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Cooperative effects in spherical spasers: Ab initio analytical model

V. G. Bordo*

NanoSyd, Mads Clausen Institute, Syddansk Universitet, Alsion 2, DK-6400 Sønderborg, Denmark
(Received 13 March 2017; published 8 June 2017)

A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules
embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke
effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large
number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio
account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics.
The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance
and surface plasmon generation.
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I. INTRODUCTION

Recent progress in nanotechnology has led to the possibility
to manipulate optical fields at the nanoscale. Strongly localized
electromagnetic oscillations can be excited at metal surfaces
and metal-dielectric interfaces, thus allowing shaping them
by fabricating appropriate metallic nanostructures [1,2]. Such
excitations, known as surface plasmon polaritons (SPPs),
concentrate the power of the incident radiation into a small
volume, thus providing an electromagnetic field intensity
enhancement. This feature has been exploited in plenty of di-
verse applications in ultrasensitive sensing [3], subwavelength
imaging [4], and ultrahigh-energy concentration [5], among
other things.

A metal nanostructure can serve as an electromagnetic
cavity which selects and amplifies certain electromagnetic
modes. If such a cavity contains an optically active medium
(i.e., a medium with population inversion), one can realize
a nanoscale counterpart of the laser. This principle has re-
ceived the name “surface plasmon amplification by stimulated
emission of radiation” (spaser) [6]. The resonator of a spaser
can be a metal nanoparticle whose size is much less than the
wavelength of the generated electromagnetic field [7]. The
active (gain) medium may be represented by semiconductor
nanocrystals, dye molecules, rare-earth ions, or electron-hole
excitations of a bulk semiconductor [7]. If at least one of the
dimensions of the resonator is significantly longer than the
wavelength, it is called a plasmon (or plasmonic) laser [8].
Such a device is outside the scope of our discussion.

Up to now, there has been only one claim of spaser
experimental demonstration realized in gold nanoparticles
(NPs) covered by silica shells which contained a large number
(∼2.7 × 103) of dye molecules [9]. The authors supported their
observations with the model in which the gain is introduced as
a negative contribution to the imaginary part of the refractive
index of the silica shell. This approach implicitly assumes,
however, that the polarization of the active molecules is
determined by a predefined local electromagnetic field and
the back action of the shell boundaries on the molecules can
be neglected.

*bordo@mci.sdu.dk

This experiment stimulated significant interest in theoreti-
cal modeling of core-shell spasers, both analytical [10–19] and
numerical [23,24]. The analytical approach suggests different
models which take into account the multiple-level structure
of the active molecules, their saturation, the nonlocal optical
response of the metallic core, and the retardation effect.
Despite their diversity, all such models exploit the same
unjustified simplification concerning the local field which was
used in the original paper [9]. It is worthwhile to note, however,
that the analysis carried out in Ref. [15] led to the conclusion
that the results of Ref. [9] are more likely related to random
lasing in a group of nanoparticles, rather than to spasing in
single nanoparticles.

Careful modeling is critical to substantiating spaser
claims [20] that demand a first-principles theory of the spaser
operation. The dynamics of a nanoscale laser requires, in par-
ticular, consideration of the cavity-quantum-electrodynamical
effects [21]. Besides the Purcell effect which expresses the
modification of the relaxation rate in a cavity [22], one has
to take into account the back-action of the electromagnetic
field reflected from the cavity walls. These effects emerge
naturally if one finds the polarization of the active molecules
self-consistently assuming that the local field depends on the
polarization itself.

The numerical approaches [23,24] have in their foundation
such rigorous equations of the metal-core-active-shell dynam-
ics. However, to reduce the computational challenges one
is forced to implement the numerical calculations either for
simplified structures or for simplified boundary conditions.
In particular, the spaser operation was simulated for 1000
dye molecules oriented perpendicular to the NP surface [23],
which does not reproduce the experimental conditions [9].
In Ref. [24] the boundary conditions for the electromagnetic
field were imposed for a passive cavity which does not contain
active molecules. In such an approach the feedback for the
polarization of molecules provided by the reflective boundaries
is missing. The authors obtained, however, a discrepancy with
the experimental observations [9] in the threshold condition.

Besides the semiclassical theories discussed above one
should mention also fully quantum numerical calcula-
tions [25–27]. These works investigate spaser generation
in terms of the quantum correlation functions. Based on a
numerically exact solution, the authors of Ref. [26] concluded
that the claims of the spaser realization in Ref. [9] are probably
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incorrect. However, their calculations were implemented for
a maximum of 30 quantum emitters, which is much smaller
than the number utilized in the experiment.

