building points, and to provide coarse
building models for individual building objects by bounding
each isolated building region with a rectangle for the
subsequent reconstruction processes. Two interesting low-
level features, including plane clusters and linear features,
are extracted in order to serve as modeling cues to delineate
rooftop structures. The classified building points are clus-
tered by the similarity criterion of either height (height
cluster) or planar property (planar cluster). An edge is a
significant local change in lidar data, usually associated
with a discontinuity in either height (step line) or principal
curvature (intersection line). The step lines are obtained by
approximating the boundary shared with adjacent height
clusters. On the other hand, the intersection of adjacent

07-011.qxd  10/11/08  4:18 AM  Page 1426



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Novembe r  2008 1427

Figure 2. Schematic diagram of the
proposed 3D building reconstruction
system.

planar clusters with different slopes produces intersection
lines. As the coarse building shape (rectangle) is hierarchi-
cally sub-divided by the extracted linear features, convex
polygons with more fine scales are produced. Finally, a
geometric topology between adjacent polygons (i.e., planes)
is reconstructed when all partitioned polygons are verified
as building planes. This topology reconstruction is imple-
mented by optimally controlling the generation of the Binary
Space Partitioning (BSP) tree.

Extracting Initial Building Models
Our building reconstruction system starts to extract coarse
building models from lidar data, which bound individual
building regions by simple rectangles. These initial building
models will be later partitioned to finer models that become
closer to real building shapes. An important element to
create the initial building models is to reliably isolate laser
points that only belong to building objects from the ones
located over non-building features. Rather than directly
detecting building points (Filin, 2002), we followed a
hierarchical focusing strategy (Baillard, 1999) where the
targeted foreground objects (i.e., buildings) are detected by
removing the background features including terrain and
trees. The first step was to apply a model-based filtering
algorithm to airborne lidar data (Sohn and Dowman, 2008),

in order to automatically identify laser points hit on the
ground only. This technique was developed, in particular to
allow a lidar filter to be self-adaptive to various landforms
of different slopes. This terrain filter employed a tetrahedral
model to generally represent a terrain surface with single
slope (homogeneous terrain). A model-fitness between lidar
points and the tetrahedral terrain model was measured in a
framework of Minimum Description Length (MDL). In a
coarse-to-fine scheme, this model-fitness scores triggered to
recursively fragment a lidar DEM convolved with hetero-
geneous terrain slopes into piecewise homogeneous sub-
regions where underling terrain can be well characterized by
the terrain model. Once these homogeneous terrains were
obtained, the separation of non-terrain points from the
ground can be simply made by a height threshold, as terrain
characteristics over sub-regions are uniformly regularized.
Then, the building points were retained by removing points
over the tree objects from non-terrain points. In order to
eliminate the tree points, (a) laser points showing large
height difference between first and last returns were first
removed, and (b) the connected component analysis was
then applied to spatially clustered non-terrain points for
investigating average height, boundary regularity, and
surface smoothness. A non-point cluster is removed as 
the tree object if the aforementioned criteria are less than
thresholds. After removing tree features from the non-
terrain ones, individual buildings comprising only building
points are bounded by the rectangles which will be feedback
as initial building models to the following building recon-
struction procedures.

Height Clustering
Since we aim to reconstruct 3D buildings with a mixture of
multiple flat and sloped planes containing rooftop furniture,
extracting modeling cues directly from an entire building
may result in difficulties due to such a high degree of shape
complexity. In order to reduce this complexity, lidar points
collected for individual buildings are first decomposed into 
a set of clusters based on height similarity. A maximum
height deviation for each point is measured from its neigh-
boring points in a triangulated irregular network (TIN), which
contributes to producing a height histogram of a certain bin
size. After applying a simple moving box filter to the height
histogram, a maximum height peak, �h, is automatically
found from the histogram, within a height range between
1 m to 3 m. Similarly to a conventional region growing
algorithm, lidar points are grouped in one height cluster if
a height discrepancy between a point and those connected
to it in a TIN is less than �h. As a consequence, the data
domain R of lidar points P located over a building rooftop
are divided into a set of height clusters {Ri: i � 1, . . . , N}
so that , Ri � Rj � if i � j, and P satisfies a
homogeneity criterion on each Ri. Note that one height
cluster may include several different planes or corresponds
to only one plane if it is isolated from neighboring building
parts in terms of height difference (Figure 3a). During the
process, all of the cue extraction algorithms are independ-
ently applied to each height cluster (local process), but a
building reconstruction based on locally collected cues will
be conducted regardless of this height clustering result over
the entire building region (global process).

