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Geometric properties of generalized Struve functions
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Abstract In the present work our object is to establish some geometric properties (like univalence,
starlikeness, convexity and close-to-convexity) for the generalized Struve functions. In order to prove
our main results, we use the technique of differential subordinations developed by Miller and Mo-
canu, some inequalities, and some classical results of Ozaki and Fejer.
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1 Introduction and preliminary results

It is well known that the special functions (series) play an important role in geomet-
ric function theory, especially in the solution by de Branges of the famous Bieber-
bach conjecture. The surprising use of special functions (hypergeometric functions)
has prompted renewed interest in function theory in the last few decades. There is
an extensive literature dealing with geometric properties of different types of special
functions, especially for generalized, Gaussian, Kummer hypergeometric functions and
Bessel functions. Many authors have determined sufficient conditions on the param-
eters of these functions for belonging to a certain class of univalent functions, such
as convex, starlike, close-to-convex, etc. Someone can find more information about
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geometric properties of special functions in [2–4,11,15–18,14]. In this present investi-
gation our goal is to determine conditions of univalence, starlikeness, convexity and
close-to-convexity of generalized Struve functions. In order to achieve our goal in this
section, we recall some basic facts and preliminary results.

Let A denote the class of functions f normalized by

f(z) = z +
∑

n≥2
anz

n (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Let S denote the subclass
of A which are univalent in U . Also let S∗(α), C(α) and K(α) denote the subclasses of
A consisting of functions which are, respectively, starlike, convex and close-to-convex
of order α in U (0 ≤ α < 1). Thus we have (see, for details, [5]),

S∗(α) =

{
f : f ∈ A and <

(
zf ′(z)
f(z)

)
> α, (z ∈ U ; 0 ≤ α < 1)

}
, (1.2)

C(α)=

{
f : f ∈ A and <

(
1 +

zf ′′(z)
f ′(z)

)
> α, (z ∈ U ; 0 ≤ α < 1)

}
, (1.3)

K(α)=

{
f : f ∈ A and <

(
f ′(z)
g′(z)

)
> α, (z ∈ U ; 0 ≤ α < 1; g ∈ C)

}
, (1.4)

where, for convenience,

S∗(0) = S∗, C(0) = C, and K(0) = K. (1.5)

We remark that, according to the Alexander duality theorem (see [1]) the function
f : U −→ C is convex of order α, where 0 ≤ α < 1 if and only if z −→ zf ′(z) is
starlike of order α. We note that every starlike (and hence convex) function of the
form (1.1) is in fact close-to-convex, and every close-to-convex function is univalent.
However, if a function is starlike then it is not necessary that it will be close-to-convex
with respect to a particular convex function. For more details we refer the interested
in the papers [5], [7], [13] and the references therein.

Lemma 1.1 ([10]) Let E be a set in the complex plane C and ψ : C3×U −→ C a
function, that satisfies the admissibility condition ψ(ρi, σ, µ+ vi; z) /∈ E, where z ∈ U ,
ρ, σ, µ, v ∈ R with µ + σ ≤ 0 and σ ≤ −(1 + ρ2)/2. If h : U −→ C, which satisfies
h(0) = 1, is analytic and for all z ∈ U we have ψ(h(z), zh′(z), z2h′′(z); z) ∈ E, then
<{h(z)} > 0 for all z ∈ U . In particular, if we only have ψ : C2×U −→ C the
admissibility condition reduces to ψ(ρi, σ; z) /∈ E, for all z ∈ U and ρ, σ ∈ R with
σ ≤ −(1 + ρ2)/2.

Lemma 1.2 ([13]) If the function f(z) = z + a2z
2 + ...+ anz

n + ... is analytic in U
and in addition 1 ≥ 2a2 ≥ ... ≥ nan ≥ ... ≥ 0 or 1 ≤ 2a2 ≤ ... ≤ nan ≤ ... ≤ 2, then
f is close-to-convex with respect to the convex function z −→ − log(1− z). Moreover,
if the odd function g(z) = z + b3z

3 + ... + b2n−1z2n−1 + ... is analytic in U and if
1 ≥ 3b3 ≥ ... ≥ (2n+ 1)b2n+1 ≥ ... ≥ 0 or 1 ≤ 3b3 ≤ ... ≤ (2n+ 1)b2n+1 ≤ ... ≤ 2, then
g is univalent in U .
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Lemma 1.3 ([6]) If the function f(z) = a1z + a2z
2 + ... + anz

n + ..., where a1 =
1 and an ≥ 0 for all n ≥ 2, is analytic in U , and if the sequences {nan}n≥1 ,
{nan − (n+ 1)an+1}n≥1 both are decreasing, then f is starlike in U . Moreover, if for

the analytic function g(z) = b1+b2z+ ...+bn+1z
n+ ..., where b1 = 1 and bn ≥ 0 for all

n ≥ 2, we have that {bn}n≥1 , is a convex decreasing sequence, i.e., bn−2bn+1+bn+2 ≥ 0

and bn − bn+1 ≥ 0 for all n ≥ 1, then <{g(z)} > 1/2 for all z ∈ U .

Theorem 1.4 ([19]) If f ∈ A satisfies
∣∣∣∣
zf ′(z)
f(z)

− 1

∣∣∣∣ < M, (1.6)

where M is the solution of the equation cosM = M, then <{f ′(z)} > 0.

