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In this paper we consider a mathematical model of cancer cell invasion of tissue (extra-
cellular matrix). Two crucial components of tissue invasion are (i) cancer cell prolifer-
ation, and (ii) over-expression and secretion of proteolytic enzymes by the cancer cells.
The proteolytic enzymes are responsible for the degradation of the tissue, enabling the
proliferating cancer cells to actively invade and migrate into the degraded tissue. Our
model focuses on the role of nonlocal kinetic terms modelling competition for space
and degradation. The model consists of a system of reaction-diffusion-taxis partial dif-
ferential equations, with nonlocal (integral) terms describing the interactions between
cancer cells and the host tissue. First of all we prove results concerning the local exis-
tence, uniqueness and regularity of solutions. We then prove global existence. Using
Green’s functions, we transform our original nonlocal equations into a coupled system of

parabolic and elliptic equations and we undertake a numerical analysis of this equivalent
system, presenting computational simulation results from our model showing the effect
of the nonlocal terms (travelling waves we observed have the shape closely linked to the
nonlocal terms). Finally, in the discussion section, concluding remarks are made and
open problems are indicated.
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1. Introduction

In many biological and physical processes it is very important and highly relevant
to take into account nonlocal (i.e. other than pointwise) interactions. It is already
well known that elliptic equations (e.g. those describing chemotaxis) can be trans-
formed to equivalent nonlocal PDEs [that are related to the solutions of Poisson-like
equations (see Ref. 31)]. However, in this paper our purpose is different and here
we seek to model certain biological processes which possess a nonlocal character.
The specific model we will develop in this paper refers to the process of tumour
invasion, but the method of investigation is general and can therefore be applied to
many other different processes.

The prognosis of a cancer is primarily dependent on its ability to invade the sur-
rounding tissue and spread to distant secondary sites, i.e. metastasize. The crucial
process of invasion consists of four main steps: cancer cell adhesion (binding) to the
extracellular matrix (ECM), secretion of the matrix degrading enzymes (extracellu-
lar matrix degradation), the movement or migration of the cancer cells through the
extracellular matrix and finally cell proliferation. Cancer cells encounter a variety
of factors which may influence their directed migration at different stages in the
process of tumour invasion and metastasis. Such factors can promote the directed
movement of tumour cells by a mechanism termed haptotaxis. This is defined as
directed cellular locomotion in response to a concentration gradient of a bound, non-
diffusible molecule (cf. chemotaxis, where cells respond to a concentration gradient
of a diffusible chemical substance) such as those present within the components
of the extracellular matrix e.g. collagen, fibronectin, vitronectin.13 Such adhesive
molecules can be present in spatially varying amounts within extracellular matrix.
A cell that is constantly making and breaking adhesions with such molecules will
move from a region of low concentration to an area where that adhesive molecule
is more highly concentrated.

In this paper we develop a new mathematical model of cancer cell invasion.
The model we propose is relatively simple, because rather than taking into account
all the very complex details of the invasion process, we concentrate on modelling
nonlocal interactions involved there. In order to achieve this we develop an integro-
differential equation model involving cancer cells and the extracellular matrix. The
modelling of the degradation of tissue is achieved through the incorporation of
a spatial kernel modelling the degradative interactions between cancer cells and
the tissue. In the following section we formulate and describe the mathematical
model which consists of two coupled, nonlinear parabolic partial integro-differential
equations. In Sec. 3 using the theory of linear semigroups we first of all prove results
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concerning the local existence, uniqueness and regularity of solutions of our system
of nonlinear PDEs. In Sec. 4, we prove global existence, uniqueness and regularity of
the solutions. Using Green’s functions, in Sec. 5 we transform our original nonlocal
equations into a coupled system of parabolic and elliptic equations. We undertake a
numerical analysis of this equivalent system, presenting computational simulation
results from our model showing travelling waves of cancer cells degrading, invading
and replacing the tissue. We then compare our computational results in two distinct
cases: (i) the situation when the nonlocal effect is strong (i.e. the kernel support is
relatively big) and, (ii) the situation when the nonlocal effect is weak (i.e. the case
close to local one) and we discuss the differences between them. Finally, concluding
remarks are made in Sec. 6.

2. The Mathematical Model

Cancer is a very complex and multi-faceted disease. Therefore there is a genuine
need for theoretical approaches and studies that may help to better understand
various aspects of this phenomenon. The literature concerning the mathematical
modelling of many of the key aspects of cancer growth, spread and treatment is
now quite extensive (see e.g. Refs. 6 and 30).

Previous mathematical models for cancer invasion and metastasis can be found
in, for example, Refs. 2, 3, 15, 16 and 23. Many of these papers examine how cancer
cells respond to ECM gradients via haptotaxis. The gradients are created through
the degradation of the extracellular matrix (ECM) by matrix degrading enzymes
(MDEs). In this paper, we will base our mathematical model on generic solid tumour
growth, which for simplicity we assume that it is at an avascular stage, focusing
initially solely on the interactions between the cancer cells and the surrounding
tissue (ECM together with the healthy cells). We develop a mathematical model
consisting of two coupled partial differential equations (PDEs) describing the evo-
lution in time and space of the system variables and including nonlocal (integral)
terms. The key physical variables are taken to be the cancer cell density (denoted
by u) and the tissue density (denoted by v). The focus of the model is on examining
different key features of the system separately, i.e. cell random motility, haptotaxis,
proliferation and extracellular matrix degradation.

We now describe the way in which the cancer cell density u(t, x) and the tis-
sue density v(t, x) are involved in invasion and derive partial differential equations
governing the evolution of each variable.

(a) Cancer Cells

The degradation of the extracellular matrix by cancer cell associated enzymes
allows cancer cells to invade surrounding tissues and gain access to the circula-
tion. In addition, invasive cells in vivo adhere to surrounding ECM molecules via
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specific receptors and produce and secrete several types of matrix degrading enzyme
(MDE). The consequent digestion of ECM allows the cells to move into the spaces
thereby created and also sets up tissue gradients, which the cells then exploit to
move forwards.4,5,12,24,25,37 Movement up concentration gradients of ECM has been
reported as a mechanism enabling movement through tissues by a variety of cell
types. Tumour cell motility toward high concentrations/densities of substratum-
bound insoluble components has been termed “haptotaxis”. Along with random
motility (cf. diffusion), we assume that these two key mechanisms govern cancer
cell migration and in our model, we model these phenomena using standard terms
(for details see Ref. 14 and the references given therein).