Plane Clustering
This section describes a plane clustering process that
segments lidar points into a set of clusters which uniquely
represent planar surfaces. In current research, these planar
cues play an important role in either extracting intersection
lines or in optimally partitioning the data space, thereby
reconstructing the rooftop topology across the extracted

fR � �N
i�1Ri

07-011.qxd  10/11/08  4:18 AM  Page 1427



1428 Novembe r  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 3. Point-wise clustering results: (a) height cluster-
ing, and (b) plane clustering

linear features. Thus, obtaining a reliable planar clustering
result from lidar points is important. The implemented
clustering process follows a hierarchical voting process in
the parameter space discussed by Vosselman et al. (2004).
In general, a three-dimensional plane passing through a
point (x,y,z) in the data space can be represented by:

(1)

where (�, �, �) is the plane normal vector angles measured
between the plane and the x-, y- and z-axis, respectively,
satisfying cos2 a � cos2 b � cos2 g � 1, and r is the dis-
tance of the plane from the origin of the coordinate system.
The voting process quantizes the plane parameter (a, b, g, r)
in a discrete parameter space with certain bin sizes. The
position of a particular bin in the parameter space uniquely
represents a plane in the data space. The plane parameter
locally estimated from the data space votes for a correspon-
ding bin in the parameter space. Thus, by searching maxi-
mum peaks in the parameter space, the dominant planes
passing through laser points of interest can be found
(Vosselman et al., 2004)

Rather than clustering the four plane parameters
simultaneously, two separate parameter spaces for clustering
(a, b, g), and 	, respectively, are used in order to reduce 
the dimensions of the parameter space. The normal vector
angles (a, b, g) are computed for all the points using a
conventional least squares method. An error of this local
planar parameter estimation is measured by an orthogonal
residual between the point and the plane estimated. Only
for those points with an estimation error of less than 1 m,
the normal vector angles are mapped in the parameter
space with one unit. The maximum peak of (a, b, g) is
determined in the parameter space if the voting score is
larger than a certain threshold. We collect neighboring
points from the maximum peak, by which the average
values of planar parameters can be determined from neigh-
boring points, including maximum peak. The remaining
parameter r for all points with a normal vector similar to
the maximum is calculated by Equation 1 and is mapped
to a one-dimensional parameter space. The maximum in this
space determines the orthogonal distance of the plane from
the origin. This process continues until all of the maximum
peaks of the plane parameters can be found.

The previously mentioned plane clustering algorithm
works on each height cluster independently. After assigning
the plane parameters to the entire building, a plane adja-
cency graph is created for analyzing the connectivity of
adjacent planes. The connected planes are merged if the

x cos a � y cos b � z cos g � r

plane parameters (a, b, g, r) are almost the same and are
recomputed using all of the points of the merged plane.
This plane merging process continues until no similar
adjacent planes are found. Figure 3b shows a plane cluster-
ing result obtained when the presented method was applied
to Figure 3a.

Step Line Extraction
A step line is produced where the height continuity changes
abruptly over rooftop surfaces. The line can be found around
the building boundary or the rooftops of multiple story
buildings where two planes are adjacent to each other, but
with a large height discontinuity. As discussed by Vosselman
(1999), compared to the optical sensors, extracting the step
line by detecting the height discontinuity from lidar is not a
trivial job due to the nature of discrete and irregular data
acquisition. He suggested a sequential algorithm for extract-
ing step lines from lidar data. After the connected compo-
nent of the points on all roof surfaces is determined, the
contour of this component is then approximated by step
lines that are either parallel or perpendicular to the main
building orientation. The method showed a successful result
for reconstructing a row of houses with small sheds. How-
ever, it is limited to delineating only two directions, which
are determined depending on the main building orientation.
Obviously step lines with more than two directions are
required in order to reconstruct complex buildings.

In the current experiment, we develop a step line
extractor, called a Compass Line Filter (CLF), for extracting
straight lines from irregularly distributed lidar points. The
process starts to collect step edges, which are points show-
ing abrupt height discontinuities relative to their neighbor-
hoods in the TIN. Since the data R is already segmented into
N height clusters , the step edges can be simply
collected by tracing all the boundaries where adjacent height
clusters with different IDs share. However, as shown in
Figure 4a, this process produces double step edges on the
common border of two adjacent planes, (e.g., recognize Pk
and Pl of planes Pi and Pj as step edges in Figure 4a). Since
the proposed algorithm generates step lines by approximat-
ing the step edges contour, obtaining a thinner contour
yields better approximation result. Thus, a thinning process
is considered to a point Pc as the step edge if its neighboring
points Pn belongs to more than one height cluster, and Pc is
the member of the highest plane. This relation can be
described by a signed height difference function, H(Pc, Pn) �
Pc 
 Pn as follows:

(2)

Once all the step edges are extracted (Plate 1a) and grouped
by each height cluster (Plate 1b), the next step is to deter-
mine the local edge orientation for each step edge using a
compass line filter. The local edge orientation provides
directional information of the change of height discontinuity
at a particular point. However, due to the nature of irregular
data sampling, implementing a first-order of gradient
operator to detecting height discontinuity from lidar is not
as trivial as is using optical imagery with fixed pixel size.

