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Abstract
We monitored land-cover change in San Diego County
(1990–1996) using multitemporal Landsat TM data. Change
vectors of Kauth Thomas features were combined with sta-
ble multitemporal Kauth Thomas features and a suite of
ancillary variables within a classification tree classifier. A
combination of aerial photointerpretation and field mea-
surements yielded training and validation data. Maps of
land-cover change were generated for three hierarchical
levels of change classification of increasing detail: change
vs. no-change; four classes representing broad increase
and decrease classes; and nine classes distinguishing in-
creases or decreases in tree canopy cover, shrub cover, and
urban change. The multitemporal Kauth Thomas (both sta-
ble and change features representing brightness, greenness,
and wetness) provided information for magnitude and di-
rection of land-cover change. Overall accuracies of the
land-cover change maps were high (72 to 92 percent). An-
cillary variables representing elevation, fire history, and
slope were most significant in mapping the most compli-
cated level of land-cover change, contributing 15 percent
to overall accuracy. Classification trees have not previ-
ously been used operationally with remotely sensed and
ancillary data to map land-cover change at this level of
thematic detail.

Introduction
Growing concern over the status of global and regional for-
est resources has led to the implementation of numerous
multi-agency projects to establish long term operational
systems for land-cover monitoring (Levien et al., 1999;
Hansen et al., 2000). Land-cover change (i.e., location, ex-
tent, and cause) is identified as the most important and

challenging research theme for many of the programs re-
cently initiated by monitoring agencies (Gutman, 2002; Mu-
choney and Strahler, 2002). A key element in successfully
addressing this theme is the involvement of regional man-
agement authorities (e.g., U.S. Geological Survey and U.S.
Forest Service) to provide the necessary link between
local/municipal and national/international land-cover mon-
itoring projects (Loveland and Shaw, 1996; Ahern et al.,
1998). Increasingly, these projects are using complex map-
ping procedures that require the integration of remotely
sensed data, state-of-the-art image processing approaches,
ancillary spatial data, and georeferenced field validation
data within a geographic information system (Gao, 2002).

To address the growing threat to forest and shrubland
sustainability caused by rapid and widespread land-cover
change in California, the U.S. Forest Service and the Califor-
nia Department of Forestry and Fire Protection are collabo-
rating in the statewide Land Cover Mapping and Monitoring
Program (LCMMP) to improve the quality and capability of
monitoring data, and to minimize costs for statewide land-
cover monitoring (Levien et al., 2002). Changes in forest,
shrub, and grassland cover types are the primary focus in
this program, but changes in urban/suburban areas are also
mapped. These change maps are required for regional inter-
agency land-management planning, fire and timber manage-
ment, and species habitat assessment, and for updating ex-
isting land-cover maps (Levien et al., 1999).

The LCMMP requires an examination and comparison of
the variety of remote sensing methods available, such as
scene normalization, change feature extraction, classifica-
tion, and accuracy assessment, in order to meet operational
and standardization needs (Rogan et al., 2001). Faced with
this task, the monitoring program welcomed a research al-
liance with San Diego State University as a way to improve
and automate change-monitoring procedures. Specifically,
this involved testing techniques that minimize time-
consuming human interpretation and maximize automated
procedures for large-area retrospective monitoring of land-
cover change. Thus, a classification tree approach was cho-
sen for this task, given promising results derived from two
previous studies conducted by the research team (Levien et al.,
1999; Rogan et al., 2002a). These studies demonstrated the
potential of classification tree algorithms to map land-
cover change, in two relatively small study sites, based on
acceptable change-map accuracy and interpretability of
tree-structured classification rules. Therefore, the purpose
of this paper is to use the large-area context of the LCMMP
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as a case study to examine the application of classification
trees to multitemporal Landsat TM and ancillary data in-
puts in order to map three increasingly detailed thematic
levels of land-cover change in southern California.