Theorem 1.5 ([8]) If f ∈ A satisfies
∣∣∣∣
f(z)

z
− 1

∣∣∣∣ < 1, (z ∈ U) , (1.7)

then f(z) is univalent and starlike for |z| < 1
2 .

Theorem 1.6 ([9]) If f ∈ A satisfies
∣∣f ′(z)− 1

∣∣ < 1, (z ∈ U) , (1.8)

then f(z) is convex for |z| < 1
2 .

Theorem 1.7 ([12]) If f ∈ A satisfies the inequality

∣∣zf ′′(z)
∣∣ < 1− α

4
, (z ∈ U ; 0 ≤ α < 1) , (1.9)

then

<
{
f ′(z)

}
>

1 + α

4
, (z ∈ U ; 0 ≤ α < 1) .

2 Univalence, convexity and starlikeness of generalized Struve functions

Let us consider the second-order inhomogeneous differential equation ([20], p.341)

z2w′′(z) + zw′(z) + (z2 − p2)w(z) =
4(z/2)p+1

√
πΓ (p+ 1

2)
(2.1)

whose homogeneous part is Bessel’s equation, where p is an unrestricted real (or
complex) number. The function Hp, which is called the Struve function of order p, is
defined as a particular solution of (2.1). This function has the form

Hp(z) =
∑

n≥0

(−1)n

Γ (n+ 3/2)Γ (p+ n+ 3/2)

(z
2

)2n+p+1
, for all z ∈ C. (2.2)
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The differential equation

z2w′′(z) + zw′(z)− (z2 + p2)w(z) =
4(z/2)p+1

√
πΓ (p+ 1/2)

, (2.3)

which differs from (2.1) only in the coefficient of w. The particular solution of (2.3)
is called the modified Struve function of order p, and is defined by the formula ([20],
p.353)

Lp(z) = −ie−ipπ/2Hp(iz)

=
∑

n≥0

1

Γ (n+ 3/2)Γ (p+ n+ 3/2)

(z
2

)2n+p+1
, for all z ∈ C. (2.4)

Now, let us consider the second-order inhomogeneous linear differential equation

z2w′′(z) + bzw′(z) +
[
cz2 − p2 + (1− b)p

]
w(z) =

4(z/2)p+1

√
πΓ (p+ b/2)

, (2.5)

where b, c, p ∈ C. If we choose b = 1, c = 1 then we get the equation (2.1) and if
we choose b = 1, c = −1 then we get the equation (2.3). So this generalizes the
equations (2.1) and (2.3). Moreover, this permits to study the Struve and modified
Struve functions together. A particular solution of the differential equation (2.5),
which is denoted by wp(z), is called the generalized Struve function of order p. In fact
we have the following series representation for the function wp(z) :

wp(z) =
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (p+ n+ b+2
2 )

(z
2

)2n+p+1
, for all z ∈ C. (2.6)

In the study of geometric properties of these generalized Struve functions an inter-
esting method is the technique of differential subordinations, i.e. the application of
Lemma 1.1. Thus, we would like to apply Lemma 1.1 for the analytic funtion h :
U −→ C, defined by h(z) = wp(z) and for the function ψ : C3×U −→ C, defined by

ψ(h(z), zh′(z), z2h′′(z); z) = z2h′′(z) + bzh′(z)

+
[
cz2 − p2 + (1− b)p

]
h(z)− 4(z/2)p+1

√
πΓ (p+ b

2)
, (2.7)

with E = {0} . But we have that wp(0) = 0, and therefore, we consider the transfor-
mation

up(z) = 2p
√
πΓ (p+

b+ 2

2
)z

−p−1
2 wp(

√
z) (2.8)

to obtain up(z) = b0 + b1z + b2z
2 + ...+ bnz

n + ..., where for all n ≥ 0

bn =
(−1)ncnΓ (3/2)Γ (p+ b+2

2 )

4nΓ (n+ 3/2)Γ (p+ n+ b+2
2 )

. (2.9)
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Using the Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma func-
tions, by (λ)n = Γ (λ + n)/Γ (λ) = λ(λ + 1)...(λ + n − 1), we obtain for the function
up the following form

up(z) =
∑

n≥0

(−c/4)n

(3/2)n (κ)n
zn, (2.10)

where κ = p + (b + 2)/2 6= 0,−1,−2, .... This function is analytic in C, satisfies the
condition up(0) = 1 and satisfies also the differential equation

4z2u′′(z) + 2(2p+ b+ 3)zu′(z) + (cz + 2p+ b)u(z) = 2p+ b. (2.11)

The next proposition will be applied for the study of the univalence of the function
including up.

Proposition 2.1 If b, c, p ∈ C, κ = p + (b + 2)/2 6= 1, 0,−1,−2, ..., and z ∈ C, then
for the generalized Struve function of order p the following recursive relations hold:

(i) zwp−1(z) + czwp+1(z) = (2κ− 3)wp(z) + 2(z/2)p+1
√
πΓ (κ)

;

(ii) zw′p(z) + (p+ b− 1)wp(z) = zwp−1(z);

(iii) zw′p(z) + czwp+1(z) = pwp(z) + 2(z/2)p+1
√
πΓ (κ)

;

(iv) [z−pwp(z)]
′
= −cz−pwp+1(z) + 1

2p
√
πΓ (κ)

;

(v) up(z) + 2zu′p(z) + cz
2κup+1(z) = 1.