Another aspect which is closely related to the spaser opera-
tion and is inherent in the spaser structure is the subwavelength
confinement of the ensemble of active molecules. Such an
ensemble emits coherent radiation cooperatively as a whole,
which is referred to as the Dicke effect or superradiance
[28–31]. The corresponding emission rate scales with the
number of molecules. A similar effect takes place for a molec-
ular ensemble located near a metal nanoparticle where the
coupling between molecules is mediated by SPPs excited at the
NP surface (the plasmonic Dicke effect or plasmon-mediated
superradiance) [32,33]. This problem being formulated in
the first-principles approach faces the same computational
challenges as those mentioned above. Namely, the numerical
calculations were implemented for a maximum of 100 emitter
dipoles oriented perpendicular to the NP surface. One should
also mention in this context a study [34] in which the superradi-
ance of a large number of atoms near a metal NP is considered.
The model exploited by the authors assumes, however, that all
emitters are located on the surface of the NP shell.

Summarizing the above discussion, one can conclude that
an approach to the spaser dynamics which, on the one hand,
is developed from first principles and, on the other hand,
is numerically feasible for a very large number of emitters
for a wide range of parameters matching the experimental
conditions is lacking in the literature. As a result, up to
now a rigorous and clear answer to the question of whether
the spasing conditions could be realized in the experiment
(Ref. [9]) could not be given.

In the present paper, we bridge this gap in the semiclassical
theory of spherical core-shell spasers. For this purpose, we
exploit the approach developed by Prasad and Glauber [30,31]
for the description of coherent radiation from a resonant
medium which works especially well when the number density
of active molecules is large. Namely, we replace the discrete
structure of the medium by a continuous distribution of
polarization, which is referred to as polarium.

This paper is organized as follows. In Sec. II we develop the
theoretical formalism. First, we derive the electric field created
by a single dipole in a core-shell structure and use this result to
obtain the expression for the local field in the polarium. Then
we write down the optical Bloch equations for the polarium. In
Secs. III and IV we exploit them to investigate the plasmonic
Dicke effect and the spaser operation, respectively, for one of
the spaser designs. In Sec. V we introduce the modifications
which correspond to the other spaser design. Section VI
contains some numerical results and a brief discussion. In
Sec. VII we formulate the main conclusions of the paper.

II. THEORETICAL FORMALISM

We consider an ensemble of N identical molecules in the
vicinity of a metal surface interacting with the electromagnetic
field and assume that the field frequency ω is close to the
molecule transition frequency ω0. The phenomenon discussed
below has a rather general character; however, to be specific
we consider two geometries of the system suggested in the

FIG. 1. Different designs of a core-shell spaser. (a) A metal core is
surrounded by a dielectric shell doped with active molecules shown
by red circles (design I). (b) A dielectric core doped with active
molecules is surrounded by a metal shell (design II).

literature [7,35], one of which matches the experimentally
realized configuration [9].

Namely, in the first design [design I; see Fig. 1(a)] we
assume that a metal sphere of radius a is surrounded by a
dielectric spherical shell of the outer radius b, which contains
randomly oriented and randomly distributed molecules and
which in turn is embedded in an infinite dielectric medium. The
dielectric permittivities of the three media are ε1(ω), ε2, and
ε3, respectively. In the second design [design II; see Fig. 1(b)]
we assume that a dielectric sphere of radius a is doped by
active molecules and is surrounded by a metallic shell of the
outer radius b embedded in an infinite dielectric medium. The
dielectric permittivities of the three media are ε1, ε2(ω), and
ε3, respectively.

Restricting ourselves to the case where a,b � λ =
2πc/ω0, with c being the speed of light in vacuum, we describe
the electromagnetic fields in the framework of the quasistatic
approximation, i.e., in terms of an electrostatic potential φ

which obeys the Laplace equation. In this limit SPP excitations
are reduced to surface plasmons which represent collective
oscillations of conduction electrons localized near a metal
surface. First, we derive the theory for design I, and then
we consider the modifications which should be introduced for
design II.

A. Dipole field

As a preliminary problem we consider the electrostatic
potential in the system with a single molecular dipole p
located at point x′ with spherical coordinates r ′, θ ′, and ϕ′. The
potential at the observation point x = (r,θ,ϕ) can be expanded
in terms of the spherical harmonics Ylm(θ,ϕ) as follows [36]:

φ(1)(x) =
∑
lm

a
(1)
lm rlYlm(θ,ϕ), (1)

φ(2)(x) = 1

ε2

∑
lm

1

2l + 1
p · ∇′

[
rl
<

rl+1
>

Y ∗
lm(θ ′,ϕ′)

]
Ylm(θ,ϕ)

+
∑
lm

a
(2)
lm rlYlm(θ,ϕ) +

∑
lm

b
(2)
lm

1

rl+1
Ylm(θ,ϕ), (2)

φ(3)(x) =
∑
lm

b
(3)
lm

1

rl+1
Ylm(θ,ϕ). (3)
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Here the potentials φ(i) refer to the regions with the dielectric
permittivity εi, r< = min(r,r ′), r> = max(r,r ′), and the prime
above the nabla operator implies that it acts on the primed vari-
ables. The coefficients a

(i)
lm and b

(i)
lm depend on the position of

the dipole x′ and are determined from the boundary conditions

φ(1)(r = a) = φ(2)(r = a), (4)

