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Stochastic resonance in the Heaviside nonlinearity with white noise and arbitrary periodic signal
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A Heaviside nonlinearity with adjustable threshold is fed by an arbitrarily distributed white noise plus a
periodic signal of arbitrary wave form. A general and exact treatment demonstrates that this system is capable
of stochastic resonance in a large variety of conditions and offers a complete characterization of this property.
In particular it gives the possibility of observing nonzero phase shifts with nondynamic stochastic resonance.
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Stochastic resonance is a property of noise-enhanced sigrave plus a Gaussian noise that triggers output spikes. A
nal transmission that occurs in certain nonlinear systemgheoretical description of this system is given in the limit of
driven by a coherent periodic signal added to a noise. It wag slow and small modulation.
introduced some 15 years ago in the context of climate dy- Additionally, in the above-mentioned theoretical treat-
namics[1] and has since been observed in a large variety ofients, the hypothesis of a Gaussian noise is often crucial and
both natural and model syster. the periodic input is restricted to a sine wave.

At the origin stochastic resonance was essentially ob- N the following we consider an even simpler static non-
served in dynamic nonlinear systems of a bistable type. Ainéar system, driven by a white but arbitrarily distributed
general theory has been proposed for this ¢agewhich is ~ NOIS€ plus a periodic input of arbitrary wave form. To date,

based on a rate equation that determines the probability &Eis sy_stem appears to us as the conceptually simplest system
occupation of the two stable states. In the limit of a smaythat brings together the ingredients for stochastic resonance.

modulation by the coherent input. this theorv derives a We present an exact theory that provides a complete descrip-
y put, Y pttion of the ability of this system to stochastically resonate.

proximate expressions for the characteristics of the outpu Let s(t) represent a periodic signal with periad and

that stochastically resonates. Also, for complete applicabilityn(t) a stationary white noise, with the complementary distri-

this theory requires an explicit expression for the transitionoutiOn functionF ,(u) =Prol{7(t)>u}. We consider a static
rate between states, which is usually obtainable only withir,jniinear systen’cl with thresholél which receivess(t) and
the approximation of a slow modulation. The theory[8f (1) as inputs and produces the outdt) = T[s(t) + 7(t)
received experimental groundings from experiments per—g) with the Heaviside function(u)=0 for u<0 and
formed on a ring laser with an acousto-optic modulator tor(y)=1 otherwise.

induce switching between two stable stafdg. Recently, We are first interested in computing a statistical autocor-
stochastic resonance has been extended to dynamic systepagation function for the output signgi(t). Sincey assumes

of a monostable or excitable typ8] and here also the asso- values 0 or 1 only, the expectati&]y(t)y(t— )] for fixed
ciated theoretical treatments are derived in the limit of ar+0 and fixedt can be expressed as the probability

small or slow modulation.

A common character of the above-mentioned systems is E[y(D)y(t—7)]=Prody(t)=1, y(t—7)=1}, (1)
their dynamicnature, i.e., the nonlinear process that stochas\—NhiCh is also
tically resonates involves both the signals and their time de-
rivatives to determine the output. This situation complicates E[y(t)y(t—7)]=Pros(t)+ n(t)>0, s(t—r1)
the calculation of the output autocorrelation function, usually
the first step in the theoretical analysis, because the dynamic
system broadens the correlation of the input noise and mixe§
it, in a complicated way in the output response, with corre
lation originating from the coherent input.

Very recently, a simple example of a nondynartstatio Ely()y(t—7)]=x(t)x(t—1), (€
system that stochastically resonates has been progésed
under the form of a unidirectional level crossing by a sinewith

+ n(t—71)>6}. (2)

inces is a deterministic signal angl a white noise, one can
‘write
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x(t)=E[y(t)]=Proi{ 7(t)> 0—s(t)} =F 6—s(t)]. right-hand side of Eq(7)]. The Fourier transform oR,
(4 defines the output power spectral dendy,, which will
then be formed by a constant background with magnitude

For 7=0, one has —x?2, superposed to a series of spectral lines at integer mul-
E[y(t)y(t—7)]=Proby(t)= 1} =x(t). ) tiples of 1. Application of Eq.(10) leads to
o . . n\ _ —
Bothx(t) andx(t— 7) are periodic irt and r with periodTs. Pyy<_ —X— X2+ 2MNXXE (11)
Because of the periodic coherent modulation introduced by Ts