Proof. (i) If we compute the expression wp−1(z) + wp+1(z), then we have that

wp−1(z) + wp+1(z) =
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (p+ n+ b
2)

(z
2

)2n+p

+
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (p+ n+ b+2
2 + 1)

(z
2

)2n+p+2

=
1

Γ (3/2)Γ (κ− 1)

(z
2

)p

+
∑

n≥1

[
(−1)ncn

Γ (n+ 3/2)Γ (κ+ n− 1)
+

(−1)n−1cn−1

Γ (n+ 1/2)Γ (κ+ n)

](z
2

)2n+p

=
2κ− 3

z

[
2

Γ (3/2)Γ (κ− 1) (2κ− 3)

(z
2

)p+1

+
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (κ+ n)

(z
2

)2n+p



+
∑

n≥0

(−1)n+1cn(c− 1)

Γ (n+ 3/2)Γ (κ+ n+ 1)

(z
2

)2n+p+2
,

where κ = p+ (b+ 2)/2.
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Consequently, we obtain that

wp−1(z) + wp+1(z) =
2κ− 3

z

[
1

(2κ− 3)Γ (3/2)Γ (κ)

(z
2

)p+1
+ wp(z)

]

+ (1− c)wp+1(z)

which implies that zwp−1(z) + czwp+1(z) = (2κ − 3)wp(z) + 2(z/2)p+1
√
πΓ (κ)

holds, as we

required.
(ii) Analogously, if we compute the expression wp−1(z)− wp+1(z), then we have

wp−1(z)− wp+1(z) =
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (p+ n+ b
2)

(z
2

)2n+p

−
∑

n≥0

(−1)ncn

Γ (n+ 3/2)Γ (p+ n+ b+2
2 + 1)

(z
2

)2n+p+2

=
1

Γ (32)Γ (κ− 1)

(z
2

)p

+
∑

n≥1

[
(−1)ncn (κ+ n− 1) + (−1)n−1cn−1(n+ 1/2)

Γ (n+ 3/2)Γ (κ+ n)

](z
2

)2n+p

= w′p(z) +
(p+ b− 1)

z
wp(z)− wp+1(z)

and thus we obtain the second recursive relation.
(iii) Combining the recursive relations (i) and (ii), we get that

zw′p(z) + (p+ b− 1)wp(z) + czwp+1(z) = (2p+ b− 1)wp(z) +
2(z/2)p+1

√
πΓ (κ)

which implies that zw′p(z) + czwp+1(z) = pwp(z) + 2(z/2)p+1
√
πΓ (κ)

.

(iv) Using the third recursive relation we obtain

[
z−pwp(z)

]′
= z−2p

[
w′p(z)z

p − pzp−1wp(z)
]

= z−p−1
[
zw′p(z)− pwp(z)

]

= z−p−1
[
−czwp+1(z) +

2(z/2)p+1

√
πΓ (κ)

]

= −cz−pwp+1(z) +
1

2p
√
πΓ (κ)

.

(v) For convenience, we use part (iv). Since from definition and from part (iv)

we have wp(z) = zp+1

2p
√
πΓ (κ)

up(z
2) and [z−pwp(z)]

′
= −cz−pwp+1(z) + 1

2p
√
πΓ (κ)

, we

get [z−pwp(z)]′ = 1
2p
√
πΓ (κ)

[zup(z
2)]′. We have wp+1(z) = zp+2

2p+1
√
πΓ (κ+1)

up+1(z2), so
[
zup(z

2)
]′

= −cz2
2κ up+1(z2)+1. Consequently, we get up(z)+2zu′p(z) = −cz

2κ up+1(z)+1,
thus the proof is complete. ut
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The next result contains conditions for the function gp(z) = zup(z) to be univalent,
convex and starlike in the unit disk.

Theorem 2.2 If b, c, p ∈ R, κ = p+ (b+ 2)/2 then the functions up and gp satisfy the
following properties:

(i) If κ ≥ 5+
√
1+2c2

8 , then <{up(z)} > 0 for all z ∈ U ;

(ii) If κ > 7M+2+
√
M2+12M+4
24M |c| , where M is the solution of the equation cosM = M,

then <
{
g′p(z)

}
> 0 for all z ∈ U and hence gp(z) is univalent in U ;

(iii) If κ > 9+
√
17

24 |c| , then gp(z) is starlike in U ;

(iv) If κ > 13
12 |c| , then gp(z) is convex in U ;

(v) If κ > 1
3 |c| , then gp(z) is starlike for |z| < 1

2 ;

(vi) If κ > 7
12 |c| , then gp(z) is convex for |z| < 1

2 .

Proof. (i) Clearly when c = 0 we have up(z) ≡ 1, thus <{up(z)} > 0 for all z ∈ U .

