
Abstract
A potential solution to reduce high acquisition costs for
airborne lidar (light detection and ranging) data is to
combine lidar transects and optical satellite imagery to
characterize forest vertical structure. Although multiple
regression is typically used for such modeling, it seldom
fully captures the complex relationships between forest
variables. In an effort to improve these relationships, this
study investigated the potential of Support Vector Regres-
sion (SVR), a machine learning technique, to generalize
(lidar-measured) forest canopy height from four lidar
transects (representing 8.8 percent, 17.6 percent, 26.4
percent and 35.2 percent area of the site) to the entire study
area using QuickBird imagery. The best estimated canopy
height was then linked with field measurements to predict
actual canopy height, above-ground biomass (AGB) and
volume. GEOgraphic Object-Based Image Analysis (GEOBIA)
was used to generate all estimates at a small tree/cluster
level with a mean object size (MOS) of 0.04 ha for conifer
and deciduous trees. Results show that for all lidar transect
samples, SVR models achieved better performance for
estimating canopy height than multiple regression. By using
SVR and a single lidar transect (i.e., 8.8 percent of the study
area), the following relationships were found between
predicted and field-measured canopy height (R2: 0.81; RMSE:
4.0 m), AGB (R2: 0.76; RMSE: 63.1 Mg/ha) and volume (R2:
0.64; RMSE: 156.9 m3/ha).

Introduction
Forests play a critical role in the global carbon budget, as
they dominate the dynamics of the terrestrial carbon cycle
(Dong et al., 2003); where, for example, 90 percent of
above-ground carbon is stored in tree stems (Hese et al.,
2005). Airborne lidar (light detection and ranging), a recent
remote sensing tool, has demonstrated the ability to
characterize forest vertical structure (e.g., canopy height),
leading to the accurate estimation of forest above-ground
biomass (AGB) and timber volume (Means et al., 1999;
Lefsky et al., 2002; Lim et al., 2003). However, the current
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cost of lidar data collection still remains high. This pro-
hibits the wall-to-wall airborne lidar forest mapping of
large areas, such as Canada, which is covered by 402.1
million hectares of forest and other wooded land (Natural
Resources Canada, 2009).

In an effort to overcome this cost limitation, recent
studies report on the integration of lidar transects with
optical remotely sensed data to estimate forest vertical
structure (Hudak et al., 2002; Wulder and Seemann; 2003;
Hilker et al., 2008; Chen and Hay, 2011). The primary
strategy is to generalize canopy height information from a
relatively small area covered by lidar transects to the entire
study area, covered by the optical scene. Multiple regres-
sion, as a standard statistical technique, is widely used in
these studies. However, linear or other simple nonlinear
(e.g., logarithmic or exponential) multiple regression models
seldom fully characterize forest complexity, especially at
fine scales, due to the high structural variability within
small tree clusters when using high spatial resolution
imagery (i.e., less than 5.0 m). Support vector machines
(SVMs), originating from statistical learning theory, provide
the capability to deal with highly nonlinear problems
(Vapnik, 1995 and 1998) such as estimating complex forest
structures. Additionally, SVMs are (a) robust in generaliza-
tion, even when the training data are noisy, and (b) are
guaranteed to have a unique global solution, that is
not trapped in multiple local minima (Cristianini and
Shawe-Taylor, 2000). In forest remote sensing studies, SVMs
have proven their use in the domain of classification
(Huang et al., 2008; Kuemmerle et al., 2009). However, few
studies have investigated the application of support vector
regression (also known as SVMs for regression, hereafter SVR)
to estimate forest biophysical parameters, especially their
vertical characteristics.

To reduce high costs for lidar acquisition for forest
parameterization while improving model accuracies,
the primary objective of this study is to investigate the
potential of SVR machine learning models to estimate forest
biophysical parameters (i.e., canopy height, AGB and -
volume) for a full study site by combining (smaller-area)
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lidar transects and QuickBird imagery. To do so, we -
proceed by: (a) applying a GEOBIA (geographic object-based
image analysis) approach to extract forest characteristics at
a small tree cluster level, (b) developing SVR models to
estimate forest biophysical parameters, and (c) comparing
the model performance between SVR and multiple
regression.

