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The impact of nutrition and energy reserves on the fertility of ruminants has been extensively described. However, the metabolic
factors and the molecular mechanisms involved in the interactions between nutrition and ovarian function are still poorly
understood. These factors could be hormonal (either reproductive and/or metabolic) and/or dietary and metabolic (glucose, amino
acids and fatty acids). In this review, we briefly summarize the impact of those nutrients (fatty acids, glucose and amino acids)
and metabolic hormones (insulin/IGF-I, growth hormone, T3/4, ghrelin, apelin and the adipokines (leptin, adiponectin and resistin))
implicated in the development of ovarian follicles, oocytes and embryos in ruminants. We then discuss the current hypotheses
on the mechanisms of action of these factors on ovarian function. We particularly describe the role of some energy sensors
including adenosine monophosphate-activated kinase and peroxisome proliferator-activated receptors in the ovarian cells.
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Implications

In pursuit of sustainable and economically viable livestock pro-
duction systems that meet consumer demands, farmers are
under increasing pressure to maintain or increase fertility of
their herds. Nutritional management both before and after
calving has a great impact on fertility. Nutrition influences
ovarian follicle development in ruminants possibly through
changes in metabolic hormones and also through direct effects
of nutrients on the ovary. These interactions can bemanipulated
to improve reproductive performance. Here, we summarize the
impact of nutrients and metabolic hormones implicated in the
development of ovarian follicles, oocytes and embryos in
ruminants.

Introduction

In ruminants as in other mammals, alterations of energy
and protein metabolism related to variations in the diet can
influence reproductive functions at different levels of the
gonadotropic axis. For example, in dairy cows, postpartum
energy balance affects the number of follicles, their rate of
growth and development, and the size of the ovulatory follicle
(Lucy et al., 1991a; Boland et al., 2001). In this species, negative
energy balance (NEB) can also attenuate LH pulse frequency

(Butler, 2003). However, there is evidence that indicates that
nutritional effects on the recruitment and growth of follicles are
mediated mainly by direct metabolic signals to the ovary that
vary with metabolic status (Lucy, 2003; Webb et al., 2004). In
sheep, an increase in the energy content of the diet for a few
days before reproduction during the late luteal phase
improves the ovulation rate (Downing and Scaramuzzi,
1991). Many inter-related factors are involved in the nutri-
tional effects on fertility in ruminants. These factors are the
nutrients themselves (fatty acids, glucose and amino acids)
and the hormonal signals from various peripheral tissues
(insulin (pancreas), IGF-I (liver), growth hormone (GH)
(pituitary), thyroid hormones (T3/4) and adipokines (adipose
tissue) such as leptin, adiponectin and resistin)). In the pre-
sent study, we will describe the effects of these factors on the
ovary (follicles and oocytes) and embryos in ruminants.

Effect of fatty acids

In this part of the review, we will detail the effects of non-
esterified fatty acids (NEFAs) and also the effects of dietary
supplementation with fat on ovarian function.

NEFAs
In cattle, NEB is an important risk factor for delayed post-
partum cyclicity (Beam and Butler, 1999). Follicles emerging† E-mail: jdupont@tours.inra.fr
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before an NEB nadir have reduced growth and produce less
oestradiol, and therefore require more time and a larger size
to achieve a secretion rate of oestradiol capable of triggering
the LH surge and ovulation (Beam and Butler, 1999). It has
been suggested that the harmful effects of NEB on ovarian
function are exerted through decreased LH-pulsatility and
reduced circulating concentrations of IGF-I, insulin and glu-
cose (Beam and Butler, 1999). However, metabolic altera-
tions associated with NEB may also affect ovarian function
by acting directly on the ovary. Increased lipolysis of body fat
also occurs during periods of NEB, causing an elevation in
the blood concentrations of NEFAs (Rukkwamsuk et al.,
2000). For example, during periods of NEB, total serum
concentrations of palmitic (C16:0), stearic (C18:0) and oleic
(C18:1) acids are increased (Rukkwamsuk et al., 2000).
Although there was no significant uptake of NEFAs by the
bovine ovary in one study (Rabiee et al., 1997), others have
reported that in cattle increased concentrations of NEFAs in
blood were reflected in the ovarian follicular microenviron-
ment (Leroy et al., 2004 and 2005). Thus, on balance, NEFAs
may affect follicular growth and fertility by acting directly on
the different ovarian cells, including the oocyte within the
growing follicle, and may also affect the development of the
fertilized oocyte, morula and early blastocyst.
Several reports show that elevated concentrations of

plasma NEFAs and in the range of concentrations frequently
observed in the follicular fluid of the dominant follicle in dairy
cows were associated with reduced in vitro developmental
competence of the oocyte (Jorritsma et al., 2004, Leroy et al.,
2005, Aardema et al., 2011) and compromised the viability of
the bovine granulosa cells (Vanholder et al., 2005), but with a
positive effect on the production of oestradiol by granulosa
cells (Vanholder et al., 2005). A recent study has shown that
exposure of the maturing oocytes to elevated concentrations
of NEFAs has a negative impact on fertility not only through a
reduction in the developmental capacity of the oocyte but also
through compromised quality, viability and metabolic capacity
of the early embryos (Van Hoeck et al., 2011). The same
laboratory suggests that these negative effects of NEFAs on
the embryo could be a consequence of modified energy
metabolism and particularly, mitochondrial β-oxidation of
fatty acids in the oocyte (Van Hoeck et al., 2013). A recent
study has shown that bovine cumulus cells are able to protect
maturing oocytes from potential harmful effects of increased
local concentrations of fatty acids by intracellular storage of
lipids (Aardema et al., 2013).
In conclusion, the current state of knowledge suggests

that nutritional states that result in high-circulating concen-
trations of NEFAs can, and often do, compromise develop-
ment of the dominant follicle and also that of the early
embryo, and thus diets or metabolic states that favour high
concentrations of NEFAs should be avoided during the cycle
of conception and the early postconception period.

Supplementation with dietary fat
Several reviews have reported that dietary supplementation
with fat influences reproduction in cows through effects on

follicle growth and steroid production, oocyte maturation
and embryo development (Mattos et al., 2000; Wathes et al.,
2007; Santos et al., 2008; Thatcher et al., 2011). The precise
composition of the lipid supplement is crucial to these
effects. For example, concerning the polyunsaturated fatty
acids (PUFAs), the ratio of n-6 to n-3 may play an important
role in reproduction in sheep and cattle (for review, Gulliver
et al., 2012).