Now suppose that κ ≥ 5+
√
1+2c2

8 and c 6= 0. Put h = up. Since h satisfies (2.11), we
have

4z2h′′(z) + 2(2p+ b+ 3)zh′(z) + (cz + 2p+ b)h(z)− 2p− b = 0. (2.12)

If we let ψ(r, s, t; z) = 4t + 2(2p + b + 3)s + (cz + 2p + b)r − 2p − b and E = {0} ,
then (2.12) can be written as ψ(h(z), zh′(z), z2h′′(z); z) ∈ E for all z ∈ U . Now we use
Lemma 1.1 to prove that <{up(z)} > 0, for all z ∈ U . If we put z = x + iy, where
x, y ∈ R, then <{ψ(ρi, σ, µ + vi;x + iy)} = 4(µ + σ) + 2(2κ − 1)σ − cρy − 2(κ − 1)
for all ρ, σ, µ, v ∈ R. Let ρ, σ, µ, v ∈ R satisfy µ + σ ≤ 0 and σ ≤ −(1 + ρ2)/2. Since
κ > 1/2, we have <{ψ(ρi, σ, µ + vi;x + iy)} ≤ −(2κ − 1)ρ2 − cρy − (4κ − 3). Set
Q(p) = −(2κ− 1)ρ2 − cρy − (4κ− 3). This value will be strictly negative for all real
ρ, because the discriminant ∆ of Q(p) satisfies ∆ = c2y2 − 4(2κ − 1)(4κ − 3) ≤ 0,
whenever y ∈ (−1, 1).Consequently ψ satisfies the admissibility condition of Lemma
1.1. Hence by Lemma 1.1 we conclude that <{h(z)} = <{up(z)} > 0, for all z ∈ U .

(ii) By using the well-known triangle inequality |z1 + z2| ≤ |z1| + |z2| and the in-
equalities

(
3
2

)
n
≥ 3

2n, (κ)n ≥ κn (n ∈ N) , we have

∣∣∣∣g′p(z)−
gp(z)

z

∣∣∣∣ =

∣∣∣∣∣∣
∑

n≥1

n(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≤
∑

n≥1

|−c/4|n
3
2κ

n
(2.13)

=
2

3

|c|
4κ

∑

n≥1

( |c|
4κ

)n−1
=

2 |c|
3(4κ− |c|) , (κ >

|c|
4

).

Furthermore, if we use reverse triangle inequality |z1 − z2| ≥ ||z1| − |z2|| and the
inequalities

(
3
2

)
n
≥
(
3
2

)n
, (κ)n ≥ κn (n ∈ N) , then we get

∣∣∣∣
gp(z)

z

∣∣∣∣ =

∣∣∣∣∣∣
1 +

∑

n≥1

(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≥ 1−

∑

n≥1

( |c|
6κ

)n
(2.14)

= 1− |c|
6κ

∑

n≥1

( |c|
6κ

)n−1
=

6κ− 2 |c|
6κ− |c| , (κ >

|c|
6

)
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which is positive. Next, by combining the inequalities (2.13) with (2.14), we immedi-
ately see that ∣∣∣∣

zg′p(z)

gp(z)
− 1

∣∣∣∣ ≤
|c| (6κ− |c|)

3(4κ− |c|)(3κ− |c|) . (2.15)

So, for κ > 7M+2+
√
M2+12M+4
24M |c| , we obtain

∣∣∣∣
zg′p(z)

gp(z)
− 1

∣∣∣∣ < M, (2.16)

where M is the solution of the equation cosM = M. From Theorem 1.4, we get
<
{
g′p(z)

}
> 0 for all z ∈ U .

(iii) Suppose that κ > 9+
√
17

24 |c|, from the inequality (2.15), we have

∣∣∣∣
zg′p(z)

gp(z)
− 1

∣∣∣∣ < 1 (2.17)

which shows gp(z) is starlike in U .

(iv) By using the well-known triangle inequality and the inequalities (32)n >
n(n+1)

2 ,
(κ)n ≥ κn (n ∈ N) , we arrive at the following

∣∣zg′′p(z)
∣∣ =

∣∣∣∣∣∣
∑

n≥1

n(n+ 1)(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≤ 2
|c|
4κ

∑

n≥1

( |c|
4κ

)n−1
(2.18)

=
2 |c|

4κ− |c| ,
(
κ >

|c|
4

)
.

Furthermore, if we use reverse triangle inequality and the inequalities
(
3
2

)
n
≥ 3(n+1)

4 ,
(κ)n ≥ κn (n ∈ N) , we have

∣∣g′p(z)
∣∣ =

∣∣∣∣∣∣
1 +

∑

n≥1

(n+ 1)(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≥ 1− 4

3

|c|
4κ

∑

n≥1

( |c|
4κ

)n−1
(2.19)

=
12κ− 7 |c|
3(4κ− |c|) ,

(
κ >

|c|
4

)

which is positive. Next, by combining the inequalities (2.18) with (2.19), we immedi-
ately deduce that ∣∣∣∣

zg′′p(z)

g′p(z)

∣∣∣∣ ≤
6 |c|

12κ− 7 |c| . (2.20)

So, for κ > 13
12 |c| we have ∣∣∣∣

zg′′p(z)

g′p(z)

∣∣∣∣ < 1. (2.21)

This shows gp(z) is convex in U .
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(v) Suppose that κ > 1
3 |c| , by using well-known triangle inequality and the inequal-

ities
(
3
2

)
n
≥
(
3
2

)n
, (κ)n ≥ κn (n ∈ N) , we get

∣∣∣∣
gp(z)

z
− 1

∣∣∣∣ =

∣∣∣∣∣∣
∑

n≥1

(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≤
∑

n≥1

( |c|
6κ

)n
(2.22)

=
|c|
6κ

∑

n≥1

( |c|
6κ

)n−1
=

|c|
6κ− |c| < 1.