We modified Kirsch’s compass kernels, which can be
applied to irregularly distributed point space. Instead of
employing the gradient kernel with fixed size and gradient
coefficients, we employ a compass line operator shown in
Figure 4b) that has the whole set of eight filtering lines with
different slopes { i : i � 1, . . . , 8}, each of which, as illus-
trated in Figure 4c, is equally separated in steps of 22.5° (the
first compass line corresponds to the horizontal line). Each
line has two virtual boxes (line kernel) where length l is the
same as the one of line and width corresponding to �.

u

�max
∀PN

 H (Pc, PN)� � �min
∀PN

 H (Pc, PN)�

{Ri }N
i�1
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Figure 4. Compass Line Filter: (a) step edges belonging to two different planes,
(b) compass line operator, and (c) compass line kernel.

Plate 1. Results of step line extraction by compass line filter: (a) after extracting step edges,
(b) after grouping step edges by height clusters, (c) after grouping local edge orientation, and
(d) after extracting straight lines.
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Figure 5. Intersection line extraction: (a) a simulated hip
roof with four facets, (b) a problematic situation in the
hierarchical plane clustering, results of plane clustering
and intersection line extraction (c) without post-validation,
and (d) with post-validation.

Suppose that a height jump edge Pc belonging to a height
cluster Ri is convolved with the whole set of eight line
kernels. The local edge gradient is measured by the sum
of distances d between the compass line ui and N kernel
member points that are located within the line kernel Ki and
belonging to Ri. A final local edge orientation u* is deter-
mined with the orientation of the kernel that yields the
maximum local edge gradient. The values for the output
orientation lie between one and eight, depending on which
of the eight kernels had produced the maximum response.
The computation of this local orientation for height jump
edges is described by:

(3)

Once the local edge orientation is determined by the
compass line operator, step edges with similar local edge
orientation, belonging to the same height cluster, are
grouped (Plate 1c). The local edge orientation angle is
explicitly assigned by a pre-specified compass line filter.
Finally, the real orientations for ui are newly determined by
the well-known Hough transformation (Plate 1d).

Intersection Line Extraction
Once all of the planes are detected by the plane clustering
process for each height cluster, the intersection lines are
obtained by intersecting two adjacent planes. Thus, accuracy
of the intersection line computation is subjective to the plane
clustering result. The major problem of the plane clustering
method presented in the previous section is that the process
follows a winner-take-it-all approach, which does not take
into account of a retro-validation in the hierarchical voting
scheme. Suppose that we try to extract intersection lines over
a simulated hip roof with certain amount of white noise
(Figure 5a). If a plane Pi is detected with higher scores, more
numbers of points (white dots in Figure 5b) are clustered to
Pi (over-clustering), but less numbers of points (black dots in
Figure 5b) are clustered to Pj (under-clustering) with lower
votes as the plane is later selected. In particular, this over- or
under-clustering problem produces errors around the bound-
ary as those points, for instance the ones inside dashed circle
in Figure 5b, has similar height differences from both Pi and
Pj. This clustering ambiguity leads to the mis-location of the
intersection lines (Figure 5c). To avoid this problem, a post-
validation process is conducted before extracting intersection
lines. First, points located around the boundary between
adjacent planes are collected, and then orthogonal distances
from each boundary point to adjacent planes are measured.
A true planar membership of the point is now determined by
selecting the plane having the shortest distance measure of
adjacent planes. This process continues until no boundary
points change their planar membership. By re-estimating the
result of planar clustering, more accurate intersection line
computation can be obtained (Figure 5d).

Binary Space Partitioning
A key issue of modeling 3D building objects is to recover the
geometrical and topological relations between adjacent
planar or linear segments that are usually fragmented or
missed. Instead of pre-specifying a set of explicit relations of
adjacent features as a priori knowledge, this section employs
the well-known data structure of the BSP tree as a mid-level
feature grouping tool for object reconstruction.