Effects on the follicle development. In the dairy cow, a diet
enriched with long-chain fatty acids increases the number
of medium follicles (6 to 9 mm) and the diameter of the
preovulatory follicle (Lucy et al., 1991b). These positive
effects of long-chain fatty acids on the size of the dominant
follicle have been confirmed in several studies (Mattos et al.,
2000; Robinson et al., 2002; Ambrose et al., 2006; Bilby
et al., 2006). In addition, different effects were observed on
the follicular growth between monounsaturated fatty acids
(MUFA) and polyunsaturated (PUFA) fatty acids: PUFAs
promoted follicular growth to a greater extent than did
MUFAs (Bilby et al., 2006).
Several studies have suggested that supplementation of

cattle with PUFAs increased the plasma concentrations of
steroid by stimulating ovarian production of steroid hormones
through various mechanisms, including increased availability
of lipoprotein–cholesterol (Hawkins et al., 1995; Lammoglia
et al., 1996), modulation of prostaglandin synthesis (Knick-
erbocker et al., 1986), and the direct stimulation of ovarian
steroidogenesis (Staples et al., 1998). In another study on
cows, it was shown that diets enriched in n-6 PUFAs increased
the secretion of progesterone by the granulosa cells (Wehrman
et al., 1991). Although progesterone production appears
in vivo to be lower with n-3 and higher with n-6, the exact
mechanism through which n-3 and n-6 modulate progesterone
and oestradiol is unclear (for review, Gulliver et al., 2012).
In dairy cows, diets enriched with fatty acids (both MUFAs
and PUFAs) significantly increased the concentration of
cholesterol in plasma, follicular fluid and the corpus luteum
(Staples et al., 1998). It is well known that cholesterol is the
precursor for the synthesis of progesterone by the ovarian cells.
Thus, higher fertility in cattle fed diets enriched with PUFAs
may be associated with increased circulating concentrations of
progesterone in the luteal phases, both before and after
artificial insemination. Prostaglandins are important regulators
of parturition, and in ruminants they are responsible for the
regression of the corpus luteum, leading to a new oestrous
cycle. In cows, oestradiol had stimulatory effects on uterine
secretion of prostaglandin F2α (PGF2α) (Knickerbocker et al.,
1986), and consequently may increase the sensitivity of the
corpus luteum to PGF2α, which would promote regression of
the corpus luteum. Thus, decreased plasma concentrations of
oestradiol could prevent premature regression of the corpus
luteum and therefore early embryonic mortality. Furthermore,
the type of PUFA will also affect the synthesis of PGF2α.
Indeed, dietary PUFA intake inhibits PGF2α production in
bovine endometrial explants, with a more pronounced effect
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following n-6 rather than n-3 supplementation (for review,
Wathes et al., 2007).

Effects on the cumulus–oocyte complex (COC) and the
embryo. Compared with rodents, the oocytes and embryos
of farm animals including cattle contain relatively high levels
of intracellular lipids, with triglycerides being the major com-
ponent. For example, the mouse oocyte contains 4 ng of
triglyceride, whereas the cow oocyte contains 63 ng, and the
sheep oocyte contains 89 ng (McEvoy et al., 2000; Sturmey
et al., 2009). Fatty acids are an endogenous source of energy
during oocyte maturation; several lines of evidence support
the idea of fatty-acid oxidation as a source of essential ATP for
oocyte maturation and for early development of the embryo.
For example, the triglyceride content of the bovine oocytes
decreased during in vitro maturation (IVM), as well as after
fertilization (Ferguson and Leese, 1999). In addition, lipase
activity was increased in the bovine oocytes following IVM
(Cetica et al., 2002). In the oocytes from mice, inhibition of
β-oxidation during the IVM of oocytes prevented the AMP-
activated, protein kinase-mediated resumption of meiosis in
the mouse (Downs et al., 2009), and in cattle it impaired the
developmental competence of oocytes (Dunning et al., 2010).
Furthermore, Paczkowski et al. (2013) have shown that the
oxidation of fatty acids is essential for nuclear maturation of
the oocytes in mice, cattle and pigs (Paczkowski et al., 2013).
Dietary fatty acids altered the composition of fatty acids in

the cumulus cells, granulosa cells and oocytes that may also
have consequences on oocyte quality (Kim et al., 2001). For
example, in ewes, the number and quality of oocytes was
increased when animals were fed a diet enriched in PUFAs
(saponified fish oil) 74.3% v. 57%; (Zeron et al., 2002).
Moreover, in these animals, there was an increase in the
proportion of long-chain fatty acids in the plasma and cumulus
cells (Zeron et al., 2002). In dairy cows, another study has
shown that a diet enriched in a mixture of saturated and
unsaturated fats affected oocyte development and maturation
(Fouladi-Nashta et al., 2007). The two fatty acids linoleic acid
(LA) and linolenic acid (ALA) are both found in the plasma and
follicular fluid of cows (Childs et al., 2008), and it has been
reported that supplementation of bovine oocytes with ALA
during IVM resulted in an increased maturation rate, a higher
yield of blastocysts and the production of better-quality
blastocysts (Marei et al., 2009). Opposing results have been
observed for supplementation with LA by the same group
(Marei et al., 2009). Indeed, they reported that treatment of
bovine COCs with physiological concentrations of LA affected
the molecular mechanisms that control nuclear maturation of
oocytes, leading to a decreased proportion of oocytes reaching
the MII stage after 24 h in culture, and the inhibition of
subsequent early embryo development (Marei et al., 2010).
Further studies from this group revealed that LA induced
alterations in the distribution of mitochondria and their activity,
associated with increased concentrations of reactive oxygen
species (Marei et al., 2012).
Thus, the current state of knowledge suggests that PUFAs

could promote the growth of follicle and could increase

granulosa cell steroidogenesis in cattle. However, the ratio of
n-6 to n-3 in ruminant diets is particularly important in
determining the relative availability of the precursors for
eicosanoid formation. The effects of PUFA on the oocyte and
embryo development are unclear and need more investigations.