So, from Theorem 1.5, gp(z) is starlike for |z| < 1
2 .

(vi) Suppose that κ > 7
12 |c| , by using well-known triangle inequality and the in-

equalities
(
3
2

)
n
≥ 3(n+1)

4 , (κ)n ≥ κn (n ∈ N) , we obtain

∣∣g′p(z)
∣∣ =

∣∣∣∣∣∣
∑

n≥1

(n+ 1)(−c/4)n

(3/2)n (κ)n
zn

∣∣∣∣∣∣
≤ 4

3

|c|
4κ

∑

n≥1

( |c|
4κ

)n−1
(2.23)

=
4 |c|

3(4κ− |c|) < 1.

So, from Theorem 1.6, gp(z) is convex for |z| < 1
2 . ut

Struve functions. Choosing b = c = 1, we obtain the differential equation (2.1) and
the Struve function of order p, defined by (2.2) satisfies this equation. In particular,
the results of Theorem 2.2 become:

Corollary 2.3 Let Hp : U −→ C be defined by

Hp(z) = 2p
√
πΓ

(
p+

3

2

)
z−p−1Hp(z).

Then the following assertions are true:

(i) If p ≥ −7+
√
3

8 , then <
[
Hp
(
z1/2

)]
> 0 for all z ∈ U ;

(ii) If p > −29M+
√
M2+12M+4
24M , where M is the solution of the equation cosM = M, then

<
[
zHp

(
z1/2

)]′
> 0, for all z ∈ U and hence Hp

(
z1/2

)
is univalent in U ;

(iii) If p > −27+
√
17

24 , then zHp
(
z1/2

)
is starlike in U ;

(iv) If p > − 5
12 , then zHp

(
z1/2

)
is convex in U ;

(v) If p > −7
6 , then zHp

(
z1/2

)
is starlike for |z| < 1

2 ;

(vi) If p > −11
12 , then zHp

(
z1/2

)
is convex for |z| < 1

2 .

Modified Struve functions. Choosing b = 1, c = −1, we obtain the differential
equation (2.3) and the modified Struve function of order p, defined by (2.4). For
the function Lp : U −→ C be defined by Lp(z) = 2p

√
πΓ
(
p+ 3

2

)
z−p−1Lp(z), the

properties are same like for function Hp, because we have |c| = 1. More precisely, we
have the following results.
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Corollary 2.4 The following assertions are true:

(i) If p ≥ −7+
√
3

8 , then <
[
Lp
(
z1/2

)]
> 0 for all z ∈ U ;

(ii) If p > −29M+
√
M2+12M+4
24M , where M is the solution of the equation cosM = M, then

<
[
zLp

(
z1/2

)]′
> 0 for all z ∈ U and hence Lp

(
z1/2

)
is univalent in U ;

(iii) If p > −27+
√
17

24 , then zLp
(
z1/2

)
is starlike in U ;

(iv) If p > − 5
12 , then zLp

(
z1/2

)
is convex in U ;

(v) If p > −7
6 , then zLp

(
z1/2

)
is starlike for |z| < 1

2 ;

(vi) If p > −11
12 , then zLp

(
z1/2

)
is convex for |z| < 1

2 .

Example 2.1 For p = −1
2 >

−7+
√
3

8 , we obtain

H−1/2
(
z1/2

)
= 2−1/2

√
πz−1/4H−1/2(z1/2) =

sin
√
z√

z
.

From part (i) of Corollary 2.3, we have <
[
H−1/2

(
z1/2

)]
= <

[
sin
√
z√

z

]
> 0.

3 Convexity and starlikeness of order αof the generalized Struve functions

The following results contain conditions for the functions up, gp and wp to be convex
and starlike of order α in the unit disk.

Theorem 3.1 If b, c, p ∈ R, κ = p+ (b+ 2)/2 and α ∈ [0, 2−
√

2) then up satisfy the
following property:

If κ ≥ 3α2−10α+5+(1−α)
√

(1−α)2+c2(α2−4α+2)

4(α2−4α+2) , then <{up(z)} > α, for all z ∈ U .

Proof. First suppose that c = 0 we have up(z) ≡ 1, thus <{up(z)} > α for all z ∈ U .