ε1

(
∂φ(1)

∂r

)
r=a

= ε2

(
∂φ(2)

∂r

)
r=a

, (5)

φ(2)(r = b) = φ(3)(r = b), (6)

ε2

(
∂φ(2)

∂r

)
r=b

= ε3

(
∂φ(3)

∂r

)
r=b

. (7)

In particular, coefficients a
(2)
lm and b

(2)
lm are found as

a
(2)
lm (x′) = p · Flm(x′), (8)

b
(2)
lm (x′) = p · Glm(x′), (9)

where

Flm(x) ≡ α1lg∗
lm(x) + α2lf∗

lm(x), (10)

Glm(x) ≡ β1lg∗
lm(x) + β2lf∗

lm(x), (11)

with

flm(x) ≡ ∇[rlYlm(θ,ϕ)], (12)

glm(x) ≡ ∇
[
Ylm(θ,ϕ)

rl+1

]
, (13)

and the constants α1l , α2l , β1l , and β2l are given in Appendix A.
The first term on the right-hand side of Eq. (2) is the potential
of the point dipole p in an unbounded medium, whereas the
other two terms represent the influence of the spherical layer
boundaries.

B. Polarium model

Let us turn now to the case where N identical molecules
are uniformly distributed within the spherical shell volume
V . We follow the approach by Prasad and Glauber [30,31],
who described such an ensemble as a continuous medium
(polarium) characterized by its polarization P(x). Then the
electric field amplitude in the spherical shell interior, which
originates from the molecular dipoles, is found as

E(2)(x) = −∇
∫

V

φ(2)(x,x′)dx′

= EP (x) −
∑
lm

flm(x)
∫

V

P(x′) · Flm(x′)dx′

−
∑
lm

glm(x)
∫

V

P(x′) · Glm(x′)dx′. (14)

The field EP in Eq. (14) originates from the molecular dipole
potentials which stem from the first term on the right-hand
side of Eq. (2). Assuming that the number of molecules N

is large, it can be found, to a good approximation, as the

polarization contribution to the Lorentz local field, i.e., in
Gaussian units [37]

EP (x) = 4π

3ε2
P(x), (15)

where we have taken into account the dielectric permittivity
of the host material.

Then the local field in the shell can be represented as

E = E0 + E(2) = E0 + EP + Es = EL + Es , (16)

where E0 is the average macroscopic field in the polarium, Es

is the contribution of the last two terms on the right-hand side
of Eq. (14), which describe the influence of the spherical shell
surfaces, and EL is the well-known Lorentz local field [37].

The local field, Eq. (16), contains contributions from all
multipole modes specified by the integers {lm}, which are
determined by the coefficients α1l , α2l , β1l , and β2l , Eq. (A1).
These coefficients have resonances when their common
denominator

Dl(ω) ≡ [lε1(ω) + (l + 1)ε2][lε2 + (l + 1)ε3]

+ l(l + 1)[ε2 − ε1(ω)](ε3 − ε2)
(a

b

)2l+1
(17)

is close to zero. In what follows, we consider the case where
the molecular transition frequency ω0 falls into the frequency
band of the dipole surface plasmon mode (l = 1) which gives
the dominant contribution to the field.

C. Optical Bloch equations

We shall model the molecules in the polarium by two-level
systems with the ground state | 1〉, excited state | 2〉, transition
frequency ω0, and transition dipole moment μ12. We assume
that the transition | 2〉 →| 1〉 is characterized by the transverse
relaxation rate γ⊥, which is dominated by the nonradiative
phase relaxation and determines the transition homogeneous
linewidth, and the transition dipole moments of molecules are
randomly oriented. Let us note that the models adopted in
Refs. [30–33] imply that γ⊥ ≡ 0.

Let us assume now that the system is excited by an
electromagnetic field of frequency ω which is close to ω0.
It can be decomposed into the negative and positive frequency
parts as

E(t) = E(−)(t)eiωt + E(+)(t)e−iωt , (18)

E(−)(t) = [E(+)(t)]∗, (19)

where the amplitudes E(±)(t) vary in time much slower than
exp(±iωt). The polarium polarization has a similar form,

P(t) = P(−)(t)eiωt + P(+)(t)e−iωt , (20)

P(−)(t) = [P(+)(t)]∗, (21)

where the negative and positive frequency parts satisfy the
optical Bloch equations [38]

∂P(+)(t)

∂t
= −(γ⊥ − i)P(+)(t)

− i

3h̄
|μ12|2D(t)E(+)(t), (22)
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∂D(t)

∂t
= −γ‖[D(t) − D0]

+ 2i

h̄
[P(−)(t)E(+)(t) − P(+)(t)E(−)(t)]. (23)

Here  = ω − ω0 is the resonance detuning, γ‖ is the
longitudinal relaxation rate of the transition |2〉 → |1〉 which
takes into account the Purcell effect [22], D = ρ(n2 − n1),
with ρ = N/V being the number density of molecules and n1

and n2 being the populations of the ground and excited states,
respectively, and D0 is the equilibrium value of D. The factor
1/3 in front of |μ12|2 in Eq. (22) originates from averaging
over the orientations of molecules.