Support Vector Regression (SVR)
Support vector regression (SVR) essentially transforms the
nonlinear regression problem into a linear one by using
kernel functions to map the original input space into a new
feature space with higher dimensions (Cristianini and
Shawe-Taylor, 2000). A brief description of the SVR basic
principles is addressed below. Please refer to Gunn (1998),
Cristianini and Shawe-Taylor (2000), and Smola and
Schölkopf (2004) for details.

In SVR, if we consider training samples as (xi, yi), 
(i � 1, . . ., n), where xi is a multivariate input, yi is a scalar
output, and n is the number of training samples; then a
linear model can fit this new high-dimensional feature space
as follows:

(1)

where w is the weight vector, w denotes a nonlinear map-
ping function from the input space to the new feature space,
and b is the bias term.

In the next step, an �-insensitive loss function is used in
the regression to ignore small errors (i.e., differences
between predicted and true values) as long as they are less
than �. To reduce model complexity, we also need to
minimize the norm of the weight vector, i.e., ƒ ƒw ƒ ƒ. Therefore,
the SVR linear model is optimized by minimizing both the
tolerated training error (i.e., �-insensitive loss) and the
model complexity (i.e., ƒ ƒw ƒ ƒ). The optimization problem is
formulated as follows:

subject to (2)

where the parameter C determines the tradeoff between the
tolerated training error and the model complexity. ji and 
are slack variables, which measure the deviation of each
training sample point outside the �-insensitive zone. These
sample points are called support vectors, which will be used
to develop regression models.

By using a Lagrange function to solve the optimization
problem represented in Equation 2, the linear model (Equa-
tion 1) can be reformulated as follows:

(3)

where and �i are Lagrange multipliers, which are
determined by solving the Lagrange dual problem; and nsv
is the number of support vectors. As previously mentioned,
only support vectors are used in modeling. The main
reason is that the Lagrange multipliers have to be zero for 
other sample points, where . Furthermore, ƒyi � f (xi) ƒ 6 �
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a kernel function is used instead of
determining the explicit form of the nonlinear mapping
function w, as Equation 3 only requires the dot product
between xi. Essentially, support vectors represent the
samples that define useful evidence from which to build
the model.

Common kernel functions include linear, polynomial,
radial basis function (RBF) and hyperbolic tangent, among
which, RBF is widely used due to its typically better per-
formance and smaller number of input parameters. The RBF
kernel, adopted in our study, is described as follows using a
single kernel parameter �:

(4)

Consequently, the performance of an SVR model is highly
related to the values of the three parameters: C, �, and �. To
optimize their selection, training samples are used.

Data Collection
Study Area
Our 2,601 ha study site (5.1 km � 5.1 km) is located
approximately 10 km southwest of Campbell River on
Vancouver Island, British Columbia, Canada (49°52	N,
125°20	W), where it is composed predominantly of conifer
and deciduous forests (Figure 1). Conifer species cover 65
percent of the site and are dominated by approximately 80

K(xi,xj) � exp(�g ‘ xi � xj ‘
2)

K (xi, x) � 8w(xi) # w(x)9
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Figure 1. (a) Study area located southwest of Campbell
River, Vancouver Island, Canada, (b) Lidar canopy height
segmentation image (CHS), and (c) QuickBird grayscale
image derived from a false color composite using near
infrared (NIR), red and green bands.



percent Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco],
along with small proportions of Western Red Cedar [Thuja
plicata (Donn.)], and Western Hemlock [Tsuga heterophylla
(Raf.) Sarg.] (Morgenstern et al., 2004). Another 16 percent
of the study area is dominated by the deciduous species Red
Alder (Alnus rubra Bong.) with the remainder of the site
composed of clearcuts, roads and a river that diagonally
bisects the site from southeast to northwest.