Effect of glucose

The published evidence suggests that the adverse effects of
systemic treatment with insulin on reproductive function do
not occur if the circulating concentrations of glucose are
maintained at physiological levels (Downing et al., 1999), and
concentrations of glucose that are either above or below the
normal physiological range can have deleterious effects on
fertility. For example, one study (Downie and Gelman, 1976)
suggested that low-circulating glucose may be responsible for
infertility in cows, and in another study pregnancy rate was
higher in cows with high-circulating concentrations of glucose
compared with cows with low-circulating concentrations of
glucose; however, there was a trend for pregnancy rate to
decline in cows with very high concentrations of circulating
glucose (Pehrson et al., 1992). Finally, Selvaraju et al. (2002)
reported that insulin and glucose concentrations were higher
in cows that subsequently became pregnant than in non-
pregnant animals (Selvaraju et al., 2002). All of this evidence
suggests that fertility of cows is strongly influenced by the
insulin glucose system.
Downing et al. (1999) stated that there is a synergism

between insulin and glucose at the ovarian level, and it is
likely that the effects of short-term nutrition on ovulation
rate in ewes may be mediated by direct ovarian actions
of insulin and glucose (Downing et al., 1999). Mammals
primarily rely on intracellular oxidation of glucose and fatty
acids to provide the energy necessary to support most phy-
siological processes. Although peripheral tissues may utilize
both glucose and fatty acids, the ovary uses glucose as its
principal source of energy (Rabiee et al., 1999; Scaramuzzi
et al., 2010). Glucose is available for cellular oxidation and
energy production by entering the cells passively when its
circulating concentrations are high and also actively at low
concentrations, with the latter implying a role for insulin
(Wade and Schneider, 1992). It seems that the effect of
glucose on fertility is primarily related to its properties as a
metabolic fuel.
Within the follicle, glucose can be metabolized by four

different pathways: (i) by glycolysis to produce ATP and
pyruvate or lactate; (ii) by the pentose phosphate pathway
to provide precursors for the synthesis of purine nucleotides
and NADPH for various biosynthetic pathways including
antioxidant defence; (iii) by the hexosamine biosynthetic
pathway to provide substrates for the glycosylation of proteins
and the synthesis of the hyaluronic acid required for cumulus
expansion; and (iv) by the polyol pathway producing sorbitol
and fructose whose roles in follicular function remains largely
unknown (for a review see Collado-Fernandez et al. (2012)). In
cattle, the role of these four pathways for the utilization of
glucose during the growth and development of follicles and
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their oocytes is not clearly known. Nowadays, it is believed
that the follicle has well-developed systems to sense glucose
and nutritional status (Webb et al., 2004; Garnsworthy et al.,
2008; Scaramuzzi et al., 2010). Different glucose transporters,
including the GLUT family, are expressed in the oocyte, the
somatic cells of the follicle and in the early embryo, and the
expression of some of them is controlled by steroids and
insulin (Purcell and Moley, 2009). This system allows the fol-
licle to regulate its growth and development, mainly by
altering FSH-induced effects on the synthesis of oestradiol by
the granulosa cells, in accordance with the availability of
glucose (Webb et al., 2004; Scaramuzzi et al., 2010).
The role of glucose is essential in determining the quality of

the oocyte (Sutton-McDowall et al., 2010) because it is its
main energy source. In sheep, glucogenic treatments improve
oocyte quality, evaluated by the kinetics of their in vitro
development and by the production of blastocysts (Berlinguer
et al., 2012). However, even if glucose is the preferred energy
substrate for the cumulus cells (Sutton-McDowall et al., 2010),
the oocytes of most mammalian species consume little
glucose, with pyruvate being the usual energy substrate
(Eppig, 1976; Rieger and Loskutoff, 1994). In general, oocytes
take up pyruvate efficiently and have a lower capacity for
glucose transport, as well as limited expression and activity of
some glycolytic enzymes (reviewed by Purcell and Moley,
2009; Sutton-McDowall et al., 2010). Thus, oocytes rely on
the uptake of CC-derived oxidizable substrates, principally
pyruvate for the synthesis of ATP. However, ATP and glucose
can also be directly transferred to oocytes from GC/CC through
gap junctions (Wang et al., 2012).

Effect of amino acids

In contrast with fatty acids and glucose, there are few studies
reporting the effects of amino acids on ovarian functions
in ruminants. Downing et al. (1995) intravenously infused
a mixture of branched-chain amino acids in sheep and
observed an increased ovulation rate, whereas Garnsworthy
et al. (2008) reported that diets with a high content of leu-
cine increased plasma concentrations of insulin in dairy
cows, but did not alter their follicular dynamics (Garnsworthy
et al., 2008). In dairy heifers, an association was observed
between the total concentration of free amino acids in
the plasma and oocyte cleavage, suggesting that dietary
amino acids could mediate the oocyte quality (Rooke et al.,
2009); however, Sinclair, et al. (2000) also showed that in
heifers excessive levels of protein in the diet negatively
affected the subsequent development of oocytes in vitro
(Sinclair et al., 2000)
In comparison with carbohydrate metabolism, and despite

their important roles, there is little information about amino-
acid uptake and metabolism by follicles and oocytes, especially
during the earlier stages of folliculogenesis in cattle. Studies
measuring amino acids in follicular fluid and the reproductive
tract in mice have provided valuable information on the avail-
ability of substrates, reporting significantly higher levels of
some amino acids in the follicular fluid compared with the

reproductive tract (Harris et al., 2005). In cattle, LH has been
shown to increase glutamine oxidative metabolism by oocytes
and COCs (Zuelke and Brackett, 1993). Furthermore, the
addition of glutamine to bovine IVM media promoted the
nuclear maturation of oocytes (Bilodeau-Goeseels, 2006),
although supplementation of defined IVM media with non-
essential and essential amino acids increased the levels of
maternal mRNA in the oocytes and enhanced embryo devel-
opment (Watson et al., 2000). Finally, Hemmings et al. (2012)
quantified the amino-acid profiles (i.e. rates of depletion and
accumulation) of bovine oocytes at MII, following IVM (Hem-
mings et al., 2012). Glutamine, arginine and asparagine were
all depleted at the highest rates, whereas alanine and glycine
accumulated in the media (Hemmings et al., 2012). Similar to
studies carried out on embryos, oocytes with a higher potential
for development after IVF and those of lesser potential had
different amino-acid profiles (Hemmings et al., 2012). Overall,
the quality of oocytes and embryos was related to amino-acid
turnover; those with the highest turnover of amino acids
had the poorest quality. For example, oocytes that failed to
cleave depleted more glutamine, released more alanine and
had a greater depletion of total amino acids compared with
oocytes that cleaved (Hemmings et al., 2012). Furthermore,
these data were used to predict fertilization and cleavage
potential (Hemmings et al., 2012). These studies provide fur-
ther evidence of the importance of amino-acid metabolism to
the developmental competence of oocytes.

Nutrient sensors

Metabolic hormones
The effects of acute changes in the dietary intake on ovarian
activity have been correlated with changes in the circulating
concentrations of metabolic hormones, including insulin,
IGF-I, GH, the thyroid hormones, triiodothyronine (T3), and
thyroxine (T4), ghrelin, apelin and the adipokines (leptin,
adiponectin, resistin), and there is an extensive literature
describing the effects of diet on the circulating concentra-
tions of these metabolic hormones. Here, we have focused
more on the action of the metabolic hormones on ovarian
functions in ruminants.