In the case of a weak electromagnetic field the population
difference density D does not differ significantly from its
equilibrium value, and Eq. (22) is uncoupled from Eq. (23),
taking the form

∂P(+)(t)

∂t
+ (γ⊥ − i)P(+)(t) = − i

3h̄
|μ12|2D0E(+)(t).

(24)

III. PLASMONIC DICKE EFFECT

Let us consider the system in the absence of the external
macroscopic field (E0 = 0) and assume that there is some
initial polarization of the polarium created, for example, by a
short laser pulse. Then the evolution of the system is described
by the equation

∂P(+)(t)

∂t
+ (γ⊥ − i′)P(+)(t) = i

3h̄
ρ|μ12|2E(+)

s (t),

(25)

with the initial condition P(+)(0) = P(+)
0 , where we have

assumed that the population of the excited state is negligible.
Here we have taken into account that the local field oscillates
at the frequency of the molecular transition ω0. We have also
moved the term proportional to EP to the left-hand side and
introduced the renormalized transition frequency [30]

ω′
0 = ω0 − 4π

9h̄ε2
ρ|μ12|2 (26)

and renormalized resonance detuning

′ = ω0 − ω′
0 = 4π

9h̄ε2
ρ|μ12|2. (27)

Equation (25) can be analyzed by applying the Laplace
transform

P̃(+)(x,s) =
∫ ∞

0
P(+)(x,t)e−st dt, (28)

with s = σ + i� being the complex variable. It is then reduced
to the integral equation

P̃(+)(x,s) + χ ′(s)
∫

V

K̄(x,x′)P̃(+)(x′,s)dx′ = P(+)
0 (x)

s + γ⊥ − i′ ,

(29)

where the kernel dyadic K̄(x,x′) has a degenerate form [39],

K̄(x,x′) = f10(x)F10(x′) + g10(x)G10(x′) (30)

and

χ ′(s) = iκ

s + γ⊥ − i′ , (31)

where

κ = 1

3h̄
ρ|μ12|2 (32)

is the Laplace transform of the linear susceptibility of the
polarium. We have assumed here that the initial polarization
is created by a spatially uniform field linearly polarized along
the z axis so that a nonzero contribution originates only from
m = 0.

Taking a scalar product of Eq. (29) from the left with either
F10(x) or G10(x) and integrating it over the volume V , one
obtains two linear algebraic equations, which can be compactly
written in the vector form

�P(s) + χ ′(s)M̂ �P(s) =
�P0

s + γ⊥ − i′ , (33)

where the components of the vectors �P and �P0 are given by

P1(s) =
∫

V

F10(x) · P̃(+)(x,s)dx, (34)

P2(s) =
∫

V

G10(x) · P̃(+)(x,s)dx, (35)

P0,1 =
∫

V

F10(x) · P(+)
0 (x)dx, (36)

P0,2 =
∫

V

G10(x) · P(+)
0 (x)dx (37)

and the matrix elements of the matrix M̂ are given by

M11 =
∫

V

F10(x) · f10(x)dx, (38)

M12 =
∫

V

F10(x) · g10(x)dx, (39)

M21 =
∫

V

G10(x) · f10(x)dx, (40)

M22 =
∫

V

G10(x) · g10(x)dx. (41)

The solution of Eq. (33) is found as

�P(s) = 1

iκ
[M̂ − λ′(s)Î ]−1 �P0, (42)

with

λ′(s) = − 1

χ ′(s)
(43)

and Î being a unit 2 × 2 matrix, or, in an explicit form,(
P1(s)
P2(s)

)
= 1

iκD′(s)

(
M22 − λ′(s) −M12

−M21 M11 − λ′(s)

)(
P0,1

P0,2

)
,

(44)

with

D′(s) = [λ′(s) − λ1][λ′(s) − λ2] (45)

being the determinant of the matrix M̂ − λ′(s)Î and λj =
λ′

j + iλ′′
j (j = 1,2) being the eigenvalues of the matrix M̂ .
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Finally, the solution of Eq. (29) can be expressed in terms
of P1(s) and P2(s) as follows:

P̃(+)(x,s) = P(+)
0 (x)

s + γ⊥ − i′

−χ ′(s)[P1(s)f10(x) + P2(s)g10(x)]. (46)

The function P̃(+)(s), Eq. (46), has three poles:

s0 = −γ⊥ + i′, (47)

s1 = −γ⊥ − iκλ1 + i′, (48)

s2 = −γ⊥ − iκλ2 + i′. (49)