The BSP is a method for recursively subdividing
n-dimensional space into convex sets with homogeneous
property by (n
1)-dimensional hyperplane. A consequence

G(ui) � �
N

k�1

2
(1 � e�dk)

, u* � arg max
∀u

i

 (G(ui)), i � 1, . . . , 8.

of this hierarchical subdivision is formulated as a repre-
sentation of the complex spatial scene by means of a
binary tree data structure. The BSP tree is a widely used
representation of solid geometry, and is extremely versatile
due to its powerful classification structure. The most
traditional application of the BSP tree is in 3D computer
graphics in order to increase rendering efficiency includ-
ing solid modeling, hidden surface removal, shadow
generation, visibility orderings, and image representation
(Fuchs et al., 1980; Gordon and Chen, 1991; Naylor, 1990).
Instead of utilizing the tree structure as a pre-processor to
store a virtual environment comprising polygonal solid
models, Sohn and Dowman (2001 and 2007) has presented
potentials of the BSP tree as an object reconstruction tool
to produce prismatic models, either using monocular high-
resolution satellite, or by combining it with airborne
lidar data. The methods were successfully applied to
urban city models, but limited to the reconstruction of
building outlines with no detailed description of building
rooftop structures. In this section, we further exploit
the BSP tree for reconstructing complex rooftop models
by involving new types of modeling cues including lin-
ear features and plane clusters comprising the shape of
building rooftop. To deal with increased numbers of
modeling cues with different properties, we investigate
a new partitioning function and strategy to obtain the
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Figure 6. Illustration of a hierarchical generation of BSP
tree: (a) lidar points attributed according to plane
clustering results, and (b) a BSP tree generated by
sequentially intersecting a given data domain with
hyperlines.

Figure 7. Partition scoring functions: (a) higher
partitioning result, and (b) lower partitioning result. White
and black dots represent the foreground and background
labels, respectively.

optimality in the generation of the BSP tree. The BSP tree
serves as a special data structure consisting of convex
hierarchical decompositions of 3D lidar points. With this
tree structure, a polyhedral building model is represented
by the union of convex regions, which correspond to
segmented planar roof-facets that are delineated by a
rectilinear boundary with maximum response to real
edges. In other words, the convex decompositions of the
lidar space induced by the BSP method serve as a fusion
framework for integrating area-features (i.e., planar cluster-
ing result) and edge-features (line extraction result) for
representing the boundary of 3D building rooftops.

Figure 6 illustrates a general idea for the construction of
the BSP tree. As discussed earlier, the rectangle bounding
each building object is given as the initial building model P0.
The entire member points of P0 are labeled, shown by
different colors in Figure 6, based on the planar clustering
result. Both step and intersection lines {li} extracted by the
line detectors are formulated as the hyperlines {hi}, each of
which will be involved in the subdivision of the given
building polygon, which is described by:

(4)

where (	i, �i) means the distance of the origin from a line
segment li, and the slope angle measured between the edge
normal and x-axis, respectively. A hyperline hl is then
chosen to halve planar clustered points into the positive and
negative region, P1�� and P1
 such that at least one of the
two polygons retains relatively higher planar homogeneity
and more favorable geometric properties than the ones
produced by the other hyperlines; more detailed criteria for
the hyperline selection will be described later in this
section. Each of sub-polygons is expressed by:

(5)

The normal vector of the hyperline h1 is defined by
(cosui, sinui). The positive polygon P1� corresponds to the
one that lies in the direction of the normal vector of li, the

 P1
(h1; r1, u1) � {(x, y) � R|x cos u1 � y sin u1 
 r1 � 0}

 P1� (h1; r1, u1) � {(x, y) � R|x cos u1 � y sin u1 
 r1 � 0}

hi (ri, ui) � {(x, y) � R|xcos ui � y sin ui 
 ri � 0 }

negative polygon P1
 is located in the opposite direction.
A BSP tree is now constructed as the root node holds the
hyperline h1, where all vertices comprising P0 and the two
sub-polygons are represented by leaf nodes. Each leaf of
the BSP tree contains binary attributes, closed and open
polygon, according to a degree of co-planar homogeneity
over a given polygon. A convex region will be represented
as the open polygon (node) in the BSP tree if, within the
polygon, the member points are attributed with more than
one planar cluster and also any part of the line segments is
found; in other cases, the node will be attributed as the
closed polygon. This node classification determines a
triggering and terminating condition of the BSP over the
node. That is, when a successive hyperline h1 is selected
as presented in Figure 7, the line continues to partition an
un-partitioned (open) polygon P1�. However, the partition-
ing process will be terminated to a closed polygon P1
.
This process continues until no open leaf is generated
by BSP.