Individual cells proliferating within the overall tumour cell mass have to com-
pete for nutrients, oxygen and space. So even cancer cells under some conditions
are suppressed in their proliferation e.g. cells in the interior of a solid tumour
do not divide as quickly as the cells on the surface. When describing cell growth
we therefore have to take into account this phenomenon. It is possible to do this
by using a logistic growth term, for instance. However, assuming ordinary logistic
growth may well be a crude over-simplification, since it means that proliferation
of the cells depends on the cells and the tissue density at a given point, whereas
the proliferation probably actually depends on the cell and tissue density in a local
neighbourhood. The immediate surrounding of a cell influences its ability to divide
and therefore we include a nonlocal term8 describing a neighbourhood of a cell that
inhibits its proliferation in the model and we adopt the following proliferation term
in our model:

µ1 u(t, x)
(

1 −
∫

Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy

)
, (2.1)

where Ω is a bounded domain in R
d (d ≥ 1) with smooth boundary ∂Ω, µ1 rep-

resents the cancer cell proliferation rate, and k1,1, k1,2 are given spatial kernels.
The kernels that are used here describe the short-range cell–cell and cell–matrix
interactions (through cell–cell signalling via inter-cellular junctional complexes, and
cellular protrusions e.g. filopodia) in a standard way. The precise forms of the ker-
nels are given in Sec. 5 (see Fig. 1). The terms

u(t, x)
∫

Ω

k1,1(x, y)u(t, y) dy (2.2)

and

u(t, x)
∫

Ω

k1,2(x, y) v(t, y) dy, (2.3)

describe the inhibition of cell proliferation caused by the density of surrounding
cancer cells and tissue respectively.

Therefore, incorporating both the migration terms (random motility and
haptotaxis) and the nonlocal proliferation terms, the equation describing the
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spatio-temporal dynamics of the cancer cells reads

∂tu(t, x) = D∆u(t, x) −∇ · (χ(v)u(t, x)∇v(t, x)) + µ1 u(t, x)

×
(

1 −
∫

Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy

)
, (2.4)

where χ(v) is the haptotaxis sensitivity function and D > 0 is the coefficient of
linear diffusion. In summary, the equation for cancer cells consists of linear diffusion
together with a standard haptotaxis transport term2,3,14,15,18,29 and a nonlocal
“source term” given by the expression (2.1), i.e. a (parabolic) reaction-diffusion-
taxis equation. However, we note that different assumptions regarding cell migration
may lead to hyperbolic models as documented in Refs. 7 and 20.

(b) Extracellular Matrix

We now turn our attention to the extracellular matrix (ECM). This is known to
contain many macromolecules such as vitronectin, laminin and fibronectin which
can be degraded by several matrix degrading enzymes.

Since extracellular matrix (ECM) is “static”, we neglect any diffusion. We focus
solely on its degradation by the cancer cells. As mentioned above, matrix degra-
dation in vivo is achieved either through re-binding of MDE to receptors on the
cancer cell surface or by MDE-activation of other degrading components in the
matrix. This has the effect of producing a region of degradation that is restricted
to a small distance around the leading edge of the invading cancer cells. Therefore,
in our model we assume that cancer cells themselves degrade the ECM upon contact
in a highly controlled and restricted manner, and use an integral term to capture
this, thus simplifying our model slightly by not explicitly modelling the MDE. We
also assume that ECM components are re-established or re-modelled by other cells
present in the tissue e.g. fibroblasts. These cells are assumed to be proliferating and
competing for space with the invasive cells in a manner similar to that describing
cancer cell proliferation. Thus, in the absence of cancer cells, we assume that the
extracellular matrix is re-modelled in a logistic manner, representing a return to
the normal, healthy “uninvaded” state. On the other hand, the presence of cancer
cells leads to competition for space between the cancer cells and the ECM which
again we model by incorporating a crowding term into the logistic equation. Using
a modified logistic growth with rate constant µ2 to describe the ECM production,
and taking γ to represent the rate of degradation, we have the following equation
for the extracellular matrix:

∂tv(t, x) = −γ v(t, x)
∫

Ω

k(x, y)u(t, y) dy + µ2 v(t, x)

×
(

1 −
∫

Ω

k2,1(x, y)u(t, y) dy −
∫

Ω

k2,2(x, y) v(t, y) dy

)
, (2.5)

where γ, µ2 are given non-negative parameters (ECM degradation rate and ECM
production rate, respectively) and k2,1, k2,2 and k are non-negatively defined
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functions, kernels, once again describing the short-range cell-matrix interactions
in a standard way. The precise forms of the kernels are given in Sec. 5 (see Fig. 1).

The complete system of equations describing the interactions between the
tumour cells and extracellular matrix is therefore:

∂tu(t, x) = D∆u(t, x) −∇ · (χ(v)u(t, x)∇v(t, x))

+ u(t, x)µ1

(
1 −

∫
Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy

)
,

(2.6)
∂tv(t, x) = −γ v(t, x)

∫
Ω

k(x, y)u(t, y) dy

+ v(t, x)µ2

(
1 −

∫
Ω

k2,1(x, y)u(t, y) dy −
∫

Ω

k2,2(x, y) v(t, y) dy

)
,

where D, µ1, µ2, γ (the cancer cell linear diffusion coefficient, cancer cell prolifera-
tion rate, ECM production rate and ECM degradation rate, respectively) are given
non-negative parameters, k, ki,j (i, j = 1, 2) are given spatial kernels and χ is the
haptotaxis function that depends on v. We assume that

k, ki,j ∈ L∞(Ω × Ω) , ∇k,∇k2,j ∈ (L∞(Ω × Ω))d
, i, j = 1, 2, (2.7)

k ≥ 0 ki,j ≥ 0 i, j = 1, 2, (2.8)

χ ∈ C2(R), χ ≥ 0
and χ, χ′ are globally Lipschitz continuous.