Remote Sensing of Land-Cover Change
Land-cover change results in alterations (increase or de-
crease) in the abundance, composition, and condition of
remote sensing scene elements over various spatial and
temporal scales (Stow et al., 1990; Stow, 1995). To ade-
quately assess these alterations, two specific techniques are
used: post-classification comparison and pre-classification
enhancement (Abuelgasim et al., 1999). Post-classification
comparison examines changes over time between suites of
independently characterized thematic land-cover cate-
gories (e.g., forest, grassland, agriculture), advantageous
when using different sensors, with different spatial and
spectral resolutions, between image dates (Singh, 1989).
Further, post-classification comparison permits the use of
data with inter-date phenological differences and provides
information on the types of land-cover transformations that
have occurred (i.e., what it was and what it became). How-
ever, this approach has significant limitations because the
comparison of classifications for different dates does not
allow the detection of subtle, low-magnitude modifications
within land-cover categories (Stow et al., 1980). For exam-
ple, a low intensity wildfire, or an onset of pest infestation
may alter the condition and/or composition of a forest
type, but not its overall abundance, thus preventing identi-
fication of temporal changes within land-cover change cat-
egories. Further, the propagation of error through post-
classification comparison approaches has been documented
(Stow et al., 1980; Macleod and Congalton, 1998).

Land-cover modifications in condition and composition
of vegetative cover are important aspects of change that need
to be considered in current research (Skole and Tucker,
1993; Radeloff et al., 2000). Indeed, land-cover modifications
are currently considered more prevalent than land-cover
type conversions (Lambin, 1998). Pre-classification enhance-
ment approaches to land-cover change involve enhancing al-
terations in the concentration of some landscape attribute
that can be continuously measured (e.g., spectral vegetation
index) (Coppin et al., 2001). Various methods have been de-
veloped to compare multitemporal signatures and are re-
viewed in Singh (1989) and Jensen (1996). Pre-classification
enhancement may allow the detection of subtle changes in
vegetative abundance, composition, and condition, depend-
ing on the task and spatial scale of the project. A pre-classifi-
cation enhancement, therefore, appears more suitable than
post-classification comparison for land-cover monitoring
programs that require detailed regional estimates of forest-
cover change and the associated causes of that change.

A standard overall accuracy for land-cover mapping
studies has been set between 85 percent (Anderson et al.,
1976) and 90 percent (Lins and Kleckner, 1996). However,
no standard currently exists for change-monitoring studies.
A review of the change-detection literature, where map ac-
curacy was reported (35 articles) revealed that the mean
number of classes resolved in change-monitoring studies is
seven. The mean overall map accuracy of these studies is
approximately 76 percent. In light of these findings, we set
a target overall accuracy goal of 80 percent for our land-
cover change maps.

Use of Ancillary Data in Remote Sensing Studies
Traditional methods of change detection and identification
have typically relied on image-derived variables, but evi-
dence from unitemporal land-cover mapping studies indi-
cates that including non-spectral variables may help to im-

prove discrimination between land-cover change categories
(Rogan et al., 2002b). Digital ancillary (non-remote sens-
ing) data sets are incorporated into multivariate classifica-
tion of remotely sensed data because spectral-radiometric
data cannot always discriminate land-cover classes in their
entirety (Franklin, 1995). Therefore, ancillary data have
been included in classifications to improve discrimination
of classes of interest, which typically results in higher
overall map accuracies (5 to 10 percent overall) than those
produced using spectral-radiometric data alone (Trietz and
Howarth, 2000). Ancillary data are incorporated in land-
cover mapping in three ways: (1) pre-classification image
stratification (Hutchinson, 1982; Vogelmann et al., 1998),
(2) post-classification image stratification (Hutchinson,
1982), and (3) direct inclusion in the classification process
(Strahler et al., 1981; Ricchetti, 2000). Typically, the use of
ancillary data is dependent on the classification technique
used (Brown et al., 1993). Classification tree algorithms,
used in this study, permit the direct inclusion of ancillary
variables in land-cover change classification, which has
not, to our knowledge, been attempted in previous change-
detection studies.