The partitioning result will be different when a differ-
ent sequence of line segments is employed. Thus, it is
necessary to have the hyperline selection criterion which
provides an optimal partitioning result over Pi. This opti-
mality is achieved by the hypothesize-and-test scheme with
a partition scoring function. The partitioning score for
a hyperline hi is measured by three criteria: (a) plane
homogeneity, (b) geometric regularity, and (c) edge corre-
spondence.

Plane Homogeneity
This criterion controls hierarchical generation of the BSP tree
by maximizing the numbers of points with similar planar
properties for partitioned polygons. Suppose that an arbi-
trary polygon Pi contains points with N different plane
labels Lp
{Li: i � 1, . . . , N} by the plane clustering method
presented in previous section. A representative plane label
of Pi is determined as Lr to which maximum numbers of
plane labels of Pi are assigned. The plane labels Lp are then
binarized into either foreground label Lfore or background
label Lback. A member point of Pi is labeled as Lfore if its
plane label corresponds to Lr, otherwise as Lback. As an
arbitrary hyperline hi partitions Pi into two sub-polygons Pi�
and Pi
, a higher score of the plane homogeneity is given for
hi if maximum labeling homogeneity of both Lfore and Lback is
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Plate 2. BSP building reconstruction results: sequential partitioning results are shown in
a clockwise direction starting from the upper left image; a final building reconstruction
result is shown in the lower left image.

obtained in each partitioned sub-polygon. This normalized
strength of the plane homogeneity SH is measured by:

(6)

Edge Correspondence
A better partitioning result can be achieved when the
boundary between two partitioned regions strongly corre-
sponds to real edges. The strength of edge correspondence
SE is measured by the ratio of lengths of a physical line li
extracted from lidar data and the corresponding hyperline hi.
A higher score for the edge correspondence is assigned to hi
if a longer length of li is found in the polygon by

(7)

Geometric Regularity
Most building models have regular geometry (i.e., orthogonal,
parallel, symmetric properly), rather than sharp corners.
This heuristic preference on the geometric regularity SG is
measured by the minimum intersecting angle between Pi
and hi. A lower score is given for hi when hi intersects Pi
with sharper intersecting angles; scores increase as the
minimum intersecting angle increases. Note that the inter-
secting angles are measured only for one of two child
polygons of Pi which contains larger numbers of the
foreground labels (Figure 7);

SE(Pi; hi, li) �
Length (li)
Length (hi)

.

 SH(Pi
; hi)�

1
2 � Nfore (Pi
; hi)

 Nfore (Pi; hi)
 � 

Nback (Pi�; hi)
Nback (Pi; hi)

�

 SH(Pi� ; hi)�

1
2 � Nfore (Pi�; hi)

 Nfore (Pi; hi)
 � 

Nback (Pi
; hi)
Nback (Pi; hi)

�
 SH(Pi ; hi) � max(SH(Pi�

; hi) (SH(Pi

; hi)) (8)

All the hyperlines are tested to partition Pi, and the
partitioning result generated by each hyperline is evaluated by
a partition scoring function. A hyperline, h*, with the highest
partitioning score is finally selected to partition Pi by:

(9)

where a � b � g � 1 and usually (a, b, g) is chosen as (0.5,
0.3, 0.2), respectively. After constructing the BSP tree, a plane
adjacency graph is created by collecting final leaves of the
BSP tree where each node represents a planar roof-facet and
each arc represents the connectivity between neighboring
planes. Starting from the node with the largest area in the
plane adjacency graph, a simple validation of normal vector
compatibility is applied to its adjacent planes. The planes
having similar normal vector angles are merged and planar
parameters for merged planes are re-estimated. This merging
process continues until no plane can be accepted by the
co-planar similarity test. Once all polygons are merged
together, building boundaries are reconstructed. Plate 2
shows a sequence of the building reconstruction results
obtained by the presented method based on the BSP tree.