(2.9)

Mathematically these are very weak assumptions and it is easy to see that the
kernels that we use in Sec. 5 do indeed satisfy (2.7) and (2.8).

The system (2.6) may be rewritten in the following compact version:

∂tu = D∆u −∇ · (uχ(v)∇v) + µ1u (1 − k1,1 � u − k1,2 � v),

∂tv = −γ v k � u + µ2 v (1 − k2,1 � u − k2,2 � v),
(2.10)

where k � u(x) =
∫
Ω k(x, y)u(y)dy.

Remark 2.1. If instead of Ω we consider R
d or d-dimensional torus T

d (periodic
boundary conditions), then it is natural to use the convolution � instead of �.

Boundary Conditions: We assume that there is no-flux of cancer cells on the
boundary of the domain,

uχ(v)
∂v

∂ν
− D

∂u

∂ν
= 0 on ]0, T [×∂Ω, (2.11)

where ν is the outward normal vector to ∂Ω.

Initial Conditions: We consider the initial data

(u(0, x), v(0, x)) = (u0(x), v0(x)). (2.12)
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3. Local Existence

The question of local existence was studied for a similar model in Ref. 26. However,
it should be noted that the proof of local existence given here differs from the one
given in Ref. 26. We note that in Ref. 26 the author uses a classical setting, while
here we adopt the approach using the theory of semigroups.

Denote the norm of Lp(Ω) by ‖ · ‖p and the norm of the Sobolev space W l,p(Ω)
by ‖ · ‖(l)

p . Let

p > d. (3.1)

For a fixed T > 0 let

‖|u‖|p = sup
t∈[0,T ]

‖u(t)‖p, ‖|u‖|(l)p = sup
t∈[0,T ]

‖u(t)‖(l)
p .

For simplicity of notation, and without loss of generality, we can assume

D = γ = µ1 = µ2 = 1. (3.2)

We note that although the constants do not play a role in the proof, they do play
a role in the derivation of the model that is postulated here. We therefore stress
that although putting all the constants equal to one is useful for the proof, any
analysis of the model (e.g. computational simulations) must consider the relative
values of these parameters. Indeed, quantitative estimates of the parameters are
given in Sec. 5.

Now we introduce the new variable (see Ref. 18 and references therein)

w(t, x) =
u(t, x)
z(t, x)

, z(t, x) = exp

(∫ v(t,x)

0

χ(s) ds

)
. (3.3)

In the new variables the equation reads

∂tw = ∆w + χ(v)∇v · ∇w + w(1 − k1,1 � (w z) − k1,2 � v)

+ χ(v)w vk � (w z) − χ(v)w v(1 − k2,1 � (w z) − k2,2 � v),

∂tv = −vk � (wz) + v(1 − k2,1 � (wz) − k2,2 � v)

(3.4)

on ]0, T [×Ω, with the boundary conditions

∂w

∂ν
= 0, (t, x) ∈ ]0, T [×Ω, (3.5)

and the initial data

(w, v)(0, x) = (w0, v0)(x), x ∈ Ω. (3.6)

In order to show local existence of solutions to (3.4)–(3.6), we apply the theory
of linear semigroups. Let Ap denote the sectorial operator defined by

Apu = −∆u, u ∈ D(Ap) =
{

ξ ∈ W 2,p(Ω) :
∂ξ

∂ν
= 0 on ∂Ω

}
.
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Since Re (σ(Ap + 1)) ≥ 1 > 0, where σ(Ap + 1) is the spectrum of Ap + 1, the
operator Ap+1 possesses the fractional powers (Ap+1)β, β ≥ 0. Let Xβ

p = D((Ap+
1)β). Then we have the following embedding properties Ref. 22 (Theorem 1.6.1)

Xβ
p ↪→ W k,q(Ω) for k − d

q
< 2β − d

p
, q ≥ p > d

Xβ
p ↪→ Cκ(Ω̄) for 0 ≤ κ < 2β − d

p
,

(3.7)

where Cκ is the space of [κ]-times continuously differentiable functions with the
[κ]-order derivative satisfying the Hölder condition with exponent κ − [κ].

Since Ap + 1 is a sectorial operator, {e−t(Ap+1)}t≥0 defines an analytical semi-
group. Moreover, for u ∈ Lp(Ω), we have (see Ref. 22)

‖(Ap + 1)βe−t(Ap+1)u‖p ≤ ct−βe−δt‖u‖p, (3.8)

where δ ∈ ]0, 1[ .
Let p > d be fixed. We denote by ‖. ‖ the norm in W 1,p(Ω). Given T > 0, let

Y = C0([0, T ] ; W 1,p(Ω)), Y 1,∞ = C0([0, T ]; W 1,∞(Ω)),

with the norms denoted by ‖| · ‖| and ‖| · ‖|(1)∞ , respectively.
Now the local existence theorem can be formulated:

Theorem 3.1. Let initial data (3.6) be such that (w0, v0) ∈ W 1,p(Ω) × W 1,∞(Ω).
If assumptions (2.7)–(2.9) are satisfied, then there exists T > 0 such that problem
(3.4)–(3.6) has a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1( ]0, T [ ; W 1,p(Ω)) ∩ C0( ]0, T [ ; W 2,p(Ω)),

v ∈ C1( ]0, T [ ; W 1,∞(Ω)).
(3.9)

Moreover, if w0, v0 ≥ 0, then

w(t) ≥ 0, v(t) ≥ 0, t ∈ [0, T ]. (3.10)

Let Tmax be the maximal existence time. If there is a continuous function ω: ]0,∞[→
]0,∞[ such that, for each τ > 0,

‖w(t)‖ ≤ ω(τ), ‖v(t)‖(1)
∞ ≤ ω(τ) 0 < t < min{τ, Tmax}, (3.11)

then Tmax = +∞.