Let us note that the quantities κλj ∼ ρ(b3 − a3) ∼ N ; that
is, they represent a cooperative effect of all N molecules.
These terms describe an N -fold enhancement of the relaxation
rate due to the plasmonic Dicke effect [32,33] provided that
λ′′

j < 0. This effect is essential only if κ|λ′′
j | � γ⊥. Otherwise,

the coherence between the molecules decays faster than their
cooperative emission is established. In the limit γ⊥ → 0 the
mode associated with the pole s0 can be identified as a
subradiant mode [32,33], while the character of the other two
modes depends on the magnitude of κλ′′

j .
The time evolution of the positive frequency part of the

polarium polarization is found as

P(+)(x,t) = P(+)
0 (x)es0t +

2∑
j=0

Qj (x)esj t , (50)

with

Qj (x) = −σj {[(M22 − λj )P0,1 − M12P0,2]f10(x)

+ [−M21P0,1 + (M11 − λj )P0,2]g10(x)}, (51)

where

σ0 = 1

λ1λ2
, (52)

σ1 = 1

λ1(λ1 − λ2)
, (53)

σ2 = 1

λ2(λ2 − λ1)
, (54)

and λ0 = λ′(s0) = 0.
The polarization (50) determines the evolution of the local

electromagnetic field, Eq. (16). Its positive frequency part,
which originates from the spherical layer boundaries, is found
explicitly as follows:

E(+)
s (x,t) =

√
4π

3

P
(+)
0

λ2 − λ1

×{−λ1[(λ2 − M11)f10(x) − M21g10(x)]es1t

+ λ2[(λ1 − M11)f10(x) − M21g10(x)]es2t },
(55)

where we have assumed that the initial polarization is uniform
and is directed along the z axis: P(+)

0 (x) = P
(+)
0 ez, with ez

being a unit vector along the z axis. The initial value of this

field can be written in the form

E(+)
s (x,0) = −

√
3

4π
P

(+)
0 V [α21(ω0)f10(x) + β21(ω0)g10(x)],

(56)

where V = (4π/3)(b3 − a3) is the volume of the spherical
layer. Its amplitude is proportional to the initial dipole moment
of the polarium P

(+)
0 V and hence to the total number of

molecules N . Accordingly, the intensity of the local field scales
as N2, which signifies a coherent local-field enhancement.

IV. SPASER GENERATION

The structure under consideration can generate electromag-
netic field when a population inversion is created in the active
molecules by an external optical pumping. To determine the
criterion for the field generation in the system, we follow
an approach which is conventional in laser theory [38,40].
Namely, we assume that, initially, there is no local field at the
frequency ω0 (E = 0), and we investigate the conditions under
which the system is unstable with respect to a small increment
in the average macroscopic field δE0.

Taking a uniform field linearly polarized along the z

axis, one can write the dominant (dipole) contribution to the
positive-frequency part of the local field as follows:

δE(+)(x,t) = δE(+)
0 + E(+)

P (x,t) −
∫

V

K̄(x,x′)P(+)(x′,t)dx′,

(57)

where the kernel K̄(x,x′) is given by Eq. (30) and we have
taken into account the axial symmetry of the problem. The
polarization P(+)(x,t) satisfies in its turn Eq. (24), in which
the right-hand side contains δE(+)(x,t) and the equilibrium
value of the population inversion density D0 is determined by
the optical pumping.

Taking the Laplace transform of both Eqs. (57) and (24),
one comes to the integral equation for the Laplace-transformed
quantity δẼ(+)(x,s),[

1 + 4π

3ε2
w0χ0(s)

]
δẼ(+)(x,s)

−w0χ0(s)
∫

V

K̄(x,x′)δẼ(+)(x′,s)dx′ = δE(+)
0

s
, (58)

where w0 = n0
2 − n0

1 is the equilibrium value of the population
difference and

χ0(s) = iκ

s + γ⊥
. (59)

Equation (58) is reduced to the vector equation

δ �E(s) + μ(s)M̂δ �E(s) = (s + γ⊥)δ �E0

s(s + γ⊥ − ĩ)
, (60)

where

δE1(s) =
∫

V

F10(x) · δẼ(+)(x,s)dx, (61)

δE2(s) =
∫

V

G10(x) · δẼ(+)(x,s)dx, (62)

δE0,1 =
∫

V

F10(x) · δE(+)
0 dx, (63)

235412-5



V. G. BORDO PHYSICAL REVIEW B 95, 235412 (2017)

δE0,2 =
∫

V

G10(x) · δE(+)
0 dx, (64)

μ(s) = − w0χ0(s)

1 + (4π/3ε2)w0χ0(s)
, (65)

and

̃ = − 4π

9h̄ε2
D0|μ12|2 (66)

is the renormalized frequency detuning.
Similar to Eq. (33), the evolution of the solution of Eq. (60)

is determined by, besides the poles s = 0 and s = −γ⊥ + ĩ,
the zeros of the determinant of the matrix M̂ − λ(s)Î with

λ(s) = − 1

μ(s)
. (67)

These zeros can be explicitly written as (j = 1,2)

s̃j = −γ⊥ + iw0κλj + ĩ, (68)

where λj = λ′
j + iλ′′

j are the eigenvalues of the matrix M̂ .
The two poles given by Eq. (68) correspond to two

modes of the local-field evolution E(+)(t) ∼ exp(s̃j t). Their
imaginary parts specify the frequency-pulling effect for the
mode frequency,