Experimental Results
In this section, we discuss and evaluate the performance
of the building reconstruction technique we propose here.
Figure 8a shows an elevation model over downtown
Toronto. The data was acquired with an Optech Incorpo-
rated ALTM-2050 airborne laser scanner with a pulse

� g  SG(Pi; hi))

h* � arg max
∀{h}

(a  SH(Pi; hi) � b  SL(Pi; hi, li)

1(60� � � � 180�)]

 Ang() � [0(0� � � � 30�), 0.5(30� � � � 60�),

 SG(Pi ; hi) � Ang(Pi ; hi)
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Figure 8. Toronto dataset and 3D building reconstruction
results: (a) lidar data acquired with an Optech ALTM-2050
sensor, and (b) 3D building reconstruction results.

repetition rate of 50 KHZ at a flying height of 850 m above
ground level. The Toronto test dataset covers approxi-
mately 1 km by 1 km where a total 2,741,684 laser points
were acquired with a mean density of 2.74 points/m2

(�0.6 m point spacing). According to the sensor and flight
specifications, 0.43 m horizontal and 0.15 m vertical
accuracies are expected. The overall elevation is almost
flat, and the northern part of the data is slightly higher
(approximately 100m) than the southern area. The test
scene was chosen to include many buildings with different
orientations and roof structures; consequently it is a good
region to test our reconstruction algorithm.

Figure 8b shows a final result of 3D building reconstruc-
tion from the Toronto dataset based on the proposed method.
As a prerequisite processing step for achieving the result of
Figure 8b, all the building objects were isolated using the
building detection procedure described in the previous
section. As a consequence, a total of 53 buildings comprising
182,450 points were detected, each of which was bounded
by an initial building model (i.e., rectangle). All the member
points in each rectangle were attributed as non-building and
building points, and were sequentially clustered by height
similarity and planar similarity, through which step and
intersection lines were extracted. As those initial models
were hierarchically partitioned by extracted rectilinear lines,
convex polygons representing roof-facets were produced with
finer scales and rooftop models were reconstructed as similar
roof-facets were merged. All of the parameters used for this
experiment were described in the previous section.

In Figure 8b, a total of 529 roof-facets were recon-
structed. Since the Toronto dataset includes buildings with
a wide range of shape complexity, the number of roof
facets reconstructed varies from one to 43 and an average
of 10 planes per building with the standard deviation of
12.3 planes. Out of a total 182,450 points, 94.48 percent
(172,378 points) were recognized as planar points by the
planar clustering algorithm (i.e., representing a particular
planar roof-facet), while 5.52 percent (10,072 points) were
not clustered as the planar points, but were eliminated
during the planar clustering process. Also, 87.7 percent
(160,078 points) of the planar points were actually utilized
for the final reconstruction of the roof-facets as the fore-
ground points (those points are termed pure planar points),
while 5.5 percent planar points (10,072 points), namely
impure planar points, remained as the background points
in under-partitioned roof-facets. We evaluated the overall
pure accuracy of the roof-facet reconstruction by measuring
the residual of the pure planar points from a plane recon-
structed in the Root Mean Squared Error (RMSE). The pure
plane reconstruction accuracy was measured as the mean
� � 0.38 (m), and standard deviation s � 0.22 (m).

The proposed algorithms were implemented and per-
formed on a Desktop PC with a Pentium-4 processor at a
clocked speed of 2.40 GHZ and with 512 MB RAM. We attempt
to evaluate the efficiency of our method by measuring the
total time consumed in reconstructing the entire test scene.
The execution time of building reconstruction on this plat-
form was a total of 461.1 seconds, which corresponds to 8.5
seconds per building. The most of buildings (79 percent
buildings) were reconstructed in less than 10 seconds, while
the maximum execution time reached to 85.3 seconds over a
building, with the largest area of 8,270 m2 and the maximum
number of planes (43 planes). Note that this figure does not
include all the time taken for building detection. (Figure 9a)

Since the ground truth of 3D building rooftops was
not available over the test site, an absolute comparison
of reconstruction accuracy between the ground truth and
reconstructed polygons was not possible. Thus, we examined
the accuracy of the building reconstruction results in two
relative measures, by measuring the residuals of the impure
planar points from a reconstructed plane (impure planar
fitness) and the ratio of the number of the impure planar
points against the total numbers of pure planar points 
in a roof-facet reconstructed (planar impurity). This plane
reconstruction accuracy cannot estimate in an absolute scale
the geometric accuracy and the topological consistency of the
reconstructed roof polygons. However, these measures 
can indirectly indicate an overall quality of the reconstruction
performance, in a sense that lower residuals, and a lower
ratio of impure planar points can be achieved as 
the roof polygons are reconstructed by maximizing the 
planar homogeneity, and thus with the minimum numbers 
of the impure planar points. If the reconstructed building
model does not preserve original building boundaries or
misses some part of building structures, more numbers of the
impure planar points are produced and thus, both measure-
ments are increased. Figure 9b and 9c shows histograms 
of the measurements of the impure planar fitness and the
planar impurity respectively. The RMSE of the impure planar
fitness for all the buildings was measured as 1.1 m, and 
s � 1.2 m, while the average ratio of the planar impurity was
measured as 5.1 percent with s � 4.4 percent. As described
earlier, the amount of the impure planar points increases both
measures. It was observed that most of the impure planar
points were produced around roof boundary regions where
adjacent roof-facets were not correctly delineated by recon-
structed models due to geometrically erroneous hyperlines 
or over roof-facets which were under-partitioned due to a lack
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Figure 9. Building reconstruction performance: (a) process time, (b) impure
planar fitness, (c) planer impurity ratio, and (d) success rate.