Field Data
A number of field stands were visited and twelve plots were
chosen to represent various species composition and
growing status. Tree information in each plot was measured
using a fixed sampling size of 20 m � 20 m. The center
point of each plot was located with differentially corrected
GPS (�/�2 m). All trees with a DBH of more than 10 cm were
measured in each plot to obtain mean height, mean DBH,
stem density, and species composition.

Field-measured AGB and timber volume are typically
calculated using field measurements (e.g., DBH, tree height
and species composition) and allometric equations. For our
purposes, we used Equation 5, as it is widely used in
biomass studies in Canada (Lim et al., 2003):

(5)

where a1 and a2 are coefficients. Accurate coefficient values
based on species and size were determined from the litera-
ture (Ter-Mikaelian and Korzukhin, 1997; Ung et al., 2008).
Timber volume was calculated using the Interactive Tree
Volume Compiler Software System (TREEVOL), provided by
the Government of British Columbia (MSRM, 2009).

Lidar Data
Lidar data were acquired on 08 June 2004, by an airborne
Terrain Scanning Lidar system (Terra Remote Sensing, Inc.;
Sidney, Canada). As a discrete return lidar system (Light-
wave Model 110), it has a pulse repetition frequency of 10
KHZ, a wavelength of 1,047 nm, a swath width of 56° and a
beam divergence of 3.5 mrad. A continuous scanning mode
in the typical zigzag pattern was used during data acquisi-
tion with a point density of 0.7 points/m2 and a footprint of
0.19 m at nadir. A forest canopy height model (CHM) was
generated on a 1.0 m grid with an average height of 19.3 m,
and a standard deviation of 8.0 m over the entire forest site.

Rather than evaluating individual height pixels, a
canopy height segmentation image (CHS) was generated from
the CHM to describe forests at the individual tree
crown/small tree cluster level (hereafter, tree/cluster level).
By adopting this method from Chen and Hay (2011), tree
tops were first located with (inverted) crown areas then
defined using a watershed algorithm and filled with the
average height values from within each crown extent. A
height threshold of 2.0 m was used to remove non-tree areas
(e.g., tree gaps or shrubs). Qualitative inspection indicated
that the watershed objects accurately modeled individual
crowns and/or small tree clusters. The average height value
was used to fill each segmented tree/cluster, as previous
studies show strong correlations within the biophysical
parameters we seek (Lefsky et al., 2002; Lim et al., 2003).
Table 1 shows the forest proportion of each lidar-measured
canopy height class in the study area for three tree classes:
(a) all trees, (b) conifers, and (c) deciduous. Height classes
were adopted from the British Columbia forest inventory
height classes (MFR, 2010).

QuickBird (QB) Data
A cloud-free QB image was acquired on 11 August 2004
covering the same area as the lidar acquisition. Four multi-

AGB � a1DBHa2

spectral bands [i.e., blue, green, red and near infrared (NIR)]
and one panchromatic band were used in this study.

A principal components spectral sharpening technique
(Welch and Ahlers, 1987) was used to combine the spectral
information from the QB multispectral bands and the spatial
information from the QB panchromatic band, as this method
maintains the integrity of the original DNs. The pan-sharp-
ened QB image was then resampled to the same spatial
resolution as the CHS (1.0 m). The lidar and pan-sharpened
optical data were geometrically co-registered using 118 tie
points. A second-order polynomial warping method and
nearest neighbor resampling were applied, yielding a RMSE
of 0.85 m. Due to the dense forest cover in this area,
co-registration was performed using tree tops only.