Now suppose that κ ≥ 3α2−10α+5+(1−α)
√

(1−α)2+c2(α2−4α+2)

4(α2−4α+2) and c 6= 0. Define the

function h : U −→ C by h(z) = up(z)−α
1−α . Since up satisfies (2.11), h will satisfy the

following differential equation:

4z2h′′(z) + 2(2p+ b+ 3)zh′(z)

+ (cz + 2p+ b)

(
h(z) +

α

1− α

)
−
(

2p+ b

1− α

)
= 0. (3.1)

If we use ψ(r, s, t; z) = 4t+2(2p+b+3)s+(cz+2p+b)(r+ α
1−α)−(2p+b1−α ) and E ={0}, we

see that equation (3.1) implies ψ(h(z), zh′(z), z2h′′(z); z) ∈ E for all z ∈ U . Now we use
Lemma 1.1 to prove that <{up(z)} > 0 for all z ∈ U . If we put z = x+iy, where x, y ∈
R, then <{ψ(ρi, σ, µ+vi;x+iy)} = 4(µ+σ)+2(2κ−1)σ−cρy+(cx+2κ−2) α

1−α−
2(κ−1)
1−α ,

for all ρ, σ, µ, v ∈ R. Let ρ, σ, µ, v ∈ R satisfy µ + σ ≤ 0 and σ ≤ −(1 + ρ2)/2. Since
κ > 1/2, we have <{ψ(ρi, σ, µ+ vi;x+ iy)} ≤ −(2κ−1)ρ2−cρy−(2κ−1)+(cx+2κ−
2) α

1−α −
2(κ−1)
1−α . Set Q1(p) = −(2κ− 1)ρ2− cρy− (2κ− 1) + (cx+ 2κ− 2) α

1−α −
2(κ−1)
1−α .
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This value will be strictly negative for all real ρ, because the discriminant ∆1 of Q1(p)
satisfies

∆1 = c2y2 + 4(2κ− 1)

(
−(2κ− 1) + (cx+ 2κ− 2)

α

1− α −
2(κ− 1)

1− α

)

< c2(1− x2)− 4(2κ− 1)2 + 4(2κ− 1)(cx+ 2κ− 2)
α

1− α
− 8(2κ− 1)(κ− 1)

1− α =: Q1(x) ≤ 0,

whenever x2 + y2 < 1 and the discriminant ∆2 of Q2(x) is negative satisfies ∆2 has

the form ∆2 = 4c2[4(2κ − 1)2 α2

(1−α)2 − 4(2κ − 1)(4κ − 3) + c2] and this is negative if

and only if we have κ ≥ 3α2−10α+5+(1−α)
√

(1−α)2+c2(α2−4α+2)

4(α2−4α+2) . Hence by Lemma 1.1

we conclude that <{h(z)} = <[ 1
1−α(up(z) − α)] > 0, for all z ∈ U , and this implies

that <{up(z)} > α for all z ∈ U , as we required. ut
Remark 3.1 If we choose α = 0 in Theorem 3.1 then we get part (i) of Theorem 2.2.

Theorem 3.2 If b, c, p ∈ R, κ = p+ (b+ 2)/2 and α ∈ [0, 1) then gp and wp have the
following properties:

(i) If κ > 9−α+
√
α2−14α+7

24(1−α) |c| then gp(z) ∈ S∗(α);

(ii) If κ > 13−7α
12(1−α) |c| then gp(z) ∈ C(α);

(iii) If κ > 9−α+
√
α2−14α+7

24(1−α) |c| and α 6= 0, then z → z(1−2α−p)/[2α]wp(z1/[2α]) is starlike

in U .

Proof. (i) Assume that κ > 13−7α
12(1−α) |c| . Then from the inequality (2.15), we get

∣∣∣∣
zg′p(z)

gp(z)
− 1

∣∣∣∣ ≤
|c| (6κ− |c|)

3(4κ− |c|)(3κ− |c|) < 1− α. (3.2)

This shows that gp(z) ∈ S∗(α).
(ii) If κ > 13−7α

12(1−α) |c| then from the inequality (2.20), we have

∣∣∣∣
zg′′p(z)

g′p(z)

∣∣∣∣ ≤
6 |c|

12κ− 7 |c| < 1− α. (3.3)

This shows gp(z) ∈ C(α).

(iii) Define the function hp : U → C by hp(z) = z(1−2α−p)/[2α]wp
(
z1/[2α]

)
. Since

hp(z) = 1
2p
√
πΓ (κ)

z(1−α)/αup
(
z1/α

)
, it follows that

zh′p(z)

hp(z)
=

1

α

[
z1/αg′p(z

1/α)

gp(z1/α)
− α

]
.

Finally, because gp is starlike of order α, we deduce that hp is starlike in U . ut
Remark 3.2 If we choose α = 0 in parts (i) and (ii) of Theorem 3.2 then we get
parts (iii) and (iv) of Theorem 2.2, respectively.
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4 Close-to-convexity of the generalized Struve functions

Motivated by the paper of Baricz [2], we discuss in this section a few conditions
concerning the parameters of up, which guarantee the close-to-convexity with respect
to the convex functions f1, f2 : U −→ C, defined by f1(z) := − log(1 − z) and
f2(z) := 1

2 log 1+z
1−z .

Theorem 4.1 If b, c, p ∈ R, κ = p + (b + 2)/2 and α ∈ [0, 1) then the function gp
satisfy the following property:

If κ > α+9
4(1−α) |c| then gp(z) ∈ K(1+α2 ) and <

{
g′p(z)

}
> 1+α

2 , for all z ∈ U .

Proof. If κ > α+9
4(1−α) |c| then from the inequality (2.18), and Theorem 1.7, we have

|zg′′p(z)| = 2|c|
4κ−|c| <

1−α
4 , (z ∈ U ; 0 ≤ α < 1). So <

{
g′p(z)

}
> 1+α

2 . This shows that

gp(z) ∈ K(1+α2 ). ut

Theorem 4.2 If c < 0 and b, p ∈ R, then the following assertions are true:

(i) If κ ≥ −c/3 then gp(z) is close-to-convex with respect to the function f1 and hence
univalent in U .