of hyperlines extracted. A large impure planar fitness, higher
than 3 m, were found over four buildings as planar roof-facets
comprising those buildings are connected each other with
large height differences.

Finally, we also evaluated the reliability of our building
reconstruction system by comparing the number of automati-
cally reconstructed roof-facets to the one that was manually
counted. The success rate of the algorithm is defined by:

(10)

Here, Nr is the total number of planes reconstructed by 
our method, and Nt is the total number of planes that are
visually found by a human operator. In the tests, accuracy
is only judged by the human operator with a comparison to
the manual results. The success rate R will be larger than 1
if the algorithm over-reconstructs building roof-facets, but
is less than 1 if roof-facets are under-reconstructed by the
method. A perfect success rate of 1 will be achieved if no
roof plane is missed by our method, but R will be 0 if the
algorithm cannot reconstruct any roof-facet at all. Figure 9d
shows the statistical result of the test of the reliability of
the automatic building reconstruction method. The success
rate R is measured as � � 0.92 (mmin � 0.5 and mmax � 1.3)
with s � 0.2. The experiments indicate a great potential
for the developed method for practical GIS data production.
This suggests that when a building is comprised of 10 roof-
facets, our method fails to reconstruct one plane. As seen
in the figure, the algorithm tends to under-reconstruct
building rooftops, rather than over-reconstruct the models.
It has been visually confirmed that the over-reconstruction
of building models occurred in cases when either a small
flat roof or super-structure was hard to distinguish in

R � 1 

Nt 
 Nr

Nt
.

height from the neighboring large-area planes during the
height clustering process; or step lines, usually having a
short length of 1 m to 3 m, could not be detected by the
edge detector due to high irregular density of lidar data.

In Figures 10, 11, and 12, we visualized several examples
of 3D buildings that had been reconstructed in order to dis-
cuss the characteristics of the proposed building reconstruc-
tion system. Table 1 shows the information of presented
buildings and reconstructed models. The most of prismatic
buildings with single flat roofs were reconstructed with the
highest performance. For instance, two buildings in Figure 10
show a simple “T” and a rectangular shape. A slightly higher
performance in the planar fitness and the planar impurity
was measured for the building in the second row of Figure
10b in which there are more numbers of roof super-structures.
It was confirmed that most of the prismatic buildings with
one or two planar roof facets show a similar level of planar
fitness and impurity. This is because low-level modeling cues
of planar clustering and linear features can be extracted with
higher quality (i.e., less fragmentary or missing levels with
higher geometric accuracy). It is worthwhile to point out that
the developed reconstruction method can deal with irregular
deficiency of laser-scanning acquisition. It was observed that
there are many regions occluded by building objects so that
lidar data are missing near to the building roof boundary. As
seen in the second row of Figure 10b, the left-hand side of
the building in the lidar data was a little intruded from the
original rectangular shape since the lidar data were missing
due to the occlusion effect. Nevertheless, there were no
missing parts in 3D building model reconstructed. This is one
of the advantages as the reconstruction algorithm is directly
applied to irregular points, rather than to the gridded format.

In Figures 11 and 12, the buildings show more compli-
cated shapes than in Figure 10, where several building primi-
tives are horizontally or vertically connected to each other. It is
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Figure 10. Building reconstruction results for flat roof buildings: (a) airborne images, (b) lidar
data, and (c) 3D building reconstruction results. Note that the airborne images are shown
only for comparison purposes and were not involved in building reconstruction.