s(t), the stochastic signal(t) is nonstationary, yet it is cy- _ )
clostationary with period [7]. It is possible to construct a When the horizorM — +<, the magnitude of the coherent
“stationary” autocorrelation function R,,(n) for y(t) _spgqtral Imgs above the broadband noise background Fends to
through a proper time averaging B{y(t)y(t— 7)] over an mflmty. This type of form of the power spectral density is
interval T, whent or t modT uniformly covers[0,T[. typical for the output of a stochastically resonant system. We
To avoid difficulties due to the idealized notion of a white choose to define the signal-to-noise ratio, at frequemdy,
noise and also to have the possibility of a direct numericaPn the output, as the ratio of the power contained in the
evaluation of every relevant quantity of the model, especiallysPectral line alone to the power contained in the noise back-
for the purpose of comparison with a simulation of the non-ground in a frequency band ofTlJaroundn/T;. The corre-
linear system, we choose now to move to the context ofPonding expression of th&NR) signal-to-noise ratio then
discrete-time signals. The time scale is thus discretized witfiollows as
a stepAt<Tg such thatT,=NAt. Now, in practice, the

2
white noise 7(t) only need be a noise with a correlation g i - NI (12)
length shorter thart. 1) =
We define the stationary autocorrelation function as X=X
N-1 In addition to the SNR, another desirable characterization

Ryy(kAt) = l > E[y(jAty(jAt—kAD)], (6)  consists in the possibility of evaluating the phase shift be-
N =0 tween the output and the coherent input. This can be

, , ) achieved through the computation of an input-output cross-
which can also be written, according to E€B) and(5), @ correlation function. For fixed andt, we first consider the

g Nt expectation
Ry (KAL)= (x—x2)S(kAt)+ = > X(jAX[(j —k)At],
(KAD ==X S(kAY + 5 20 x(JADX[( ~K)AL] E[s(t)y(t—7)]=s(t)Proby(t— r) =1} =s(t)x(t— 7).
7 (13
with S(kAt)=1 for k=0 andS(kAt) =0 otherwise and with E[s(t)y(t— 7)] is periodic in botht and 7, with period Ts.
the time average For the definition of a stationary cross-correlation function, a

N1 time average is taken whenor t modT uniformly covers
1 ) [0,T. This yields the cross-correlation function
=N 2, XAy ®)

= N—1

and a similar definition for the averag@. We note that since Roy(kAD = N JZO SUADX(—kAt], (14)

F. varies between 1 and 0, for any nonidentically zero or one

x(t), one always hag—x2>0. which is interpretable as the cross-correlation function of
In order to proceed into the frequency domain, the Fouries(t) with the nonstationary mean outpt) =E[y(t)]. Ry

coefficients of the deterministic periodic signeljAt) are  of Eq.(14) is periodic with periodl. Its frequency contents

introduced as has only components at integer multiples of 1/Through a
Fourier transform oRg, according to Eq(10), one obtains a
1 ! ] ~_jn cross-power spectral density
Xp== > X(jAt)exp —i2mw —|. (9)
N <o N n
Po| = | =2MNSX?, 15
We define the discrete Fourier transform of R,,,, over a Sy( Ts) o 13

yy?!
time interval of an integer numbem2 of periodsT, as . . ) )
whereS,, defined according to Eq9), is the orden Fourier

coefficient ofs(t).
, The phase shiftp between the mean outpi{y(t)] and
(10) the coherent inpus(t), as it is also considered i8], can
here be evaluated, for a component with frequenty,,

which affords a frequency resolutiakw=1/(2M NAt). from the argument of the complex numbey,(n/T) as
The autocorrelation function of Ed7) is formed by a

pulse at the origin with magnitude— x?, superposed to a ¢(£

periodic component with period, [the second term on the Ts

MN-1 K|
71 Ryy(kAt)]zk:ZMN Ryy(km)exp( —i2m oo

=arg S,X*). (16)
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FIG. 1. Output autocorrelation function versus the time tdg
units T : the smooth line is the theoretical expression of Eyand
the noisy line(almost indistinguishabjés the experimental estima-
tion, with At=T¢/100 ato,=0.5.

With the present general and exact treatment, it is now easy % 0.2 04 06 08 1
to verify that the nonlinear system exhibits stochastic reso- input noise power density
nance for a large variety of conditions. For illustration we

choser(t) a Gaussian white noise with zero mean and vari-  FiG. 2. Output SNR of Eq(12) as a function of the input noise
2 — ief)— . . . .
ance g, and s(t)=cos(2rt/T;). The threshold is6=1.2  power density o%: the pair of dotted curves is with
since for standard stochastic resonance the coherent inpstt) =cos(2rt/T) and the pair of solid curves with
alone is unable to induce a transition of the output. We showg(t) =0.5/(t/T,) +cos(2#t/Tg)]. In each pair, the upper curve is
in Fig. 1 the output autocorrelation function theoretically for the first harmonic at T, and the lower curve for the second at
predicted by Eq(7), wheno,=0.5 andAt=Tg/100. Our first ~ 2/T;.
concern is to compare this theoretical autocorrelation func-
tion against a direct estimation of it, resulting from a numeri-petveen the components at frequencies, r 2/T,, dis-
cal simulation of the nonlinear system. In the simulation,|ays respectively, a nonmonotonic variat{giig. a)] and
sample averages of terms of the foft)y(t—7) were ac- 3 monotonic decafFig. 3(b)] with the input noise. The shift
cumulated to provide an experimental estimation of the auj, phase of an input component at frequemdif can thus

tocorrelation function, which i; also presented in I_:ig. 1. Aschange with the overall frequency contents of the input, a
expected, because the model is exact, the theoretical and pical nonlinear effect.