Data Analysis
QB imagery were first segmented using a GEOBIA approach to
produce image-objects at an average size representing the
small tree cluster level (0.04 ha). Transect-covered image-
objects were then used as training samples to extract
variables from corresponding locations in both QB and lidar
data. By using these variables, multiple regression and SVR
models were developed to estimate lidar-measured canopy
height for the entire study area. The estimated canopy
heights from both types of models were evaluated against
the full-scene lidar dataset. This was followed by the
prediction of field-measured canopy height, AGB and
volume using field measurements. The flowchart in Figure 2
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TABLE 1. PROPORTION OF EACH CANOPY HEIGHT CLASS IN THE STUDY
AREA DERIVED FROM THE LIDAR CHS IMAGE

Canopy Height
Forest Proportion (%)

Class (m) All trees Conifers Deciduous Trees

1: 2.0 to 10.4 7.41 3.20 4.21
2: 10.5 to 19.4 25.11 19.99 5.12
3: 19.5 to 28.4 56.47 45.60 10.87
4: 28.5 to 37.4 10.94 9.75 1.19
5: 37.5 to 46.4 0.07 0.06 0.01

Figure 2. Flowchart of the research process with refer-
ence to Data Analysis sections.



summarizes these steps; while the following sub-sections
provide greater detail and explanation.

Image Segmentation
High spatial resolution, optical remotely sensed data
can meet the increasing need to characterize forest
ecosystems at fine spatial scales (Wulder et al., 2004a).
However, in our case, individual pixels represent only a
small portion of the forest objects (e.g., individual trees or
tree clusters) of interest. To acquire additional landscape
details while reducing the spectral variability within each
object, GEOBIA provides an advantageous alternative to the
traditional pixel-based approach by using image-objects
(i.e., groups of connected pixels that are relatively homo-
geneous and different from their surroundings) as the
basic study units (Hay and Castilla, 2008; Blaschke, 2010).
Unlike pixels, where size and (square) shape have been
limited by specific sensors, image-objects exhibit various
object size and shape. In the case of forest studies, object
size facilitates research on individual trees, small tree
clusters or large forest stands, etc. In addition, object’s
boundaries provide a tailored window shape, or filter
from which to extract image-texture information
(Hay et al., 1996).

Since part of our objective is to estimate forest biophysi-
cal parameters at the object-level, our objects of interest
were automatically generated by applying the image segmen-
tation software: Size-Constrained Region Merging (SCRM)
(Castilla et al., 2008) to the pan-sharpened multispectral QB
dataset. SCRM has two advantages over currently existing
segmentation algorithms: (a) the object size (e.g., mean,
minimum and maximum) can easily and explicitly be
controlled through input parameters; and (b) the defined
object shapes (composed of smooth boundaries) are similar
to those delineated by experienced forest analysts. It should
be noted that large mean object sizes (MOS) tend to ignore
the forest height variability within individual objects, as
numerous smaller units are merged into fewer larger units
(Chen et al., 2010). To better capture forest variability and to
benefit from the high-resolution characteristics of the optical
and lidar data (i.e., height, image texture, and shadow), we
selected a relatively small MOS of 0.04 ha; which is similar
to the size of our field plots.

Extraction of Variables
Previous studies have shown that relationships exist
between optical bands and forest height (Franklin and

McDermid, 1993; Hyde et al., 2006; Donoghue and Watt,
2006; Chen et al., 2010). In order to extend canopy height
information from the small area(s) covered by lidar transects
to the entire study area, the QB scene was used to extract
three types of independent variables as outlined in Chen
et al. (2010): (a) spectral, (b) image-texture, and (c) shadow
variables. Specifically, (a) the mean DN within each image-
object was calculated for each spectral band: blue, green, red
and NIR; (b) Two styles of image-texture measures were
considered: internal-object texture )a measure of the spatial
variability of DNs within an image-object) and geographic
object-based texture (GEOTEX) (a measure of the spatial
variability within neighboring objects); and (c) Shadow
fraction, a quotient of the size of shaded areas and the size
of the corresponding forest objects, was then calculated
based on the DNs of the NIR band. The CHS was used to
extract the dependent variable of canopy height, which is
the average height within the same image-objects as those
derived from QB segmentation.