Insulin (pancreas) and IGF-I (liver). Insulin and IGF-I are
produced by the pancreas and liver, respectively, and are
often proposed as signalling molecules linking metabolism to
fertility (Diskin et al., 2003). They interact with the repro-
ductive axis at the level of the central nervous system as well
as in the follicle itself. Here, we only described some effects
of insulin and IGF-I on the ruminant ovary.

Components of the insulin and IGF systems in the ovary.
The insulin system consists of insulin itself and the insulin
receptor (IR), which mediates the action of insulin. The IR has
a high degree of homology with the IGF-I receptor (IGF-IR),
and IGF-IR and IR hybrid receptors have been reported
(Dupont and LeRoith, 2001). The IGF system is composed of
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several members, including IGF-I and IGF-II, two receptors
(IGFR-1 and IGFR-2) and at least six binding proteins (insulin-
like growth factor binding proteins: IGFBP-1, -2, -3, -4, -5 and
-6) (Monget et al., 2002). The essential components of both
the insulin and IGF systems are all present in the follicle in
ruminants (Table 1). The IGFBPs are present in biological
fluids and act by inhibiting or potentiating the action of the
two IGFs (IGF-I and IGF-II) in target cells (Monget et al.,
2002). The regulation of the bioavailability of IGF-I by IGFBPs
is necessary for the co-ordinated development in vitro, of
the bovine oocyte and follicle (Thomas et al., 2007). The
receptors for insulin and IGF-I belong to the same subfamily
of receptor tyrosine kinases with two extracellular α-subunits
and two trans-membrane β-subunits. They have structures
that are highly homologous and they induce a number
of similar intracellular signalling pathways (Dupont and
LeRoith, 2001). Upon activation by ligand binding, both IR
and IGF-1R, which contain endogenous tyrosine kinase
activity, phosphorylate several intracellular substrates such as
the insulin receptor substrate (IRS) proteins (IRS-1 through -6)
and Shc, leading to the activation of at least two signalling
pathways, PI3K/AKT and MAPK. In ruminants, IRs and IGF-1Rs
are widely distributed throughout all ovarian compartments,
including the follicles (Spicer et al., 1994; Shimizu et al., 2008)
and luteal cells (Einspanier et al., 1990). In bovine granulosa
and theca cells, the expression of the mRNA for IR changes
considerably during development from the preantral to the
pre-ovulatory stage of folliculogenesis (Shimizu et al., 2008).
Similarly, the expression of IGF-1R in bovine granulosa and
theca cells is increased during the final stages of follicular
development and decreased at the onset of atresia (Armstrong
et al., 2000). Because IGF-I and/or insulin have an essential role
in the final stage of follicle development, it has been suggested
that abnormal concentrations of these metabolic hormones
lead to follicular dysfunction, resulting in excessive atresia or
the formation of follicular cysts (Braw-Tal et al., 2009).

The effects of insulin on follicular function. Numerous studies
have shown the importance of insulin as a signal mediating
the effects of acute changes in nutrient intake on follicle
dynamics in cattle (Webb et al., 2004). The infusion of insulin
into beef heifers increased the diameter of the dominant
follicle (Simpson et al., 1994). In vitro research has shown
dose-dependent stimulatory effects of insulin on the pro-
liferation and steroid synthesis of the bovine granulosa cells
and theca cells; these effects can be exerted via their direct
stimulatory actions on the follicle as well as by increased
local responsiveness of the follicle to FSH and LH (Spicer
et al., 1994).

The effects of IGFs on follicular function. IGF-I is a hormone
that modulates the maturation of the dominant follicle
during the first follicular wave postpartum (Beam and
Butler, 1998), and circulating IGF-I in ovulatory cows at the
first follicular wave postpartum is higher than that in anovu-
latory cows, regardless of parity (Beam and Butler, 1998). As
for insulin, in vitro research has shown dose-dependent

stimulatory effects of IGF-I on the proliferation and steroid
synthesis of bovine granulosa cells and theca cells; these
effects can be exerted via their direct stimulatory actions
on the follicle as well as by increased local responsiveness of
the follicle to FSH and LH (Spicer and Echternkamp, 1995).
In the bovine granulosa cells, IGF-I induced the upregulation
of steroidogenic and apoptotic regulatory genes via the acti-
vation of phosphatidylinositol-dependent kinase/AKT (Mani
et al., 2010). The addition of IGF-I to the culture medium
improved the in vitro development of caprine preantral fol-
licles (Magalhaes-Padilha et al., 2012).

The effects of insulin and IGF on the oocyte and embryo.
Both IGF-1R and IR are also present in the bovine oocytes and
embryos (Nuttinck et al., 2004). Several studies have observed
that COCs treated with IGF-I, alone or in combination with
either epidermal growth factor or angiotensin II, showed
increased cumulus expansion, improved rates of nuclear
maturation and enhanced metabolism of pyruvate (Lorenzo
et al., 1994; Stefanello et al., 2006). The intra-ovarian admin-
istration of IGF-I was able to improve the developmental
capacity of oocytes from pre-pubertal cattle (Oropeza et al.,
2004). A short in vivo exposure of oocytes to a supra-
physiological IGF-I microenvironment increased the in vitro
proliferation of the inner cell mass cell during the transition
from morula to blastocyst (Velazquez et al., 2012). In bovine
blastocysts, insulin acted as a survival factor, blocking apop-
tosis, whereas IGF-I stimulated the development of blastocyst
and also total cell number (Byrne et al., 2002).
Collectively, these data indicate that maintaining the con-

centrations of IGF-I and insulin within a normal physiological
range is required for proper ovarian follicular function and
embryo development.

GH (anterior pituitary gland). GH produced by the adenohy-
pophysis exerts effects on almost every organ of the body,
including the ovary, either directly after binding to specific
GH receptors (GHR) or indirectly after binding to hepatic
GHR, and stimulating the production of hepatic IGF-I (Webb
et al., 2004). Treatment of cattle with exogenous GH has
significant effects on follicular development (Gong et al.,
1993) and the function of the corpus luteum (Lucy et al.,
1999). GH can selectively stimulate particular populations of
follicles; for example, in heifers, it inhibited the development
of the preovulatory follicle but stimulated the growth of the
second-largest follicles (Lucy et al., 1994). The possibility that
GH can act at ovarian sites is suggested by the detection of
GH-binding activity, GHR immunoreactivity and expression
of the mRNA encoding GHR in the ovarian tissue in cows
(Kolle et al., 1998). GH receptors have been detected in the
granulosa cells, thecal cells and luteal cells (Kolle et al.,
1998) (Table 1), and the abundance of the mRNA encoding
GHR in the bovine ovary varied in a cell-specific way
during the ovarian cycle (Kolle et al., 1998). However, the
involvement of GH in the physiological mechanisms
underlying nutritional influence on ovarian function in the
cattle can be attributed to the stimulatory action of GH
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on the hepatic synthesis of IGF-I, and a direct action of GH on
the follicle remains to be demonstrated convincingly (Webb
et al., 2004).