Proof. Let BR, for some R > 0, be the ball

BR = {(w, v) ∈ Y × Y 1,∞ : ‖|w‖|+ ‖|v‖|(1)∞ ≤ R}
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and J = (J1, J2) be the operator

J1(w, v) = e−t(Ap+1)w0 +
∫ t

0

e−(t−s)(Ap+1)(χ(v)∇v · ∇w + 2w

−w k1,1 � (wz) − w k1,2 � v + χ(v)w vk � (w z)

−χ(v)w v(1 − k2,1 � (w z) − k2,2 � v)) ds,

J2(w, v) = v0 +
∫ t

0

(−v k � (w z)

+ v (1 − k2,1 � (w z) − k2,2 � v)) ds.

(3.12)

Fix R > K‖w0‖ + ‖v0‖(1)
∞ , where

K := sup
t∈[0,T ]

‖e−t(Ap+1)‖L(W 1,p(Ω),W 1,p(Ω)).

We first prove that BR is invariant under J if T > 0 is sufficiently small. Using
(3.7)1 with k = 1, p = q and β ∈ ] 1

2 , 1 [ as well as (3.8) we obtain

‖J1‖ ≤ K‖w0‖ + const.
∫ t

0

(t − s)−βe−δ(t−s)(‖χ(v)‖∞ ‖∇w‖p ‖∇v‖∞

+ 2‖w‖p + ‖w‖p ‖k1,1 � (w z)‖∞ + ‖w‖p ‖k1,2 � v‖∞
+ ‖χ(v)‖∞ ‖w‖p ‖v‖∞(‖k � (w z)‖∞ + 1

+ ‖k2,1 � (w z)‖∞ + ‖k2,2 � v‖∞)) ds. (3.13)

Then by (2.7)–(2.9), assuming that (w, v) ∈ BR, we obtain

‖|J1(w, v)‖| ≤ K‖w0‖ +
const.
1 − β

T 1−β, (3.14)

where the constant indicated by “const.” depends on R.
In the same manner, by (2.7)–(2.9), we obtain

‖|J2(w, v)‖|(1)∞ ≤ ‖v0‖(1)
∞ + const. T, (3.15)

where the constant indicated by “const.” depends on R. Hence we can choose T

sufficiently small to assert that J(BR) ⊂ BR.
Similar arguments show that

‖|J1(w1, v1) − J1(w2, v2)‖| ≤ const.
1 − β

T 1−β(‖|w1 − w2‖| + ‖|v1 − v2‖|(1)∞ ) (3.16)

and

‖|J2(w1, v1) − J2(w2, v2)‖|(1)∞ ≤ const. T (‖|w1 − w2‖|+ ‖|v1 − v2‖|(1)∞ ), (3.17)

where the constants indicated by “const.” depend on R.
Hence, given T small enough we obtain the contractivity of the operator J in

BR. Thus local existence and uniqueness follow.
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Now, we proceed with the proof of (3.9). Let t0 ∈]0, T [ fixed, then (see Ref. 22,
Lemma 3.5.2) entails

d

dt
w(t0, ·) ∈ W 1,p(Ω).

Next, we rewrite the first equation of (3.4) in the following form

−∆w − b · ∇w + w = f − ∂w

∂t
,

where b = χ(v)∇v ∈ (L∞(Ω))N and

f = w(2 − k1,1 � (wz) − k1,2 � v) + χ(v)wv(k � (wz) − 1

+ k2,1 � (wz) + k2,2 � v) ∈ Lp(Ω).

Therefore, from elliptic estimates we get w(t0) ∈ W 2,p(Ω), ending the proof of (3.9).
From (2.7), (2.9) and the regularity of our solutions we obtain

(1 − k1,1 � (wz) − k1,2 � v + χ(v)v(k � (wz) − 1 + k2,1 � (wz) + k2,2 � v))

∈ L∞(]0, T [×Ω).

Consequently the non-negativity of w follows from maximum principle arguments.
Next we observe that the equation for v can be written as

vt = vf,

with f = 1 − k � (wz) − k2,2 � v − k2,1 � (wz). Thus,

v(x, t) = v0(x)e
R t
0 f(x,s)ds,

concluding the non–negativity of v.
The last statement follows by prolongation arguments (see Ref. 22, Theorem

3.3.4). This finishes the proof. �

Corollary 3.1. Let (u0, w0) ∈ W 1,p(Ω)×W 1,∞(Ω). Assume (2.7)–(2.9) then there
exists T > 0 such that the problem (2.10)–(2.12) has a unique solution

u ∈ C0( [0, T ] ; W 1,p(Ω)) ∩ C1( ]0, T [ ; W 1,p(Ω)) ∩ C0( ]0, T [ ; W 1,∞(Ω)),

v ∈ C0( [0, T ] ; W 1,∞(Ω)) ∩ C1( ]0, T [ ; W 1,∞(Ω)).

Proof. Since u0 ∈ W 1,p(Ω) and v0 ∈ W 1,∞(Ω), then w0 ∈ W 1,p(Ω). Therefore,
we can apply Theorem 3.1. Finally, taking into account that u = wz, the corollary
easily follows. �

4. Global Existence

It is well known that for various systems describing cell motions and chemotaxis
(see Ref. 29 Chap. 5 and references therein), the solutions may blow up in finite
time. Here we prove that the solutions to the nonlocal equation (2.6) exist globally
in any space dimension d without imposing any kind of smallness conditions on the
initial conditions.



February 9, 2009 11:28 WSPC/103-M3AS 00342

Nonlocal Cancer Invasion Model 267

In this section we assume that (u, v) is a non-negative solution to Eqs. (2.6),
(2.11), (2.12) given by Theorem 3.1, see Remark 3.1, on the time interval [0, T ],
with T > 0. We start with some simple lemmas that provide a priori estimates.

Lemma 4.1.

v(t, x) ≤ v0(x) eT , t ∈ [0, T ], x ∈ Ω. (4.1)

Proof. The statement is a consequence of the non-negativity of u and v, the
assumption (2.8) as well as the inequality

∂tv ≤ v, (4.2)

that follows from Eq. (2.6).

Lemma 4.2.