ωj = ω0 − 1

3h̄
D0|μ12|

(
λ′

j − 4π

3ε2

)
. (69)

The evolution of the local-field amplitude is determined by the
quantities Re(s̃j ) = −γ⊥ − w0κλ′′

j . If λ′′
j < 0 and w0 > 0 (i.e.,

a population inversion takes place), the terms −w0κλ′′
j describe

a cooperative amplification of the local field. If, besides that,

−w0κλ′′
j = − 1

3h̄
D0|μ12|2λ′′

j > γ⊥, (70)

such a pole corresponds to an exponential increase in the local
field with time, i.e., to the generation of the dipole surface
plasmon mode. In such a case Eq. (70) represents a threshold
condition for generation (spasing) imposed on the population
inversion density D0. A comparison of criterion (70) with
Eqs. (48) and (49) reveals that spasing in the system is possible
only if the plasmonic superradiance in such a system prevails
over the phase relaxation.

Some important conclusions follow from the above analyt-
ical theory. (i) The eigenvalues λj , and hence the threshold
condition (70), depend only on the ratio a/b, rather than on
the absolute values of a and b. This property suggests a scaling
law for the threshold criterion. (ii) If a � b � λ, then λ′′

1 ≈ 0
and λ′′

2 < 0. In such a case only one mode can be spasing. (iii)
If a ∼ b � λ and Im(ε1) � |Re(ε1)|, which takes place in the
infrared spectral range, then λ′′

1,2 ≈ 0, and the spasing effect is
impossible.

V. SPASER IN DESIGN II

In design II, the molecules are located within a spherical
region. For a single molecular dipole p the potential at
the observation point is expanded in terms of the spherical

harmonics as follows:

φ(1)(x) = 1

ε1

∑
lm

1

2l + 1
p · ∇′

[
rl
<

rl+1
>

Y ∗
lm(θ ′,ϕ′)

]
Ylm(θ,ϕ)

+
∑
lm

a
(1)
lm rlYlm(θ,ϕ), (71)

φ(2)(x) =
∑
lm

a
(2)
lm rlYlm(θ,ϕ) +

∑
lm

b
(2)
lm

1

rl+1
Ylm(θ,ϕ),

(72)

φ(3)(x) =
∑
lm

b
(3)
lm

1

rl+1
Ylm(θ,ϕ), (73)

where the coefficients a
(i)
lm and b

(i)
lm are determined from the

boundary conditions (4)–(7). In particular, a
(1)
lm is found as

a
(1)
lm (x) = δlp · flm(x), (74)

where the coefficient δl is given in Appendix A.
Correspondingly, for an ensemble of dipoles distributed

within the spherical core the electric field is found as

E(1)(x) = −∇
∫

V

φ(1)(x,x′)dx′

= EP (x) −
∑
lm

δlflm(x)
∫

V

P(x′) · f∗
lm(x′)dx′, (75)

where EP is defined by Eq. (15) with ε2 being replaced by ε1

and V = (4/3)πa3 is the core volume.
When considering the plasmonic Dicke effect, one obtains

an integral equation for the Laplace transform of the polarium
polarization which formally coincides with Eq. (29) but in
which the kernel is defined as

K̄(x,x′) = δ1f10(x)f10(x′). (76)

Accordingly, instead of the vector equation (33), one comes to
a scalar equation

[1 + Mχ̄ (s)]P(s) = P0

s + γ⊥ − ī
, (77)

with

P(s) =
∫

V

f10(x) · P̃(+)(x,s)dx, (78)

P0 =
∫

V

f10(x) · P(+)
0 (x)dx, (79)

and

M = δ1

∫
V

|f10(x)|2dx = δ1a
3. (80)

Let us note that the quantity M depends on the ratio a/b rather
than on the absolute values of a and b.

The evolution of the polarization is determined by, besides
the pole s = −γ⊥ + ī, the pole

s3 = −γ⊥ − iκM + ī, (81)

which provides a zero value for the left-hand side of Eq. (77).
Here the term −iκM is proportional to the number of
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FIG. 2. Contour plots of λ′′
2 in the vicinity of the resonance between the molecule transition (λ = 2πc/ω0) and the dipole surface plasmon

mode (l = 1). (a) Gold core. (b) Silver core.

molecules N , and its real part describes the plasmonic Dicke
effect in design II.