(ii) If κ ≥ −c/2 then z −→ zup(z
2) is close-to-convex with respect to the function f2

and hence univalent in U .

Proof. (i) From (2.10) we have gp(z) = zup(z) = z+b1z
2+b2z

3+...+bn−1zn+..., where
bn is defined by (2.9). Clearly we have bn−1 > 0 for all n ≥ 2 and 2b1 = −c/ (3κ) ≤ 1.
From the definition of the ascending factorial notation we observe that (we use the
formula (κ)n = (κ+ n− 1) (κ)n−1)

bn = − c

2(2n+ 1) (κ+ n− 1)
bn−1.

We use Lemma 1.2 to prove that gp(z) is close-to-convex with respect to the function
f1(z) = − log(1 − z). Therefore, we need to show that {nbn−1}n≥1 is a decreasing
sequence. By a short computation we obtain

nbn−1 − (n+ 1)bn = bn−1

[
n+

c(n+ 1)

2(2n+ 1) (κ+ n− 1)

]

=
bn−1U1(n)

2(2n+ 1) (κ+ n− 1)
,

where U1(n) = 4n3 + 2(2κ − 1)n2 + (2κ− 2 + c)n + c. Using the inequalities n3 ≥
3n2 − 3n+ 1 and n2 ≥ 2n− 1, we get U1(n) ≥ (4κ+ 10)n2 + (2κ− 14 + c)n+ c+ 4 ≥
(10κ + 6 + c)n − 4κ + c − 6 ≥ U1(1) = 6κ + 2c ≥ 0 because 4κ + 10 > 0 and
10κ+ 6 + c > 0 by the assumptions. This implies that nbn−1 − (n+ 1)bn ≥ 0, for all
n ≥ 1, thus {nbn−1}n≥1 is a decreasing sequence. By Lemma 1.2 it follows that gp(z)

is close-to-convex with respect to the convex function − log(1− z).
(ii) We have zup(z

2) = z+ b1z
3 + b2z

5 + ...+ bn−1z2n−1 + ..., where bn is defined by
(2.9). Therefore we have 3b1 = −c/ (2κ) ≤ 1 and bn−1 > 0 for all n ≥ 2. We want to
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show that {(2n− 1)bn−1}n≥2 is a decreasing sequence. Fix n ≥ 2. Then we have

(2n− 1)bn−1 − (2n+ 1)bn = bn−1

[
2n− 1 +

c(2n+ 1)

2(2n+ 1) (κ+ n− 1)

]

=
bn−1U2(n)

2(2n+ 1) (κ+ n− 1)
,

where U2(n) = 8n3 + 8(κ − 1)n2 + 2 (c− 1)n − 2(κ − 1) + c. Using the inequalities
n3 ≥ 3n2−3n+1 and n2 ≥ 2n−1, we obtain U2(n) ≥ 8(κ+2)n2 +2 (c− 13)n−2(κ−
5) + c ≥ 2(8κ+ c+ 13)n− 2(5κ+ 3) + c ≥ 3(2κ+ c) ≥ 0. Hence {(2n− 1)bn−1}n≥2 is
a decreasing sequence. By applying Lemma 1.2 we get the desired conclusion. ut
Remark 4.1 Observe that choosing c = −1 and b = 1 in Theorem 4.2 we obtain the
following sufficient conditions of close-to-convexity:

(i) If p ≥ −7/6 then zLp
(
z1/2

)
is close-to-convex with respect to the function f1.

(ii) If p ≥ −1 then zLp (z) is close-to-convex with respect to the function f2.

Let f ∈ A. The Alexander transform A[f ] : U −→ C of f is defined by A[f ](z) =∫ z
0
f(t)
t dt = z +

∑
n≥2

an

n z
n. The following theorem contains some properties of the

Alexander transform of the function gp(z).

Theorem 4.3 Let b, p ∈ R and c < 91−
√
11353
8 ≈ −1. 9438. If κ ≥

−(20c+29)+
√
160c2−3640c−6839
120 , then the function A[gp] is close-to-convex with respect to

the function − log(1−z) and it is starlike in U . Moreover, we have that <{up(z)} > 1/2
holds for all z ∈ U .

Proof. From (2.10) we have

gp(z) = zup(z) = z +
∑

n≥2
bn−1zn = z +

∑

n≥2

(−c/4)n−1

(3/2)n−1 (κ)n−1
zn.

So, the Alexander transform of the function gp(z) takes the form

A[gp](z) =
∑

n≥1
Anz

n, where An =
bn−1
n

=
(−c/4)n−1

n (3/2)n−1 (κ)n−1
, for all n ≥ 1.