Image-objects covered by transects were used as training
samples to develop robust regression and SVR models (as
described in the following two Sections). Four types of lidar
transect areas, 8.8 percent (one transect), 17.6 percent (two
transects), 26.4 percent (three transects) and 35.2 percent
(four transects) and their locations, were extracted and
compared in this study (Figure 3). Transect size and location
were determined by adopting the lidar transect selection
strategies developed by Chen and Hay (in review), which
created a canopy pseudo-height image from high-spatial
resolution optical data and automatically selected “optimal”
lidar transects based on proportionally matching the canopy
height structure (i.e., height histogram) of the full scene,
with that of the transect(s). Here, “optimal” refers to the
least amount of transect samples (thus lower acquisition
costs) and most accessible location(s) to meet specific
sampling objectives.

In this study, specific transects and their locations were
chosen for three reasons: (a) transect size was based upon
the actual acquired lidar swath width of 450 m, or 8.8
percent of the total study area; (b) Previous results (Chen
and Hay, 2011) show that a minimum of four different lidar
transect areas represent a sufficient amount of training
samples necessary to evaluate the different models. Addi-
tionally, we are interested in minimizing lidar acquisition
costs; and (c) Based on the selection strategies applied, each
transect covers a (proportionally) similar canopy height
distribution as that derived from the full lidar scene.
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Figure 3. These four types of transects represent the “optimal” selected flight lines that best meet the
lidar transect selection strategies for flight line number (1 through 4), their locations, and their area
covered (as a percent of total study site): (1) 8.8 percent, (2) 17.6 percent, (3) 26.4 percent, and (4)
35.2 percent (Chen and Hay, 2011). For illustrative purposes, the QB image was used as the base layer
with lidar transects overlaid.



Multiple Regression Model
Chen et al. (2010) investigated the potential of using multi-
ple regression to estimate lidar-measured canopy height with
QB data. An important finding was that models formulated
using a combination of exponential and quadratic form
performed better than a simple linear model. Therefore, the
same type of nonlinear multiple regression model was
employed in this study to relate QB-derived independent
variables with the lidar-derived dependent variable:

(6)

where CH is the lidar-measured canopy height; Xi is the ith

independent variable; ai, bi, and ci are coefficients for the ith

variable; and n is the number of independent variables.
To better describe different forest types, separate regression
models were developed for conifer and deciduous trees. A
stepwise variable selection method, used by Wulder et al.
(2004b), was adopted in this study to determine the most
significant input variables for modeling.

Support Vector Regression (SVR) Model
As previously described in this paper, the performance of
SVR is highly affected by three model parameters: C, �,
and �. Thus, a two-step grid-search technique, recom-
mended by Hsu et al. (2009), was used in this study to
select the optimal model parameters. Due to the inde-
pendence of these parameters, the main idea of this
technique is to use a cross-validation method to evaluate
all potential parameter combinations; with the best
combination producing the highest cross-validation
accuracy. In this study, a 10-fold cross-validation tech-
nique was applied. To avoid a time-consuming exhaustive
search, two steps were performed as follows: (a) the
coarse search was conducted using relatively large grid
intervals, i.e., C � [2�1, 20, 21, 22, 23], � � [2�7, 2�6, 2�5,
2�3, 2�2, 2�1, 20] and � � [2�7, 2�6, 2�5, 2�3, 2�2, 2�1, 20,
21]; and (b) the fine search was conducted using relatively
small grid intervals, e.g., [2k�0.75, 2k�0.50, 2k�0.25, 2k,
2k�0.25, 2k�0.50, 2k�0.75], where 2k represents the best
calculation parameter from step (a). The parameter ranges
were determined from trial-and-error. This style of using
exponentially growing sequences has proven effective for
finding the best candidate parameters (Hsu et al., 2009).
Conifer and deciduous trees were separately modeled
using SVR. In this study, the SVM open source software of
LIBSVM was used to perform the modeling (Chang and
Lin, 2001), with the best parameter combination found at
C � 8, � � 0.5 and � � 1 for both tree species. It should
be noted that SVR used the same input variables as those
selected for multiple regression through the stepwise
variable selection. This allows these two types of models
to be compared in a straightforward way.