‖|u‖|1 ≤ ‖u0‖1 eT , ‖|w‖|1 ≤ ‖u0‖1 eT . (4.3)

Proof. Integrating Eq. (2.6)1 we obtain

‖u(t, . )‖1 =
∫

Ω

u(t, x) dx

≤
∫

Ω

u0(x) dx +
∫ t

0

∫
Ω

u(t′, x) dxdt′

≤ ‖u0‖1 +
∫ t

0

‖u(t′, . )‖1 dt′. (4.4)

Hence, by Gronwall’s lemma

‖|u‖|1 ≤ ‖u0‖1 eT . (4.5)

Taking into account the fact that w = u
z and z−1 ≤ 1 yields (4.1).

Lemma 4.3. We have

‖|v‖|(1)∞ ≤ c1(‖v0‖(1)
∞ + c2), (4.6)

where the constants c1 and c2 depend on T, ‖u0‖1 and ‖v0‖∞.

Proof. By Eq. (3.4)2 we have

∂t∇v = −∇v k � u − v (∇1k) � u

+∇v(1 − k2,1 � u − k2,2 � v)

+ v((∇1k2,1) � u − (∇1k2,2) � v), (4.7)

where by ∇1 we indicate the gradient with respect to the first variable x.
Therefore, by (2.7), we obtain

|∇v(t, x)| ≤ |∇v0(x)| + const.
∫ t

0

‖v(s)‖∞(‖u(s)‖1 + ‖v(s)‖∞)

+ const.
∫ t

0

|∇v(s, x)|(1 + ‖u(s)‖1 + ‖v(s)‖∞). (4.8)
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By (4.1) and (4.3) it follows

|∇v(t, x)| ≤ (|∇v0(x)| + const. T eT‖v0‖∞ (‖u0‖p + ‖v0‖∞))

× exp(const. T eT (1 + ‖u0‖p + ‖v0‖∞). (4.9)

This completes the proof.

Lemma 4.4. We have

‖|w‖| ≤ c3 ‖w0‖, (4.10)

where the constants c3 depends on T, ‖u0‖1 and ‖v0‖∞.

Proof. Estimates similar to that in (3.13) show

‖w(t)‖ ≤ const. t−βe−δt‖w0‖p + const.
∫ t

0

(t − s)−βe−δ(t−s)‖w‖
×(1 + ‖χ(v)‖∞ ‖∇v‖∞ + ‖k1,1 � u‖∞ + ‖k1,2 � v‖∞
+ ‖v‖∞ ‖χ(v)‖∞(‖k � u‖∞ + 1

+ ‖k2,1 � u‖∞ + ‖k2,2 � v‖∞)) ds. (4.11)

Thus, by (2.7)

‖w(t)‖ ≤ const. t−β + const.
∫ t

0

(t − s)−β‖w(s)‖

×(1 + (‖v(s)‖(1)
∞ + χ0)‖v(s)‖(1)

∞ + ‖u(s)‖1 + ‖v(s)‖∞
+(‖v(s)‖∞ + χ0)‖v(s)‖∞(‖u(s)‖1 + 1 + ‖v(s)‖∞))ds. (4.12)

By Theorem 7.1.1 of Ref. 22 as well as (4.1), (4.3) and (4.6) we conclude that

‖w‖ ≤ const. t−β , (4.13)

for 0 < t ≤ T . Finally, taking into account the local existence and (4.13) we
complete the proof.

By (4.6), (4.10) and Theorem 3.1 we obtain the main global result:

Theorem 4.1. Let initial data (3.6) be such that (w0, v0) ∈ W 1,p(Ω) × W 1,∞(Ω).
If assumptions (2.7)–(2.9) are satisfied, then for any T > 0 problem (3.4)–(3.6) has
a unique solution (w, v) in Y × Y 1,∞ and

w ∈ C1( ]0, T [ ; W 1,p(Ω)) ∩ C0( ]0, T [ ; W 2,p(Ω)),

v ∈ C1( ]0, T [ ; W 1,∞(Ω)).
(4.14)

Moreover, if w0, v0 ≥ 0, then

w(t) ≥ 0, v(t) ≥ 0, t ∈ [0, T ]. (4.15)
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Arguing as in the previous section we have:

Corollary 4.1. Let (u0, w0) ∈ W 1,p(Ω) × W 1,∞(Ω). Assume (2.7)–(2.9) then for
every T > 0 the problem (2.10)–(2.12) has a unique solution

u ∈ C0( [0, T ] ; W 1,p(Ω)) ∩ C1( ]0, T [ ; W 1,p(Ω)) ∩ C0( ]0, T [ ; W 1,∞(Ω)),

v ∈ C0( [0, T ] ; W 1,∞(Ω)) ∩ C1( ]0, T [ ; W 1,∞(Ω)).

Remark 4.1. The regularity of the solutions is strictly related to the regularity of
the initial conditions and the regularity of the kernels. In particular, under suitable
regularity assumptions on the kernels and on the initial data, we may obtain for
any T > 0

w ∈ C0([0, T ]; W 1,p(Ω)) ∩ C1,2( ]0, T [×Ω),

v ∈ C0([0, T ]; C1+α(Ω̄)) ∩ C1( ]0, T [ ; C1+α(Ω̄)),
(4.16)

for 0 < 1 + α < 2β − d/p.

5. Numerical Analysis and Computational Simulations

In this section we undertake computational simulations of a non-dimensionalised
version of the system of non-local equations (2.6) describing cancer cell invasion of
the ECM. We recall that in one space dimension, the system of equations (2.6) can
be written as:

∂tu(t, x) = D∂2
xu(t, x) − ∂x(χ(v)u(t, x)∇v(t, x))

+ u(t, x)µ1

(
1 −
∫

Ω

k1,1(x, y)u(t, y) dy −
∫

Ω

k1,2(x, y) v(t, y) dy

)
,

∂tv(t, x) = −γ v(t, x)
∫
Ω

k(x, y)u(t, y) dy

+ v(t, x)µ2

(
1 −
∫

Ω

k2,1(x, y)u(t, y) dy −
∫

Ω

k2,2(x, y)v(t, y) dy

)
,

(5.1)

where D, µ1, µ2, γ (the cancer cell linear diffusion coefficient, cancer cell prolifera-
tion rate, ECM production rate and ECM degradation rate, respectively) are given
non-negative parameters, k, ki,j (i, j = 1, 2) are given spatial kernels and χ is the
haptotaxis function that depends on v. Ω is now the interval [0, L] for some L > 0.