Obviously we have A1 = 1. Because c is negative and κ ≥ λ(c) ≥ −c/6 > 0, we also
have An > 0 for all n ≥ 2, where

λ(c) :=
−(20c+ 29) +

√
160c2 − 3640c− 6839

120
. (4.1)

Next we prove that the sequence {nAn}n≥1 is decreasing. Fix any n ≥ 1. From the
definiton of the Pochhammer symbol it follows

(n+ 1)An+1 = − cn

2(2n+ 1) (κ+ n− 1)
An. (4.2)
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Using (4.2) we have

nAn − (n+ 1)An+1 =
nU1(n)

2(2n+ 1) (κ+ n− 1)
An, (4.3)

where U1(n) = 4n2 + 2(2κ − 1)n + 2κ + c − 2. Since n2 ≥ 2n − 1 and 6κ > −c, we
have U1(n) ≥ (4κ+ 6)n+ 2κ− 6 + c ≥ U1(1) = 6κ+ c > 0. Consequently, (4.3) yields
nAn > (n+ 1)An+1. This shows that the sequence {nAn}n≥1 is strictly decreasing.

Next, we show that the sequence {nAn − (n+ 1)An+1}n≥1 is also decreasing. For

convenience we denote Bn = nAn− (n+ 1)An+1 for each n ≥ 1. Fix any n ≥ 1. Using
(4.3), we find that

Bn −Bn+1 =
nU2(n)An

4(2n+ 1)(2n+ 3) (κ+ n) (κ+ n− 1)
,

where U2(n) = 16n4 + (κ+ 16)n3 +D1n
2 +D2n+D3,

D1 = 16κ2 + 48κ+ 8c− 20, D2 = 32κ2 + 8κc− 8κ+ 12c− 12,

D3 = 12κ2 + 12κc− 12κ+ c2 + 32.

Our aim is to show that U2(n) > 0. First we observe that the inequality n4 ≥ 4n3 −
6n2 + 4n− 1 holds. By using this inequality we obtain U2(n) ≥ V (n), where V (n) =
(κ+ 80)n3 + (D1− 96)n2 + (D2 + 64)n+D3− 16. Clearly, the coefficient of n3 in the
above expression is nonnegative, since κ > 0. Therefore using that n3 ≥ 3n2− 3n+ 1,
we obtain V (n) ≥W (n), where

W (n) = D4n
2 +D5n+D6,

D4 = 16κ2 + 51κ+ 8c+ 124, D5 = 32κ2 + 8κc− 11κ+ 12c− 188,

D6 = 12κ2 + 12κc− 11κ+ c2 + 96.

Now, we observe that D4 is also nonnegative, because

κ ≥ λ(c) >
[
−51 +

√
−5335− 512c

]
/32,

where the value
[
−51 +

√
−5335− 512c

]
/32 is the greatest root of the equation D4 =

0. Similarly n2 ≥ 2n − 1, therefore W (n) ≥ X(n), where X(n) = D7n + D8, D7 =
2D4 + D5 and D8 = D6 −D4. Analogously, by the hypothesis, we can deduce easily
that D7 = 64κ2 + (91 + 8c)κ+ 28c+ 60. Indeed, the relation

κ ≥ λ(c) >
[−(8c+ 91) +

√
64c2 − 5712c− 7079]

128
=: κc

(here κc is the greatest root of the equation D7 = 0) implies that D7 is nonnegative,
and leads to X(n) ≥ X(1). In this case X(1) = D4 +D5 +D6 = 60κ2 + (20c+ 29)κ+
c2 + 20c + 32 is also positive, because κ ≥ λ(c) > 0. Thus, we proved a chain of
inequalities U2(n) ≥ V (n) ≥W (n) ≥ X(n) ≥ X(1) > 0, which implies Bn−Bn+1 > 0.
Hence the sequence {nAn − (n+ 1)An+1}n≥1 is strictly decreasing. By Lemma 1.3 we

deduce that A[gp] is starlike in U .
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The sequence {nAn}n≥1 is strictly decreasing and 2A2 = b1 = −c/ (6κ) < 1. Thus

it follows by Lemma 1.2 that A[gp] is close-to-convex with respect to the function
− log(1− z). Now, we apply Lemma 1.3 to prove that <{up(z)} > 1/2 for all z ∈ U .
For this consider g = up. Therefore we have Cn = bn−1 = nAn for all n ≥ 1 and thus,
the sequence {Cn}n≥1 is strictly decreasing. In addition we have Cn−2Cn+1+Cn+2 =
Bn − Bn+1 > 0 for all n ≥ 1. Hence, Lemma 1.3 yields the asserted property, which
completes the proof. ut

Corollary 4.4 If b, p ∈ R and c < 91−
√
11353
8 ≈ −1. 9438 such that κ ≥ λ(c)− 1 then

the function

fp(z) =

∫ z

0

1− up(t)− 2tu′p(t)

t
dt (4.4)

is univalent in U , where λ(c) is given in (4.1).

Proof. By the proof of Theorem 4.3 the Alexander transform
∫ z

0

up+1(t)dt

is close-to-convex with respect to the function− log(1−z) if κ ≥ λ(c)−1, and therefore,
in particular, it is univalent. Using part (v) of Proposition 2.1, we have

∫ z

0

up+1(t)dt =
2κ

c

∫ z

0

1− up(t)− 2tu′p(t)

t
dt =

2κ

c
fp(z).

Consequently the function 2κ
c fp(z) is univalent in U . Since the addition of a con-

stant and the multiplication by a nonzero quantity do not disturb the univalence, we
immediately deduce that fp is univalent in U . This completes the proof. ut
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