T3 and T4 (thyroid gland). In cattle, greater nutrient intake
after calving increased the concentrations of T4 in the plasma
(Ciccioli et al., 2003), similar to the response in non-lactating
cows (Delavaud et al., 2002). Follicular fluid from the bovine
ovaries contains free fractions of thyroid hormones that
suggests a possible role for these hormones in the regulation of
follicular function. In super-ovulated Brahman cows, induced
hypothyroidism improved weight gain and body score
condition, increased ovarian response to FSH, and affected
the ovulation, fertility and secretion of progesterone (Bernal
et al., 1999). In cows, the physiological status of the bovine
antral follicles (i.e. dominant v. subordinate) may impinge on
the accumulation of T4 in the follicular fluid (Ashkar et al.,
2010), and hormonally induced ovarian hyperstimulation
increased the circulating levels of free T4 and the follicular
fluid content of total T4 (Mutinati et al., 2010). Furthermore,
the thyroid hormones (T3 and T4) directly altered in vitro
steroidogenesis in the bovine granulosa and theca cells (Spicer
et al., 2001). A recent study has shown that the supple-
mentation of IVMmedia with T3 can have a beneficial effect on
the kinetics of embryo development (Costa et al., 2013).
In the ovaries of human and mice, thyroid hormone receptors
(TRα-1, TRα-2 and TRβ-2) are present in the oocytes, cumulus,
granulosa and luteal cells (Zhang et al., 1997) (Table 1).
Thus, thyroid hormones may have direct stimulatory effects
on the ovarian function and embryo development in cattle.

Ghrelin (stomach). Ghrelin is primarily secreted from the
X/A-like cells of the oxyntic gland in the stomach. The X/A-
like cells constitute a distinct population of endocrine cells in
the oxyntic mucosa that make up ~20% of all endocrine cells
in the oxyntic gland. Ghrelin is also present in several other
tissues, including the reproductive tissues of sheep and cattle
(Miller et al., 2005; Deaver et al., 2013). The functional
ghrelin receptor, GH secretagogue receptor 1 A (GHS-R1A),
belongs to a large family of rhodopsin-like, G-protein cou-
pled, 7-transmembrane domain receptors (Howard et al.,
1996). Ghrelin is an acute regulator of feed intake; circulat-
ing ghrelin concentrations increase during fasting or NEB,
and exogenous administration of ghrelin stimulates feed
intake in rats and cattle (Bradford and Allen, 2008). In these
species, Ghrelin also influences energy metabolism and
increases metabolic efficiency. Thus, it appears that ghrelin is
a key metabolic component involved in the physiological
response to energy deprivation.
Ghrelin and its receptor are present in the ovary of the

adult and foetal sheep (Miller et al., 2005) (Table 1). In the
sheep ovary, ghrelin and its mRNA are present throughout
the oestrous cycle with the highest levels observed during the
luteal phase (Du et al., 2009). More precisely, detectable
concentrations of ghrelin are found in the oocytes and thecal
cells at all stages of follicular development, the granulosa
cells of antral follicles and in all developmental stages of theTa
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corpora lutea (Du et al., 2009) (Table 1). In the sheep, ghrelin
promotes in vitro oocyte maturation via the ERK1/2 pathway
(Bai et al., 2012) and in vitro formation of blastocysts (Wang
et al., 2013). In the Holstein heifers, the expression of ghrelin
was limited to the granulosa cells in the ovarian follicles,
suggesting that the follicular distribution of ghrelin is species
dependent (Deaver et al., 2013). In the dairy heifers, ghrelin
and GHS-R1A and their mRNAs are also present in the
ampulla and isthmus of the oviducts and the uterus (Deaver
et al., 2013).
However, despite the presence of ghrelin and its receptor

in various parts of the reproductive tract, its effects, if any,
in vivo on fertility in ruminants are not known.

Adipokines (adipose tissue). The traditional view of the
adipose tissue as a passive store of dormant triglycerides,
which are mobilized during NEB, has been challenged by
recent research that has shown that the adipose tissue also
secretes a variety of hormones collectively known as the
adipokines (Tersigni et al., 2011). Leptin, adiponectin and
resistin are the three best studied adipokines in relation to
ovarian function in ruminants. These hormones are signi-
ficant mediators of energy metabolism and they have all
been implicated as mediators of nutritional influences on
reproduction (Tersigni et al., 2011).

Leptin. A positive association between nutrient intake and
concentrations of leptin in the plasma has been reported in
sheep (Delavaud et al., 2000) and cattle (Delavaud et al.,
2000 and 2002). The effects of leptin can be divided into two
main categories: the first is a central effect in the brain after
binding to its long-form receptor (Ob Rb), and the second a
peripheral effect (including the ovary). The Ob Rb is the
primary mediator of the action of leptin because it is the only
isoform that is capable, after ligand binding, of relaying
full downstream signalling along the signal transduction
pathways. There are at least six isoforms of Ob-R that are
expressed in several organs including the ovary, where leptin
can directly exert regulatory actions.
Leptin and its receptor are present in the follicle; the

concentration of leptin in the follicular fluid is related to atresia
in the small follicles (Dayi et al., 2005) (Table 1). In the ovarian
follicles, the highest coexpression of the leptin/Ob-R system
was observed in the theca and in the interstitial and granulosa
cells of small follicles with E2 concentration<0.5 ng/ml (Sarkar
et al., 2010). The actions of leptin on ovarian and follicular
function appear to be inhibitory; it inhibits in a dose-dependent
manner, insulin-induced production of progesterone and
oestradiol by cultured granulosa cells from small and large
bovine follicles (Spicer and Francisco, 1997). There is also
evidence for this inhibitory effect of leptin in vivo on oestradiol
in sheep during the follicular phase of the cycle (Kendall et al.,
2004). Similarly, leptin inhibited the insulin-induced production
of progesterone and androstenedione by the thecal cells
in vitro (Spicer and Francisco, 1998). Leptin has also a weak
inhibitory effect on gonadotropin- and/or IGF-I-induced
steroidogenesis of the bovine thecal and granulosa cells