Comparison of Model Performance for Estimating Lidar-measured 
Canopy Height
Multiple regression and SVR models were developed using
the training samples within the lidar transect-covered
area(s). The variables extracted from the full QB scene were
then imported into both models to estimate (lidar-measured)
canopy height for the entire study site. Results were evalu-
ated by comparing the estimated canopy height with the full
lidar scene (i.e., CHS), and the RMSE (root mean square error)
was reported. Specifically, the comparison of model per-
formance was made for four types of transect extents, and
two tree types (i.e., conifer and deciduous).

CH � exp(a
n

i�0
(aiXi

2 � biXi � ci))

Estimation of Field-measured Canopy Height, Above-ground 
Biomass (AGB) and Volume
Nonlinear models with a natural logarithm form were
developed to build a relationship between the previously
estimated canopy height and their corresponding field
measurements:

(7)

where Mf is the field measurement (e.g., canopy height, AGB
or volume), hE is the estimated canopy height; and 
0 and 
1
are coefficients. This formula has been used to successfully
estimate forest biophysical parameters directly from lidar
data in several studies (Næsset, 1997; Means et al., 1999;
Lim et al., 2003). Since it is not practical to build two
models for two tree species using just twelve field plots,
only one model was developed for estimating each forest
biophysical parameter without distinguishing conifers and
deciduous trees. A leave-one-out cross-validation technique
was chosen to evaluate model performance using RMSE.

Results and Discussion
Comparison between four types of transect extents
Different errors for estimating lidar-measured canopy height
using four types of lidar transect extents and locations are
illustrated in Figure 4. Larger transect extents represent
more training data, which typically facilitates a higher
accuracy estimation. This was illustrated by both models
using multiple regression and SVR. For multiple regression,
the error for all trees dropped from 7.9 m to 7.0 m with an
increase of transect extent from 8.8 percent to 35.2 percent,
while the error decreased from 6.2 m to 5.6 m using SVR.
Though a low error of 6.2 m was achieved with multiple
regression using two lidar transects (i.e., 17.6 percent),
models using SVR performed better at defining all trees than
those using multiple regression for each different transect
type. For example, when only a single lidar transect was
selected for modeling, the canopy height estimation perform-
ance increased by 21.5 percent (from 7.9 m to 6.2 m) using
SVR versus multiple regression. This also confirms the
argument that SVR has a strong generalization capacity even

Mf � b0hE

b1
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Figure 4. Comparison of full scene canopy height
estimation errors for all trees using four different lidar
transect extents: one flight line (8.8 percent), two flight
lines (17.6 percent), three flight lines (26.4 percent), and
four flight lines (35.2 percent).



when using a small number of training samples (Cristianini
and Shawe-Taylor, 2000).

Figure 5 further presents the errors of estimating lidar-
measured canopy height for five canopy height classes using
four transect extents. The height classes were adopted from
the British Columbia forest inventory height classes (MFR,
2010), except our base-height started from 2.0 m instead of
the original 0.0 m, so as to remove low-elevation shrubs and
bushes. A similar error trend as that shown in Figure 4 was
also found in Figure 5. Specifically, for both models, low
errors were located in height classes 2 (10.5 to 19.4 m) and
3 (19.5 to 28.4 m). The main reason was that these two
classes represented a proportionally large sample (i.e., 81.58
percent) of all height classes in the entire study area
(Table 1). This also explains why the errors increased for
other classes, especially for height class 5 (37.5 to 46.4 m),
which proportionally accounted for only 0.07 percent (i.e.,
1.5 ha) of the full site. As a result, the corresponding canopy
height error was larger than 15 m (Table 1 and Figure 5).
This strongly suggests that the performance of both types of
models is biased to the proportionally largest height classes.
Additionally, Figure 5 shows that SVR models were more
adaptive to estimate canopy heights above 19.5 m (i.e.,
height classes 3, 4, and 5); while multiple regression models
were better at predicting lower canopies (i.e., height classes
1 and 2) using a combination of exponential and quadratic
form. However, it should be noted, for height class 3 (with
the largest forest proportion of 56.47 percent), the average
error decreased by 33.3 percent (from 6.6 m to 4.4 m) using
SVR compared with multiple regression.