Without loss of generality, we now assume that k1,2 = k2,2 and k2,1 = k1,1 and
we can now rewrite system (5.1) as

∂tu = D∂2
xu − ∂x(uχ(v)∂xv) + µ1u (1 − k1,1 � u − k2,2 � v),

∂tv = −γ v k � u + µ2 v (1 − k1,1 � u − k2,2 � v).
(5.2)

The above system of integro-partial-differential equations presents challenges
from a numerical analysis point of view. In order to make progress in this direction
and to enable the implementation of an efficient numerical scheme, we adopt the
approach taken in Refs. 10, 11 and 21.
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We let p ≥ 1 and fix t ∈ [0, T ]. Then for each g(t, . ) ∈ Lp(Ω) we consider the
linear operator G : Lp(Ω) → W 2,p(Ω), where G(g) is the unique solution to the
equation

−∂2
xf + θ2f = θ2g in Ω,

∂f

∂ν
= 0 on ∂Ω,

(5.3)

for some θ ∈ R > 0. It is then straightforward to see that40

f(x) = G(g)(x) =
∫

Ω

k(x, y)g(y) dy. (5.4)

Using this approach, it is now easily seen that with k1,1, k2,2 and k defined by
Eqs. (5.3) and (5.4) for θ = λ1,1, λ2,2, λ respectively, our system (5.1) can be
rewritten as:

∂tu(t, x) = D ∂2
xu(t, x) − ∂x(χ(v)u(t, x) ∂x v(t, x))

+ µ1u(t, x)(1 − f1,1(t, x) − f2,2(t, x)),

∂tv(t, x) = −γ v(t, x)f(t, x) + µ2v(t, x)(1 − f1,1(t, x) − f2,2(t, x)),

λ2u(t, x) = −∂2
xf(t, x) + λ2f(t, x)

λ2
1,1u(t, x) = −∂2

xf1,1(t, x) + λ2
1,1f1,1(t, x),

λ2
2,2v(t, x) = −∂2

xf2,2(t, x) + λ2
2,2f2,2(t, x).

(5.5)

The above set of equations is now a system of coupled elliptic–parabolic PDEs
which can be solved using standard numerical techniques (in our case finite ele-
ments). In order to close the system, we assume no-flux boundary conditions, i.e.

u χ(v) ∂xv − D∂xu = ∂xf = ∂xf1,1 = ∂xf2,2 = 0, on ]0, T [×∂Ω (5.6)

and initial data:

(u(0, x), v(0, x)) = (u0(x), v0(x)), (5.7)

where

u0(x) = exp
(−x2

ε

)
, x ∈ Ω and ε = 0.01 > 0,

v0(x) = 1, x ∈ Ω.

(5.8)

Before proceeding with our computational simulations, we state the following
corollary:

Corollary 5.1. The system of equations (5.5) with boundary conditions (5.6) and
initial data given by (5.7), (5.8) has a unique solution

(u, v) ∈ C0([0, T ]× [0, L]) ∩ C∞(]0, T [×]0, L[), (5.9)

for any T > 0.
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Proof. Keeping in mind the properties of the operator G, we may repeat the
arguments of Sec. 3 and obtain the local existence and uniqueness theorem. The
additional regularity comes from a standard parabolic and elliptic regularization.
In order to obtain global existence, we repeat the arguments before Lemma 4.2 and
we also need the following lemma:

Lemma 5.1. The solution given by Corollary 5.1 is such that

‖|u‖|2 ≤ c4, (5.10)

where c4 depends on T and ‖w0‖2.

Proof. Following the notation of Sec. 3 we have

z∂tw = ∇(z∇w) + zw(1 − k1,1 � (wz) − k1,2 � v)

+ zχ(v)wvk � (wz) − zχ(v)wv(1 − k2,1 � (wz) − k2,2 � v). (5.11)

Multiplying Eq. (5.11) by w and itegrating in the space we get

1
2

d

dt

∫
Ω

(zw2) =
1
2

∫
Ω

zχ(v)w2vt + zw2(1 − k1,1 � (wz) − k1,2 � v)

+ zχ(v)w2vk � (wz) − zχ(v)w2v(1 − k2,1 � (wz) − k2,2 � v).

(5.12)

Taking into account (4.1), (4.3) and (2.7), (2.9) we obtain

d

dt

∫
Ω

zw2 ≤ −
∫

Ω

z|∇w|2 + c

∫
Ω

zw2. (5.13)

This yields ∫
Ω

zw2 ≤ const., (5.14)

where the constant “const.” depends on T and ‖z0w
2
0‖2 and the statement of Lemma

5.1 follows.

By Lemma 5.1 and by the Sobolev Embedding Theorem (see Ref. 1), we may
repeat the arguments from Sec. 4 and obtain the statement of Corollary 5.1.

We are now in a position to solve our system of equations (5.5)–(5.7) numer-
ically. In order to do this, first of all we non-dimensionalise the equations. The
variables and parameters in the system of equations and their associated bound-
ary conditions are transformed into dimensionless quantities using the following
reference variables:

(1) a reference length scale, L, (e.g. the maximum invasion distance of the cancer
cells at this early stage of invasion 0.1–1 cm),

(2) a reference time unit, τ = L2

Dc
, where Dc is a reference chemical diffusion coeffi-

cient e.g. 10−6 cm2s−1 (see Ref. 9). Therefore, we deduce that τ varies between
104 − 106 sec,
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(3) a reference tumour cell density u0, extracellular matrix density v0 (where u0,
v0 are appropriate reference variables).

For the numerical calculations presented here, we assume χ(v) to be a constant
χ, and we thus define the non-dimensional variables:

t̃ =
t

τ
, x̃ =

x

L
, ũ =

u

u0
, ṽ =

v

v0

and new parameters via the following scaling:

D̃ =
D

Dc
, χ̃ = χ

v0

Dc
,

µ̃1 = µ1τ, µ̃2 = µ2τ, γ̃ = γu0v0τ.