The local field inside the core is uniform and is directed
along the z axis. The temporal evolution of its part related to
the core-shell boundary corresponds to the plasmonic Dicke
effect and is given by

E(+)
s (x,t) = −P

(+)
0 a3δ1(ω0)es3tez. (82)

Turning to the spaser generation in design II, one should
replace the matrix M̂ in Eq. (60) by the quantity M.
Correspondingly, the quantities λ′ and λ′′ in Eqs. (69) and (70)
should be replaced by ReM and ImM, respectively.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Design I

We illustrate the above theory by the calculations beginning
with the spaser parameters which correspond to the experiment
(Ref. [9]). Taking a = 7 nm, b = 22 nm, and N = 2.7 × 103,
one obtains ρ = 6.3 × 1019 cm−3. Assuming the same typical
values of parameters for active molecules as in Ref. [23],
h̄γ⊥ = 0.05 eV (γ⊥ = 1.2 × 1013 s−1) and |μ12| = 4 D, one
finds κ = 3.3 × 1011 s−1 and κ/γ⊥ = 2.8 × 10−2.

Both the Dicke effect and the spaser dynamics in design I
are determined by the eigenvalues of the matrix M̂, λ1 and λ2,
which depend on the wavelength of the local field λ and the
ratio b/a. For one of them |λ′′

1| ∼ 10−7–10−6 in the considered
range of parameters. This gives κ|λ′′

1|/γ⊥ ∼ 10−9–10−8 and
κ|λ′′

1| ∼ 104–105 s−1, and thus this mode can be identified as
subradiant.

The contour plots of λ′′
2 in the parameter plane λ − b/a are

shown in Fig. 2 for both Au and Ag cores. The corresponding

mode is superradiant. In this case κ|λ′′
2|/γ⊥ ∼ 10−3–10−2

for the given parameters, which means that the cooperative
emission is insignificant. The comparison of Figs. 2(a) and 2(b)
reveals that the cooperative effect is more essential in a
nanoparticle with a silver core. In the vicinity of the resonance
with the dipole surface plasmon mode its contribution in-
creases with the ratio b/a. The role of the cooperative emission
can be enhanced if either a more heavily doped shell with
ρ � 1021 cm−3 is used or the nanoparticles are cooled down
to a cryogenic temperature that considerably reduces γ⊥ [41].

The same parameters determine the possibility of the dipole
surface plasmon generation in a core-shell spaser. The minimal

FIG. 3. The local-field intensity for a gold core at r = b and θ = 0
as a function of the dimensionless time γ⊥t for different ratios κ/γ⊥.
Here λ = 525 nm, b/a = 3.14.
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FIG. 4. The same as in Fig. 3, but for a silver core and λ =
397 nm.

requirements for spasing are found if one takes w0 = 1,
implying that all molecules are in the excited state. Then
the generation can occur if κ|λ′′

2|/γ⊥ > 1 [see Eq. (70)].
However, for the experimental conditions realized in Ref. [9]
(b/a ≈ 3.14), |λ′′

2| < 0.8 and κ|λ′′
2|/γ⊥ < 2.3 × 10−2, which

is far below the threshold.
Figures 3 and 4 show the time evolution of the local-field

intensity in the shell calculated using Eq. (55). This quantity
can be measured, for example, in surface-enhanced Raman
scattering of molecules adsorbed on the shell surface [42].
The character of this evolution depends on the ratio κ/γ⊥. For
a gold core this dependence is slight, which reflects the small

magnitude of κ|λ′′
j | in comparison with γ⊥. However, for a

silver core the evolution is distinct for each value of κ/γ⊥,
which is explained by larger values of |λ′′

2| (see Fig. 2) and
a larger contribution of the quantity κ|λ′′

2| to the relaxation
rate. In particular, for κ/γ⊥ = 10 the decay curve clearly
demonstrates a rapid drop which originates from plasmonic
superradiance.

B. Design II

The cooperative effects in design II are determined by the
quantity M, Eq. (80). Its imaginary part, which dictates the
threshold condition for spasing, is plotted in Fig. 5 for both
Au and Ag shells. A comparison of Figs. 2 and 5 reveals that
the threshold does not differ significantly for the two designs;
however, in the latter case its dependence on the ratio a/b is
more pronounced.

VII. CONCLUSION

In this paper, we have developed a first-principles theory
of cooperative optical effects in a core-shell nanoparticle. We
have considered two designs of such a structure in which the
core (shell) is metallic and the shell (core) is doped with a
large number of two-level quantum emitters. We assumed that
the transition frequency of the emitters is close to the dipole
surface plasmon frequency of the metallic core (shell). Taking
advantage of the small size of the nanoparticle in comparison
with the wavelength of the emitted radiation, we have reduced
the problem under consideration to a quasistatic one.

We have described the polarization of a large number of
emitters by a continuous distribution of polarization (polarium)
and derived an integral equation for it. Being an integral

FIG. 5. Contour plots of ImM in the vicinity of the resonance between the molecule transition (λ = 2πc/ω0) and the dipole plasmon mode
(l = 1). (a) Gold shell. (b) Silver shell.
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equation with a degenerate kernel, it is reduced to a set of
two algebraic equations which has been solved analytically.

We have shown that the plasmonic superradiance and
spasing are intimately related to each other. Not depending
on the specific optical process under consideration, the field
evolution is determined by the eigenvalues of the matrix M̂ ,
Eqs. (38)–(41), for design I and by the quantity M, Eq. (80),
for design II. These quantities are determined by the ratio
of the two radii of the core-shell nanoparticle rather than by
their absolute values, which suggests a scaling law for similar
nanoparticles.