Comparison between Conifers and Deciduous Trees
Compared to conical-shaped conifers, deciduous canopies
typically exhibit complex irregular shapes, making it more

difficult to accurately estimate their canopy height 
(Figure 6). As a result, all models developed for conifers (for
all transect types), performed better than those developed for
deciduous trees. Specifically, the average errors decreased
by 20.3 percent (from 7.9 m to 6.2 m) for multiple regres-
sion, and 20.4 percent (from 6.9 m to 5.5 m) for SVR. Figure
6 further shows that SVR models achieved better results than
multiple regression for both tree types, except in the case of
the 17 percent lidar cover, where deciduous multiple
regression was slightly better. In addition, the SVR-estimated
deciduous canopy height error reached similar accuracies as
those of conifers using multiple regression; again, with the
exception of the 17.6 percent lidar cover.

Similar to Figure 5, both conifer and deciduous trees
had relatively better estimation results when the correspon-
ding canopy height classes accounted for a larger propor-
tion of the forested site (Figure 7 and Table 1). In the case
of a single lidar transect, the best height estimate for
conifers was 4.2 m derived from a SVR model at height
class 3; while the best estimate for deciduous trees was 5.7
m derived from a SVR model at the height class 2. Initially,
we did not expect that at height class 1 (2.0 to 10.4 m) the
small deciduous trees would achieve better results than
small conifers. However, when we re-evaluated the optical
and lidar data based on these findings, we could see that
the tight structural crown composition of these smaller
trees was much simpler than the overlapping complex
crowns of the taller deciduous classes; where, the spectral
reflectance of small conifers tend to be heavily influenced
by tree gaps.

Comparison between Model Estimates and Field Measurements
Reduced lidar cover represents lower lidar data acquisition
and processing costs. However, it should be noted that
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Figure 5. Comparison of the canopy height estimation errors for all trees, defined in five
height classes extracted from four lidar transect extents (see Figure 3): (a) 8.8 percent,
(b) 17.6 percent, (c) 26.4 percent and (d) 35.2 percent. The five height classes are:
HTC1 (2.0 to 10.4 m), HTC2 (10.5 to 19.4 m), HTC3 (19.5 to 28.4 m), HTC4 (28.5 to
37.4 m), and HTC5 (37.5 to 46.4 m), which are similar to the British Columbia forest
inventory height classes.
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Figure 6. Comparison of full scene canopy height
estimation errors for conifers and deciduous trees from
four different lidar transect extents, shown as a percent
of the total area.

Figure 7. A comparison of the full scene canopy height estimation errors for conifers
versus deciduous, generated from four different types of transects (see Figure 3):
(a) 8.8 percent, (b) 17.6 percent, (c) 26.4 percent, and (d) 35.2 percent. Five height
classes are: HTC1 (2.0 to 10.4 m), HTC2 (10.5 to 19.4 m), HTC3 (19.5 to 28.4 m),
HTC4 (28.5 to 37.4 m), and HTC5 (37.5 to 46.4 m), which are similar to the British
Columbia forest inventory height classes.