(Spicer et al., 2000). In the bovine species, leptin and its
receptor transcripts are present in the corpus luteum and
their expression decrease during luteal regression (Sarkar
et al., 2010). Leptin increased in vitro IGF-I-induced luteal
progesterone production (Nicklin et al., 2007).
Leptin enhanced bovine oocyte maturation and improved

the ability of the bovine oocyte to sustain embryonic
development. Indeed, the addition of leptin to the IVM
medium enhanced meiotic maturation and embryo develop-
ment of calf oocytes, and improved the quality of embryos
derived from these oocytes (Jia et al., 2012). van Tol et al.
(2008) confirmed that leptin enhanced meiotic maturation of
bovine oocytes (van Tol et al., 2008). Furthermore, they showed
that this effect was cumulus cell-mediated (van Tol et al., 2008),
whereas Paula-Lopes et al. (2007) observed that leptin
enhanced both oocyte maturation and their developmental
capacity by mechanisms that were both cumulus cell-
independent and -dependent (Paula-Lopes et al., 2007). In
contrast, Cordova et al. (2011) observed that the addition of
leptin to the IVM medium used to mature oocytes from pre-
pubertal cows did not increase the development potential of the
oocytes (Cordova et al., 2011).
In conclusion, it seems that elevated circulating concen-

trations of leptin that are a result of hunger and poor
nutrition are associated with a pattern of inhibition of the
ovarian function but, paradoxically, with improved oocyte
quality. However, the positive effects of leptin on oocyte
quality were obtained in vitro, and the relationship between
the circulating concentrations of leptin and oocyte quality
in vivo are not known for ruminants. In mice, leptin is
essential for normal preimplantation and/or implantation
processes, but it is not required for pregnancy and parturition
once implantation is established (Malik et al., 2001).

Adiponectin. Adiponectin is a protein produced mainly by the
white adipose tissue. In humans, the level of expression of
its mRNA varies depending on the location of the adipose
tissue, and it is lower in the visceral adipose tissue than in
the subcutaneous adipose tissue (for review, Kadowaki and
Yamauchi (2005). The expression of adiponectin is higher
in thin than in obese subjects (for review, Kadowaki and
Yamauchi (2005). Adiponectin is involved in lipid and carbo-
hydrate metabolism and seems to have an important role in
the pathophysiology of obesity and type 2 diabetes (for
review, Kadowaki and Yamauchi (2005). In healthy humans
and cattle, the blood concentrations of adiponectin are of
the order of 5 to 30 mg/l, which represents 0.01% of the
total plasma proteins (for review, Kadowaki and Yamauchi
(2005); Giesy et al. (2012). In humans and rodents, low concen-
trations of plasma adiponectin are predictive of insulin resis-
tance and type 2 diabetes. In these species, dietary factors can
modulate circulating adiponectin (Reis et al., 2010). In this
latter review, it was concluded that diets rich in saturated fat
reduced the concentration of adiponectin, whereas diets rich in
PUFAs and supplementation with n-3 PUFAs increased both
gene expression of adiponectin and its concentration in the
circulation. However, an effect of dietary components on the
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circulating concentration of adiponectin has not yet been
reported in ruminants. In the plasma from humans, mice and
cattle, adiponectin circulates in a variety of high molecular
weight (HMW) dimeric and trimeric forms. In dairy cows
during late pregnancy, adiponectin circulated almost exclu-
sively as HMW complexes, and this pattern was unaffected
by early lactation (Giesy et al., 2012). Decreasing plasma
concentrations of adiponectin with advancing lactation are
in good agreement with decreased insulin sensitivity that
also occurs with advancing lactation. These are the expected
adaptive responses to the increased glucose requirements of
the lactating mammary gland, which preferentially diverts
glucose from the adipose tissue, skeletal muscle and other
tissues to the mammary gland (Mielenz et al., 2013). In
humans and rodents, exogenous adiponectin improved insulin
sensitivity by the activation to its receptors AdipoR1 and Adi-
poR2 (for review, Kadowaki and Yamauchi (2005); they are
receptors with seven transmembrane domains and they have
an inverted topology compared with normal G-protein-coupled
receptors. Once activated, AdipoR binds an adapter protein
(APPL), which in turn activates adenosine monophosphate-
activated kinase (AMPK) (Kadowaki and Yamauchi, 2005).
AMPK is a major component of the signalling pathway that
regulates the metabolic effects of adiponectin (Kadowaki and
Yamauchi, 2005).
Some evidence suggests that adiponectin could regulate

ovarian function and affect the embryo at very early stages
of pregnancy during the pre-implantation period (Palin
et al., 2012). In the bovine species, adiponectin and its
receptors are present in different follicular cells (oocytes,
theca, granulosa and cumulus cells) and luteal cells (Maillard
et al., 2010) (Table 1). Moreover, it has been shown that
the physiological status of the ovary is related to the
pattern of expression of adiponectin and its receptors in
follicular and luteal cells from the bovine ovary (Tabandeh
et al., 2010). Indeed, the expression of adiponectin, AdipoR1
and AdipoR2 was higher in the theca and cumulus cells
and the oocytes of dominant follicles compared with
those of atretic follicles during both the follicular and luteal
phases (Tabandeh et al., 2012). In our laboratory, we
have shown that adiponectin decreased insulin-induced
steroidogenesis and increased IGF-I-induced proliferation of
the bovine granulosa cells in culture possibly by a mecha-
nism that involved the ERK1/2 MAPK pathway (Maillard
et al., 2010). Lagaly et al. (2008), have also observed
an inhibitory effect of adiponectin on bovine steroidogenesis
but only in the theca cells. Concerning the oocyte and
embryo, we have shown that adiponectin did not modify
either oocyte maturation or embryo development in vitro
in bovine species.
The available data on the physiological role of adiponectin

in the follicle suggest that it has no direct actions and that
its action appears to be the modulation of ovarian actions
of insulin and IGF-I. However, more research is required to
confirm or refute these suggestions. The role of adiponectin
in vivo in the early embryonic development of cattle remains
to be investigated.

Resistin. Resistin is a protein of 108 amino acids in humans
and 114 amino acids in mice belonging to the family of
‘resistin-like molecules’ or ‘FIZZ’ (found in the inflammatory
zone) (Schwartz and Lazar, 2011). It consists of two homo-
dimers linked by disulphide bridges (Schwartz and Lazar,
2011). In mice, resistin is produced by adipocytes, whereas in
humans it is produced by macrophages in the bone marrow
and transported to adipocytes (Kaser et al., 2003; Patel et al.,
2003). Very little information is currently available on the
mode of action of resistin. No receptor has been clearly
identified, and the signalling pathway used by resistin
remains obscure. Recent tudies suggest that resistin could
bind to a receptor tyrosine kinase known as receptor tyrosine
kinase-like orphan receptor (ROR1) in murine pre-3T3-L1
adipocytes or to the receptor known as TLR4 (Toll-like
receptor 4) in the mouse hypothalamus (cited in Reverchon
et al., 2013).
In cattle, resistin has not been extensively studied. It is

produced by the adipose tissue and in greater amounts
in lactating compared with non-lactating cattle (Komatsu
et al., 2003). Resistin is also present in the bovine ovaries
(Table 1). Furthermore, human recombinant resistin
decreases basal but not IGF-I-induced progesterone and
oestradiol production by the bovine granulosa cells (Maillard
et al., 2011). Spicer et al. (2011), have also observed that
resistin preferentially inhibited steroidogenesis in the
granulosa cells from small follicles and inhibited proliferation
of the granulosa cells from large follicles, suggesting that the
ovarian response to resistin is altered during follicular
development. The little data available suggest that resistin
may be involved in the nutritional regulation of ovarian
function and fertility in ruminants and on this basis is worthy
of further investigation.
Other adipokines including chemerin and visfatin, known

to regulate insulin sensitivity, have been sequenced and are
present in the cattle ovaries. However, the physiological
effects, if any, of these newer adipokines in ovarian function
remains to be determined.