Henceforth we omit the tildes for notational simplicity.
As was mentioned previously, we work on a one-dimensional domain [0, L]. In

this case, it is straightforward to calculate explicitly the Green’s Function (and
hence the spatial kernel) for our problem (see, for example, Ref. 40). Thus we have

k(x; y) =




λ coshλx cosh λ(L − y)
sinhλL

, 0 < x < y

λ coshλ(L − x) coshλy

sinhλL
, y < x < L.

A plot of the above kernel for different values of λ is given in Fig. 1 and we note
the role played by the parameter λ — the smaller λ is, the greater the nonlocal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

kernel on [0,1]
y = 0.5
steep curve: lambda = 10
shallow curve: lambda = 1 

Fig. 1. Plot of the finite kernel (Green’s function) on [0,1], y = 0.5, for the two cases λ = 1, 10.
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effect and, conversely, if λ → ∞ the nonlocal term becomes local. Therefore, the
quantity 1

λ can be considered as a measure of the spatial scale over which the
nonlocal term acts. Thus for system (5.5), 1

λ is a measure of the size of the spatial
domain over which degradation acts, 1

λ1,1
is a measure of the size of the spatial

domain over which cancer cells compete with other cells for space/resources, and
1

λ2,2
is a measure of the size of the spatial domain over which components or cells

of the ECM compete with others for space/resources.
Before presenting the results of our computational simalutions, first of all we

give estimates for as many of the parameters of the model as possible.

5.1. Estimation of parameters

Whenever possible parameter values are estimated from available experimental
data. However, given the large number of parameters in the model to be deter-
mined, it is perhaps not surprising that several remain unquantified. In the cases
where no experimental data could be found, parameter values were chosen to give
the best qualitative numerical simulation results. This is in line with previous papers
successfully simulating tumour invasion and angiogenesis.2,28

Estimation of the reference diffusion coefficients Dc, D

We introduce Dc a reference chemical diffusion coefficient, e.g. Dc ∼ 10−6 cm2s−1.9

Estimates for the cell random motility coefficient vary depending on the cell type:
3×10−9 cm2s−1–5.9×10−11 cm2s−1 for epidermal cells;34 (7.1±2.7)×10−9 cm2s−1

for endothelial cells;36 also, Bray estimated the random motility coefficient of animal
cells to be ∼ 5×10−10 cm2s−1.9 In light of these data, our choice for the cell random
motility coefficient D will vary betweeen 10−9 cm2s−1 and 10−11 cm2s−1, and so our
nondimensional value Dc ∈ [10−5, 10−3].

The haptotactic coefficient χ

Stokes et al. estimated the chemotaxis sensitivity of ECs migrating in a culture
containing αFGF, to be 2600 cm2s−1M−1 (see Ref. 36). In the absence of reli-
able empirical data, we chose the haptotaxis sensitivity χ to be in the range from
2.5 × 10−3 to 2.5 × 10−1cm2s−1M−1. Therefore, considering the fact that the vit-
ronectin blood plasma concentration is around 4 µM ,17 leads to a dimensionless
estimate of the haptotaxis coefficient χ in the range between 0.001 and 1. v0 varies
between 0.38 × 10−9 M and 0.38 × 10−12 M which is consistent with experimental
measurements.

Proliferation rate constant µ1

Yu et al. estimated the doubling time of human epidermoid carminoma cells (HEp3)
from in vitro proliferation experiments time to be 24 h.38 By taking the prolifer-
ation rate as the reciprocal of the cell-cycle time we get µ̃1 ∼ 0.042 h−1. For our
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numerical simulations we will choose the proliferation rate to be between 0.02 h−1

and 0.72 h−1, and thus obtain the dimensionless parameter µ1 in the range from
0.05 to 2.

Parameters λ, λ1,1, λ2,2

As noted previously, 1/θ, with θ = λ, λ1,1, or λ2,2 can be considered as a measure
of the spatial scale over which the nonlocal term acts. In our simulations, we used
values of λ1,1 ∈ [1, 10] in dimensionless units. Although the cancer cells have rather
non-regular shape we estimate that an average diameter of a cancer cell is equal to
10 microns. The above range for λ1,1 is therefore equivalent to the assumption that
the nonlocal effect varies from 1 cell diameter to up to 10 cell diameters. Similarly
we used values of λ2,2 ∈ [10, 50] and λ ∈ [1, 10000].

Remaining parameters

Not all parameters in the model were able to be estimated. Therefore, we chose these
remaining parameter values in line with previous models of cancer invasion.15,16

A summary of all parameter value ranges used in the computational simulations
is given in the table below:

Parameter Description Value

D cell diffusion coefficient [10−5, 10−3]

χ haptotactic sensitivity [10−3, 1]
µ1 proliferation rate of cancer cells [5 · 10−2, 2]
µ2 matrix re-modelling rate [1.5 · 10−1, 2.5]
γ matrix degrading rate [1, 2 · 10]
λ1,1 cancer cell nonlocal effect [1, 10]
λ2,2 ECM nonlocal effect [1, 50]
λ degradation nonlocal effect [1, 10000]

5.2. Computational simulations

We now present some computational results from numerical simulations of the sys-
tem of equations (5.5) which was solved numerically using the Femlab finite element
package (Lagrange quadratic elements were used as basis functions and the back-
ward Euler time-stepping method was implemented to integrate the equations).

Figures 2 and 3 show the computational simulation results where the parameters
λ1,1, λ2,2 and λ have the following values: λ1,1 = 10, λ2,2 = 50 and λ = 10000. The
choice of parameter λ = 10000 means in effect that the degradation term of the
second equation of (5.5) is almost local, i.e. ≈ −γuv. We chose this value for λ in
order to focus on the effect of nonlocal proliferation. As can be seen from the plots
in Figs. 2 and 3, the initial profile of cancer cells develops into a travelling wave
which invades the ECM, degrading the ECM as it invades. Eventually all the ECM
is degraded and we are left with the cancer-only steady state of (1, 0).
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Fig. 2. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60.
Figure shows the travelling wave of invasion of cancer cells invading the ECM. Parameters
λ1,1 = 10, λ2,2 = 50, λ = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.