(depending on the sampling scheme), this may also lower
the model accuracy due to fewer training samples. Therefore,
the best decision needs to be made based on the actual project
requirements. In this case, we noticed that in most conditions,
SVR models produced better results than multiple regression
models. Additionally, by using SVR, the errors for estimating
lidar-measured canopy height varied stably using different
optimal transects. For example, the standard deviation of
height error derived from all lidar transects (i.e., 6.2 m, 5.9 m,
5.7 m, and 5.6 m) is only 0.2 m (Figure 4). Therefore, the
canopy height estimation results derived from SVR using a
single lidar transect (i.e., 8.8 percent extent) was chosen as the
best when considering both cost and accuracy. As a result,
these data were used to generate the following canopy height,
AGB, and volume, simulating field measurements.

Figure 8 illustrates the scatterplots of field measurements
versus estimates of canopy height, AGB, and volume; with
canopy height producing the best result (R2: 0.81; RMSE: 4.0
m). The coefficient of determination for estimating AGB and
volume were 0.76 and 0.64, with errors of 63.1 Mg/ha and
156.9 m3/ha, respectively. We expected better performance for
estimating canopy height, as the height values were acquired
from field measurements. Field AGB and volume were
calculated using allometric equations, where parameter errors
may have been introduced. Compared to previous studies that
have combined lidar transects and optical data to estimate
canopy height, our height estimation error is slighter larger,
e.g., 4.0 m versus 3.2 m in Wulder and Seemann (2003) and
3.5 m in Hilker et al. (2008). However, it should be noted that
our results were derived at the small plot level; whereas,
these two studies were conducted at a larger stand level.

Conclusions
In this study, we have introduced SVR, a machine learning
technique, to estimate the forest biophysical parameters of
canopy height, AGB, and volume for a full study area (2,601
ha), by combining high-resolution (1.0 m) QuickBird
imagery and lidar transects, that represent 8.8 percent, 17.6
percent, 26.4 percent and 35.2 percent of the total site area.
We have also applied a GEOBIA approach to generate all
estimates at a small tree cluster level, i.e., MOS (mean object
size) of 0.04 ha. Based on a comparison with multiple
regression models, the following conclusions can be drawn:

• For both conifers and deciduous trees, SVR models resulted in
better performance in all conditions, except for the case of 17
percent lidar cover, where deciduous trees were better modeled
by multiple regression. Although deciduous trees typically have
more complex canopy structures than conifers and are thus
more difficult to model, the use of SVR dramatically improved



the height estimation performance for deciduous trees. In
several cases, deciduous results showed similar accuracy to
those of conifers using multiple regression.

• For different canopy height classes, both models showed
better results for the classes that proportionally accounted
for larger areas (i.e., samples). This may be explained by
the selection of lidar transects which were based on rules
to match the height variability of the entire study site;
which in this case was biased to specific species and
height classes.

• SVR provided better results for height classes that when
combined, represented more than 80 percent of the entire
forested area. This suggests that the transect selection
method used (Chen and Hay, 2011) could be enhanced by
including a new rule to account for class proportionality.
This would also allow a user to specify (i.e., bias) the
selection of one or more specific height classes of interest.
For example, logging activities may be of interest in high
AGB and/or volume stands that only account for a small
proportion of the landscape-level inventory, i.e., old growth
or seed stock.

• The SVR model errors revealed a more stable trend using
different transect extents. This supports the argument that
SVR has a strong generalization capacity using a small
number of training samples (Cristianini and Shawe-Taylor,
2000). By using the canopy height estimated from a single
lidar transect and SVR, a strong relationship was found
between predicted and field-measured canopy height (R2:
0.81; RMSE: 4.0 m). However, AGB (R2: 0.76; RMSE: 63.1
Mg/ha) and volume (R2: 0.64; RMSE: 156.9 m3/ha) were more
difficult to predict. One possible reason could be that the
AGB and volume field data contained errors introduced by
the allometric equation parameters. Additionally, more

detailed species information may be needed for estimating
these two parameters.

• In order to model canopy height variability at a fine scale, this
research was performed at the tree crown/cluster level using a
mean object size of 0.04 ha. In future studies, we will
investigate the potential of using this SVR approach for forest
inventory update at an object stand-level of 1.0 ha and greater.
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