Apelin (stomach). Apelin is a peptide isolated from extracts
of the bovine stomach (Tatemoto et al., 1998). It has been
identified as the endogenous ligand of the human orphan,
APJ receptor (Tatemoto et al., 1998). Apelin is derived from a
larger precursor, preproapelin, the cDNA for which has been
cloned in humans, cattle, rats and mice (Tatemoto et al.,
1998). Plasma apelin is upregulated in rodents and humans
during obesity, there is a strong relationship between
adipocyte-secreted apelin and insulin levels (Boucher et al.,
2005). In goats, feeding caused a slight increase in plasma
apelin concentrations, and this increase was enhanced by
water deprivation (Sato et al., 2012).
In the bovine ovary, the apelin/APJ system is involved

in mechanisms regulating angiogenesis during follicular
maturation and luteal development (Schilffarth et al.,
2009). Apelin and APJ are expressed in the bovine granulosa
cells, and progesterone increases the expression of APJ
in these cells (Shimizu et al., 2009) (Table 1). Theca cells also

Dupont, Scaramuzzi and Reverchon

1038



have both apelin and APJ and their expression is increased
by exogenous LH (Shimizu et al., 2009). These latter authors
suggest that the apelin/APJ system could play a role during
follicle selection and dominance in cows. The apelin–APJ
system is also present in the bovine corpus luteum (Shirasuna
et al., 2008) where it could be involved in the maturation of
corpus luteum and the luteolytic cascade as a regulator of
intra-luteal arterioles (Shirasuna et al., 2008).
If similarly to the other gut hormones, such as ghrelin,

apelin is nutritionally regulated, then it could be another
potential regulator of nutritional influences on ovarian
function in ruminants.

AMPK
Most of the metabolic hormones discussed above modulate
the phosphorylation of AMPK (Tosca et al., 2008). AMPK is a
metabolic sensor of the energy state of a cell: it has a key
role in the regulation of lipid, carbohydrate and protein
metabolism in the peripheral and central tissues (Tosca et al.,
2008). It is a heterotrimeric serine/threonine kinase that
is composed of a catalytic α subunit and two regulatory
subunits β and γ subunits, each encoded by a different gene
and for each of which, there are two or three isoforms
(Hardie and Carling, 1997). These different isoforms allow
the possible formation of 12 αβγ complexes. The balance of
these complexes depends on the tissue (Hardie and Carling,
1997). The activity of AMPK is regulated allosterically by
the binding of AMP or ATP onto the γ regulatory subunit
by phosphorylation of the α subunit at threonine 172 by
an AMPK kinase (either LKB1 (serine/threonine kinase 11) or
CaMKKβ (calmodulin-dependent kinase kinase-β)) and its
subsequent dephosphorylation by a phosphatase (protein
phosphatase-1, protein phosphatase 2A or protein phosphatase
2C) (Hardie and Carling, 1997). The main mechanism for the
activation of AMPK is a decrease in the intracellular ratio of
ATP to AMP. AMPK can be activated by certain physiological
conditions (exercise, stress) by the action of metabolic hor-
mones (leptin, adiponectin, ghrelin) and by the pharmaco-
logical agents, 5-aminoimidazole-4-carboxamide-1-β-D-riboside
(AICAR), metformin and the thiazolidinediones (Hardie and
Carling, 1997). It regulates energy homeostasis maintaining a
constant concentration of intracellular ATP by stimulating
catabolic pathways and inhibiting anabolic pathways (Hardie
and Carling, 1997). In the ovary, AMPK controls cellular pro-
liferation and survival and also reproductive functions such
as ovarian steroidogenesis and oocyte maturation (Dupont
et al., 2008).
In cattle, AMPK has been identified in different cell types

of ovarian follicles (oocyte, cumulus cells, granulosa and theca)
and in the corpus luteum (Tosca et al., 2007a and 2007b;
Gallet et al., 2011) (Table 1). In cultured bovine granulosa cells,
AMPK inhibited the secretion of progesterone and/or oestradiol
in response to AICAR or metformin (Tosca et al., 2007a). This
decrease can be explained by the inhibition of the steroido-
genic enzymes, 3β-hydroxysteroid-dehydrogenase (3βHSD)
and P450scc (p450 side-chain cleavage) and of steroidogenic
acute regulatory protein (StAR) and also by inhibition of

the MAPK/ERK pathway (mitogen-activated protein kinase/
extracellular-regulated kinase) (Tosca et al., 2007a). In these
cells, the activation of AMPK in response to metformin also
reduced cell growth and protein synthesis, MAPK ERK1/2
signalling and P90RSK phosphorylation in response to IGF-I
(Tosca et al., 2010). In vivo, we showed that the infusion of
glucose (Gallet et al., 2011) or feeding lupins (Zouaidi,
unpublished data) inhibited AMPK in sheep follicles, sug-
gesting that good nutrition or glucose can block the inhibi-
tory actions of AMPK in the follicle.
Some studies have also established a link between

AMPK and meiotic maturation of the oocyte (Downs and
Chen, 2006). In cattle, similar to the pig, pharmacological
activation of AMPK blocked nuclear maturation of the oocyte
(at prophase of the first meiotic division or at the germinal
vesicle stage (Bilodeau-Goeseels et al., 2007; Tosca et al.,
2007b), whereas in mice AMPK improved the resumption of
meiosis by accelerating rupture of the nuclear membrane
(Bilodeau-Goeseels, 2011) or breakdown of the germinal
vesicle (Downs and Chen, 2006). Although there are some
differences among species, AMPK appears to be important for
the breakdown of the germinal vesicle during nuclear
maturation of the oocyte. Recently, Pikiou et al. (2013) sug-
gested that activation of AMPK in response to metformin
could decrease the ability of bovine oocytes to cleave follow-
ing in vitro fertilization (Pikiou et al., 2013). Although the role
of AMPK in nuclear maturation could be to promote early
embryonic development, it is unclear whether AMPK is
involved in cytoplasmic maturation of oocytes. In cows, AMPK
is also found in the corpus luteum. In cultured bovine luteal
cells, the activation of AMPK regulated LH-induced proges-
terone secretion (Hou et al., 2010).
Thus, AMPK could control ovarian steroidogenesis in the

granulosa cells, oocyte maturation and embryo development,
and it could also be involved in the function of the corpus
luteum. An improved understanding of the role of AMPK
during meiosis in the oocytes will facilitate the control of this
process in vitro, resulting in increased developmental compe-
tence and increased efficiency of procedures for the in vitro
embryo production.