Figures 4 and 5 show the computational simulation results where the parameters
λ1,1, λ2,2 and λ have the following values: λ1,1 = 1, λ2,2 = 5 and λ = 10, 000. As
can be seen from both sets of plots, once again the initial profile of cancer cells
develops into a travelling wave which invades the ECM, degrading the ECM as it
invades. However, in this case we note that there is an “overshoot” in the cancer
cell density at the front of the travelling wave, where the maximum cancer cell
density reaches a value of approximately 1.5. This is due to the influence of the
nonlocal proliferation terms whose effects have been enhanced due to the choice
of parameters λ1,1 = 1, λ2,2 = 5. Once again, the wave of cancer cells invades the
ECM, degrading the ECM as it invades. Eventually all the ECM is degraded and
we are left with the cancer-only steady state of (1, 0). We note that in this case,
the cancer cells penetrate less deeply into the ECM — at t = 60 the leading edge
of the cancer cells has reached the point just beyond x = 0.7, while in Fig. 2 at
t = 60 the leading edge of the cancer cells has reached approximately x = 0.625.

The results presented in Figs. 2, 3 and 4, 5 illustrate the effect of the nonlocal
proliferation terms. The cancer cells degrade the surrounding ECM and then invade
this degraded region of tissue by a combination of diffusion and haptotaxis. This
is seen as the travelling wave solution connecting the cancer-free state with the
cancer-only state. In the model we assume that cancer cells are competing for
nutrient (e.g. oxygen) with other cells at different spatial locations. In the one-
dimensional domain considered here this means that the cancer cells competing
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Fig. 3. Plot showing the corresponding profile of the density of ECM at times t = 10, 20,
30, 40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.

Fig. 4. Plot showing profile of the density of cancer cells at times t = 10, 20, 30, 40, 50, 60. Figure
shows the travelling wave of invasion of cancer cells invading the ECM. Parameters λ1,1 = 1, λ2,2 =
5, λ = 10000, D = 0.001, χ = 0.075, µ1 = 1, µ2 = 0.15 and γ = 1.



February 9, 2009 11:28 WSPC/103-M3AS 00342

Nonlocal Cancer Invasion Model 277

Fig. 5. Plot showing the corresponding profile of the density of ECM at times t = 10, 20, 30,
40, 50, 60. Figure shows ECM being degraded by the cancer cells as they invade.

both with those cells in front and with those cells behind. In an invasion of a
region of tissue where there were no cancer cells, those cells at the front of the
invasion wave (mathematically, at the point where the travelling front is steepest)
will find essentially no cancer cells ahead of them. This means that essentially these
cells are only in competition with the cells behind. This gives them an “invasive
advantage” and allows the cell numbers there to get above the carrying capacity
level (the maximum level that can be sustained in the long term), but only in the
neighbourhood of the front of the invading cells (see Ref. 21, where a different,
simpler model was considered). As a result we see an “overshoot” in the front
profile.

6. Discussion

In this paper we have presented a mathematical model of cancer cell invasion of
tissue and investigated the effect of nonlocal reaction kinetics. The model was for-
mulated as a system of partial differential equations (integro-differential equations)
with the nonlocal terms modelling competition for nutrient between the cancer
cells and tissue re-modelling. Additionally, we incorporated a nonlocal degradation
term. Certain important analytical results were proved and computational results
of numerical simulations of our model were given.
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In Sec. 3, we presented a mathematical analysis of the model and proved the
local existence results for the solution of our equations using the theory of linear
semigroups. In Sec. 4, we proved that the solutions to the nonlocal equations exist
globally and are unique in any space dimension d without imposing any kind of
smallness conditions in the initial conditions. Finally, we showed that the regularity
of the solutions is strictly related to the regularity of the initial conditions and the
regularity of the kernels and proved some results related to this.

In Sec. 5, we presented the computational results of numerical simulations of
our basic model. These simulations showed the effect of the nonlocal terms.21 Trav-
elling waves of invading cancer cells were observed, and the shape of the travel-
ling wave was closely linked to the nonlocal terms and the size of the parameters
λ, λ1,1, λ2,2. The invasive waves were either “regular” or had an “overshoot” at
the front, indicating a region of high cancer cell density. From a biological perspec-
tive, these results indicate the important role that competition for nutrient (e.g.
oxygen) and space may play during cancer cell invasion. The numerical simula-
tions indicate that cancer cells at the leading edge of an invasive front are only
in competition with the cells behind, giving them an “invasive advantage” over
cells futher behind. This may have implications on the depth of penetration into
the ECM.

The numerical simulations that we have carried out suggest various interesting
open mathematical and analytical questions that will be studied in future work,
such as a rigorous proof of the existence of travelling waves and the derivation of
an upper bound for the wave speed.

Future work will also consider extending the current model. Firstly, we will
consider a more realistic treatment of the cancer cell random motility function
D(·). Although in this paper we have considered this to be a constant (i.e. linear
diffusion), from a physical point of view, migration of the cancer cells through the
ECM is more like movement in a porous medium and so we may consider the
cell random motility to be a function of the cancer cell density, i.e. D ≡ D(u).
Specifically D(u) = uα, α ≥ 1.

Recent experimental work39 has shown that the cancer cell motility also depends
on ECM density (haptokinesis), i.e. D ≡ D(v), with a possible form27 D(v) =
D0v(K2 + v2)−1 with parameters D0 ≥ 0 and K > 0, accounting for the fact that
cancer cells cannot move in the absence of ECM (D = 0 when v = 0), have reduced
movement when the ECM becomes denser, and have maximal rate of random motil-
ity at some intermediate value of ECM.

Finally, we may also consider extending the current model to explicitly include
the effect of matrix degrading enzymes.14–16 In this instance, the cancer cell motil-
ity may also depend upon the matrix degrading enzyme (MDE) concentration
(chemokinesis). In this case, we would consider D ≡ D(u, v, m), where m is the
MDE concentration. Considering such cases of nonlinear diffusion of the cancer
cells naturally leads to a finite wave speed of propagation19,32,33 (given initial data
with compact support).
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