perimental autocorrelation functions are quite consistent and " the present model allowed us to verify that many other
they would tend to perfectly superpose if the sample avergongitions enable the system to resonate, for instance, uni-
ages experimentally performed were estimated with a numormy or exponentially distributed noise. It also gives us the

ber of trials tending to infinity. From here, the rest of the yssibility to theoretically investigate various other issues of
comparison involves only “mechanical” Fourier transforms importance, for example, the issue of the optimal noise dis-

and thus cannot introduce discrepancies between theory aRghtion to maximize resonance in the presence of a speci-
experiment that would be inherent to the system consideregieq coherent signas(t) or conversely the optimal wave

since the autocorrelation functions agree. ~ form for s(t) in the presence of a specified noise distribution.
Next, we show in Fig. 2 the output SNR, at frequencies

1/T, and 2T, as a function of the input noise power density
af,, as it results from Eq(12). The nonmonotonic variation

of the SNR that passes through a maximum for a specific
input noise level is a clear signature of stochastic resonance.
We observe, as visible with other stochastically resonant sys-
tems, that the resonance occurs at different noise levels for
the first and second harmonics.

In the present case, Eql6) gives a phase shift
¢(1/T)=0 between the components at frequencl, bn the
output and on the coherent input, for any valuesgfin the
resonance region spanned in Fig. 2. This absence of input-
output phase shift at the resonance is also observed in other
stochastically resonant systems, although not alwa@j}s
With the present model, we have the possibility to show that
the behavior of the phase shift can be altered simply by
changing some characteristics of the noise distribution or of 19 02 04 06 08 1
the coherent input. input noise power density

For instance, we change the periodic input to
s(t)=0.9/(t/Tg) +cos(2nt/T,) ], where/(t)=t modl is a FIG. 3. Input-output phase shifin degrees of Eq. (16), as a
sawtooth signal of amplitude 1 and period 1. Th&énd  function of the input noise power densityo?, with
2/T¢ harmonics of the output still resonate, as demonstrateg(t)=0.5/(t/T¢) +cos(2rt/Ty)], at frequency(a) 1/T and (b)
by Fig. 2. The input-output phase shift given by E6), 2[T,.

phase shift
[o3
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As we mentioned, within the hypothesis of a white noisethe cross-correlation coefficiefttero lag of the output with
7(t), the present theoretical treatment is exact. In practicethe coherent input, from which a ratio is deduced that ap-
an actual physical noise will have a small, but not strictlyproaches the usual SNR for small coherent signals.
zero, correlation length, . When 7.<At, the physical out- Our treatment deals with arbitrarily distributed white
put autocorrelation function will have a peak of widthr, noise and arbitrary periodic input and provides exact expres-
around the origin, whose magnitude s 0 is correctly rep-  sions for the correlation functions, the power spectral densi-
resented by Eq(7) but whose exact shape will not be de- ties, the input-output phase shift, and the output SNR. This
scribed by Eq(7). The discrete-time treatment allows us to represents an example of a stochastically resonant system
dispense with explicit assumptions concerning the exacthat lends itself to an exact and general treatment. The suc-
shape of this narrow peak. The exact shape of this peak afess of such a complete theoretical analysis certainly relates
duration~ 7, will start to manifest its influence on the output to the static nature of the nonlinearity, which does not spread
power spectral density in the frequency range of order.1/ the correlation of the input noise. The correlation present in
Such high-frequency perturbations will generally leave unafthe random signal on the output essentially comes from the
fected the stochastic resonance effect that takes place in tle®herent input. These conditions greatly facilitate the calcu-
much lower frequency range Tl and will consequently be lation of the output autocorrelation function and as demon-
accurately described by the present theoretical treatment. strated here, they turn out to be sufficient to induce stochastic

The study in[9] also considers a Heaviside nonlinearity, resonance. The present general and exact treatment of a con-
but preceded by a first- or second-order low-pass linear filteceptually very simple nonlinear system offers a unique theo-
fed by a Gaussian white noise. In the presence of a sinusoidedtical framework to further investigate various aspects of
coherent input, an exact analytical expression is derived fostochastic resonance.
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