Peroxisome proliferator-activated receptors (PPARs)
PPARs are nuclear transcription factors that are classified
as members of the steroid hormone receptor superfamily.
To date, three related PPAR isotypes have been described:
PPARα, PPARβ/δ and PPARγ. The three isotypes share a high
degree of homology but differ in tissue distribution and
ligand specificity (Berger and Moller, 2002). The PPAR family
(α, β/δ and γ) integrates energy regulation with lipid and
glucose metabolism and affects insulin sensitivity (Kota
et al., 2005). Furthermore, PPARγ expression in the adipose
tissue is nutritionally regulated (Vidal-Puig et al., 1996).
There are a variety of natural and synthetic agents that

activate PPARs. Among its natural ligands, there are long-chain
fatty acids, especially PUFAs, including linoleic and arachidonic
acids, and some derivatives including 15-deoxy-delta 12,
14-prostaglandin J2 (PGJ2), eicosapentaenoic acid and acid
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9- and 13-hydroxyoctadecadienoic acid (Tontonoz et al., 1995;
Kliewer et al., 1997). Prostaglandins activate all members
of the PPAR family, with a preferential activation of PPARβ
by PGJ2 (Forman et al., 1997). Various synthetic ligands,
such as industrial plasticizers (phthalates), nonsteroidal anti-
inflammatory drugs, fibrates (a class of drugs used to treat
hyperlipidemia), and thiazolidinediones, activate these recep-
tors (Forman et al., 1997). However, there is a ligand specificity
for each form of PPAR. For example, fibrates (WY-14 643,
clofibrate) show a strong affinity for PPARα, but at higher
concentration they can also activate PPARγ. Thiazolidinediones
(troglitazone, ciglitazone, pioglitazone and rosiglitazone)
activate PPARγ.
The PPARs form and function as heterodimers with

retinoid-X-receptor (RXR). Once the ligand binds (e.g. long-
chain fatty acids, fibrates, thiazolidinediones) to the ligand-
binding domain, it produces a covalent modification of the
PPAR structure (Waku et al., 2009) activating the nuclear
receptor. The activated PPAR/RXR binds to a specific DNA
sequence (PPAR research response element) in the promoter
region of specific target genes inducing or repressing their
expression.
The three PPAR isoforms have been detected in the ovary

and PPARγ is the one most extensively studied in the ovarian
tissue (Table 1). This is because, in addition to the high
expression level of PPARγ in the follicle of various species
(for review see Froment et al., 2003; Dupont et al., 2008),
its synthetic ligands and widely used as drugs treat polycystic
ovary syndrome, one of the commonest ovarian dysfunc-
tions causing infertility in women. In ruminants, PPARγ
was detected in the ovine and bovine ovary (Sundvold
et al., 1997; Lohrke et al., 1998; Froment et al., 2003). In the
bovine species, transcripts for RXRα, RXRβ and PPARγ were
detected at all stages of early pregnancy beginning from
the unfertilized oocyte through to the hatched blastocyst
(Mohan et al., 2002) (Table 1). In cyclic ewes, the expression
of PPARγ is mainly limited to the granulosa cells of antral
follicles and corpora lutea (Froment et al., 2003). In cows,
the concentration of PPARγ in the corpus luteum increased
after ovulation, and then decreased during regression of
the corpus luteum (Lohrke et al., 1998; Viergutz et al.,
2000). Furthermore, in mice, the conditional inactivation of
PPARγ in the ovary leads to reduced fertility (Cui et al.,
2002). This decrease is not because of an alteration in
ovarian folliculogenesis, but a drop in the number of embryos
implanted and probably because of decreased progesterone
secretion by the corpora lutea (Cui et al., 2002). In bovine
large lutein cells, PPARγ plays a role in the arrest of the cell
cycle to maintain a differentiated state (Viergutz et al.,
2000). Furthermore, synthetic ligands of PPARγ increased
progesterone secretion by bovine lutein cells (Lohrke et al.,
1998).
Thus, it seems that PPARγ is essential in vivo for the

formation and maintenance of a functional corpus luteum
capable of secretion of progesterone compatible with embryo
implantation. One hypothesis is that PPARγ is involved in the
beneficial effects of some PUFAs on the fertility of cattle.

Conclusions

In ruminants, fertility is a key parameter for the profitability
of the farmers, and a positive nutritional status and good
metabolic health are both associated with successful repro-
duction and help ensure high fertility. Some nutritional strate-
gies could reduce the risk of metabolic disturbances and,
consequently, not only improve herd health but also enhance
fertility. The data presented in this review highlight the impor-
tance of specific nutrients (glucose, saturated and PUFAs, and
certain amino acids) on ovarian function in ruminants. Nutrition
influences ovarian follicular development in ruminants possibly
through changes in metabolic hormones and also by the
direct effects of particular nutrients on the ovary. Metabolic
hormones that appear to have important established functions
in these processes include insulin, leptin and the IGFs. Other
metabolic hormones that may have important roles include GH,
T3/4, ghrelin, apelin, and some novel adipokines produced by
the adipose tissue, including adiponectin and resistin. The
importance of these metabolic hormones is either debatable or
unknown and they are interesting areas for future research.
The adipokines, in particular, have emerged as potentially
important regulatory factors in the fields of fertility and
reproduction in human and possibly ruminants. These adi-
pokines and their receptors are expressed in cattle ovary;
however, further studies are necessary to determine whether
their plasma concentrations are nutritionally regulated in
ruminants. There is emerging evidence that dietary long-
chain n-3 PUFAs can act as specific regulators of some
reproductive processes. The molecular mechanisms of action
of these PUFAs is still unknown in ruminants. However,
PUFAs could mediate their action through the activation of
PPARγ or/and AMPK by modulating plasma concentration of
some adipokines such as adiponectin or resistin, as has been
described in humans and rodents. AMPK appears to be a key
signal regulating the amount of energy required for the
growth of follicles, oocytes and embryos
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