The analytical theory gives also simple and physically
transparent criteria for the significance of the plasmonic
Dicke effect and for the spasing threshold condition. In
particular, we have shown that surface plasmon generation in a
single nanoparticle for the parameters used in the experiment
(Ref. [9]) is impossible. The theory reveals that spasing in the
system is possible only if the plasmonic superradiance in such
a system prevails over the phase relaxation. Such a situation is
displayed as a rapid drop in the local-field-intensity evolution
(see Fig. 4), which can be observed in surface-enhanced Raman
scattering.

Although the discussion in this paper is limited to the
plasmonic Dicke effect and spaser generation, the other optical
processes in core-shell nanoparticles can be investigated on the
same grounds. For example, surface-enhanced Raman scatter-
ing at Raman active molecules adsorbed on the nanoparticle
surface can be described by assuming that there is an external
electromagnetic field oscillating at the frequency close to the
transition frequency in quantum emitters.

APPENDIX A: COEFFICIENTS α1l, α2l, β1l, β2l , AND δl

The coefficients α1l , α2l , β1l , and β2l are found from the set
of four algebraic equations which follow from the boundary
conditions. They can be represented in a compact form as
follows:

α1l(ω) = β2l(ω) = 1

(2l + 1)ε2
αl(ω)βlγl(ω),

α2l(ω) = − 1

(2l + 1)ε2
βlγl(ω),

β1l(ω) = − 1

(2l + 1)ε2
αl(ω)γl(ω), (A1)

where

αl(ω) = l[ε1(ω) − ε2]a2l+1

lε1(ω) + (l + 1)ε2
(A2)

is the l-pole polarizability of a spherical nanoparticle embed-
ded in an infinite medium with the dielectric function ε2,

βl = l + 1

b2l+1

ε3 − ε2

lε2 + (l + 1)ε3
, (A3)

and

γl(ω) = 1

1 − αl(ω)βl

. (A4)

The coefficient δl which enters Eq. (74) is defined as follows:

δl(ω) = l + 1

l(2l + 1)ε1

αl(ω)γl(ω)

a2(2l+1)

×
[

1 − l

l + 1

(l + 1)ε1 + lε2(ω)

ε1 − ε2(ω)
βl(ω)a2l+1

]
.

(A5)

APPENDIX B: MATRIX ELEMENTS Mi j

The matrix elements Mij are found as follows:

M11 = α11N12 + α21N11, (B1)

M12 = α11N22 + α21N21, (B2)

M21 = β11N12 + β21N11, (B3)

M22 = β11N22 + β21N21, (B4)

where

N11 ≡
∫

V

|f10(x)|2dx, (B5)

N12 ≡
∫

V

f10(x) · g∗
10(x)dx, (B6)

N21 ≡
∫

V

g10(x) · f∗
10(x)dx, (B7)

N22 ≡
∫

V

|g10(x)|2dx. (B8)

To calculate the matrix elements Nij we use the representation
of the nabla operator in the spherical coordinates. Namely, for
two arbitrary axially symmetric functions p(r,θ ) and q(r,θ ),
one has

∇p · ∇q = ∂p

∂r

∂q

∂r
+ 1

r2

∂p

∂θ

∂q

∂θ
, (B9)

whereas the volume element is given by

dx = r2 sin θdrdθdϕ. (B10)

Then, taking into account that Y10(θ ) = √
3/4π cos θ , one

obtains

N11 =
∫

V

∇[rY10(θ )] · ∇[rY ∗
10(θ )]dx

=
∫ 2π

0

∫ π

0

∫ b

a

[
Y 2

10(θ ) +
(

∂Y10(θ )

∂θ

)2
]
r2 sin θdrdθdϕ

= b3 − a3, (B11)

N22 =
∫

V

∇
[
Y10(θ )

r2

]
· ∇

[
Y ∗

10(θ )

r2

]
dx

=
∫ 2π

0

∫ π

0

∫ b

a

[(
2

r3

)2

Y 2
10(θ )

+ 1

r6

(
∂Y10(θ )

∂θ

)2
]
r2 sin θdrdθdϕ = 2

(
1

a3
− 1

b3

)
,

(B12)
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N12 = N∗
21 =

∫
V

∇[rY10(θ )] · ∇
[
Y ∗

10(θ )

r2

]
dx

=
∫ 2π

0

∫ π

0

∫ b

a

[
− 2

r3
Y 2

10(θ )

+ 1

r3

(
∂Y10(θ )

∂θ

)2
]
r2 sin θdrdθdϕ = 0.

(B13)

Finally, one finds

M11 = α21(b3 − a3), (B14)

M12 = 2α11

(
1

a3
− 1

b3

)
, (B15)

M21 = β21(b3 − a3), (B16)

M22 = 2β11

(
1

a3
− 1

b3

)
. (B17)
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