evident that all of the buildings in the figures contain large
amounts of data acquisition errors due to the small coverage.
These errors may make it difficult to recognize some of the
rooftop structures and sharp boundaries. Although the shape
complexity and data irregularity have increased, Figures 11
and 12 showed that the overall quality of the reconstruction
result based on the proposed technique is satisfactory, and
that the reconstructed models effectively preserve the original
geometry. In fact, 3D structures of the buildings presented
in these figures were not very easily interpreted by visual
investigation, either from the optical imagery or lidar data.
Also the reconstruction results were achieved without requir-
ing a priori knowledge of specific building models or of the
topological relations between adjacent planes. Thus, it can be
concluded that the developed techniques would be useful to
quickly provide an initial, yet fine rooftop model with very
high shape complexity. However, it is also evident that the
reconstructed models are not perfect. As seen in the first
row of Figure 11, details of the structures around the corners
were lost and most of them were generalized too much as
rectangular corners. Also, a super-structure in the middle of
the building was wrongly reconstructed, although the original
shape of this structure is not certain, even by visual investiga-
tion. Those problems may be caused by a significant lack of
point density covering those particular regions, which results
in missing linear features.

Summary and Conclusions
We have proposed and presented a new algorithm for
automatic 3D reconstruction of building rooftops from
airborne lidar data. In the current research, this task has been
achieved through the development of a unique data-driven
framework that employs the BSP tree algorithm. The BSP-
based method was used to reconstruct polyhedral building
models by implicitly grouping fragmentary linear features

between adjacent roof-facets. The results show that the
method can represent highly complicated building structures,
where multiple building primitives are horizontally and/or
vertically connected with, and occluded from, each other.
Starting from a coarse description, the developed techniques
incrementally refine the model at different modeling scale 
by maximizing the co-planarity, edge correspondence and
geometric regularity. By this nature of global optimization,
the system can simultaneously reconstruct a large number of
connected roof-facets, but does not require a local analysis of
the primitive connectivity between adjacent facets that are
independently generated. These characteristics are the most
beneficial compared to existing model-driven techniques
which may suffer difficulties under these circumstances.
Another advantage of BSP algorithm, which has not been
studied yet in current analysis, is the ability to combine 
a search structure with a representation scheme into one
unique data structure. For instance, a building model can be
represented in a different scale, i.e., by controlling the depth
of BSP tree. This useful property can be further exploited for
generalizing building shapes according to the level of detail
(LOD). Due to the irregular nature of laser scanning and
building occlusion problems, it is usually difficult to provide
a complete set of linear features for representing building
models from lidar data. The proposed BSP algorithm provides
an alternative approach to the traditional feature grouping
approaches to overcoming the difficult problem of when
linear features are fragmented into an unpredictable order.

Although the method was successfully applied for
reconstructing buildings from lidar, there are still some
drawbacks that indicate our future work could be extended
in order to improve the method:

• The modeling accuracy of roof-facets reconstructed based on
our method is mainly subject to the extraction quality of
linear features. Improper location of extracted linear features
leads to unsatisfactory or erroneous results. Also, some parts
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of building shapes are under-modeled if linear features over
those regions are not detectable. During the current experi-
ments, these problems have been observed over the region
where the irregularity of point density is so high that some
parts of buildings are not well represented by the laser
acquisition. One solution to the problem is to devise a
compensatory process for recovering missing features of
interest by partly combining additional geometric information
driven from specific building models. For instance, a
hypothetical prediction of symmetrical shape can locate a
new conjugate line feature as suggested by Sohn and
Dowman (2007).

• In general, height clustering is effective for decomposing a
group of connected buildings into simpler regions where the

complexity of planar clustering problems can be reduced.
However, as discussed in the previous section, we observed
that some small flat roof-facets were not isolated from
adjacent ones using this process. This problem is due to the
height difference of those roof-facets from the entire building
is too weak to be detected by a pre-fixed bin size of the
height histogram. As a consequence, 3D roof modeling over
those regions fails, which decreases the success rate. To deal
with these problems, we need to develop a more adaptive
algorithm for the height clustering to varying heights. This
will help in reconstructing more building structures with
small scales.

• In the current experiment, a geometric regularization has
been devised by quantizing line slopes in a limited number

Figure 11. Building reconstruction results for multiple roof primitives: (a) airborne
images, (b) liar data, and (c) 3D building reconstruction results. Note that the airborne
images are shown only for comparison purposes and were not involved in building
reconstruction.
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Figure 12. Building reconstruction results for buildings with large area: (a) airborne
images, (b) lidar data, and (c) 3D building reconstruction results. Note that the airborne
images are shown only for comparison purposes and were not involved in building
reconstruction.

of angular ranges during the early stage of feature extraction.
However, incorrect reconstruction of building models with
irregular and sharp corners was still present in current
experiments in case that a few erroneous lines were
inevitably involved in the BSP partitioning process. Thus,
a future research direction towards this problem, a post-
processing procedure to refine data-driven models produced
by BSP by combining parametric models will be conducted.
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