Given the added data volume and increased complex-
ity of the classification measurement space when non-
spectral variables are included, researchers have employed
non-parametric machine-learning classifiers, including
classification trees (Lawrence and Wright, 2001) and artifi-
cial neural networks (Liu et al., 2001). Machine learning is
a branch of artificial intelligence that investigates how ma-
chines can be trained to recognize patterns from a given
set of training examples (Malerba et al., 2001). Machine
learning classifiers have been used effectively in a variety
of unitemporal land-cover mapping studies (Friedl and
Brodley, 1997; Huang and Jensen, 1997; Friedl et al., 1999;
Borak et al., 2000; DeFries and Chan, 2000). In almost all
cases, these classifiers have proven superior to conven-
tional classifiers (e.g., maximum likelihood), often record-
ing overall accuracy improvements of 10 to 20 percent.

The success of machine learning classifiers in resolving
land-cover and land-cover change classes from often com-
plex measurement spaces can be attributed to several fac-
tors: (1) due to their non-parametric natures, they deal
well with multi-modal, noisy, and missing data; (2) they
can readily accommodate both categorical and continuous
ancillary data; (3) they allow users to investigate the rela-
tive importance of input layers in contribution to classifi-
cation accuracy; and (4) they are flexible and can be
adapted to improve performance for particular problems.

Classification trees are a particular type of machine
learning algorithm, which reveal information on the classi-
fication structure (DeFries and Chan, 2000). The classifica-
tion tree approach is appealing because of the advantages
mentioned above, but can have notable drawbacks. For ex-
ample, tree models are adversely affected by outliers,
which can cause very different tree results when they are
included (Breiman et al., 1984; Miller and Franklin, 2002).
Other limitations are discussed later in the section on
Classification and Evaluation. Machine learning classifiers
have only recently been applied to land-cover change stud-
ies (Gopal and Woodcock, 1996; Roberts et al., 1998;
Levien et al., 1999; Abuelgasim et al., 1999: Rogan et al.,
2002a). We applied a classification tree approach to map
land cover changes in this study.

Methods
Study Area
Western San Diego County was chosen as the study area
(Figure 1). Desert areas were excluded from this analysis,

02-087.qxd  6/6/03  4:54 PM  Page 794



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING Ju l y  2003 795

Figure 1. Maps of study area location, San Diego County, southern California. General-
ized land-cover/land-use classes are portrayed on a shaded relief map.

because we were only interested in the area encompassed
by California Coastal Chaparral Forest Shrub and Califor-
nia Coastal Range Open Woodland-Shrub-Coniferous For-
est-Meadow Provinces (Stephenson and Calcarone, 1999).
The study area is composed of a variety of land-cover
types, including shrub-grassland (60 percent), conifer and
hardwood forest (12 percent), agriculture (6 percent), and
urban (18 percent). The area is currently undergoing accel-
erated and extensive land-cover change due to natural and
anthropogenic disturbance. These spatially and temporally
diverse disturbances result in land-cover changes ranging
from dramatic (e.g., wildfire burn scars, land development)
to very subtle (e.g., conifer pest infestation, post-fire regen-
eration).

Wildfire is the most prevalent ecological disturbance
agent in the region (Stephenson and Calcarone, 1999). In-
deed, in the last decade, more than 2700 fires burned at
least 1100 km2 (Rogan et al., 2002b). Post-fire regeneration
in shrub/grassland areas has also been a frequent cause of
land-cover change (Riano et al., 2002). Pest infestation is an-
other, though less dramatic, disturbance agent. The fir en-
graver (Scolytus ventralis) was a factor in low level mortal-
ity on approximately 80 hectares of white fir (Abies
concolor) in the mid-1990s. Outbreaks of fir engraver typi-
cally occur following periods of tree stress due to drought,
as was the case in San Diego County at the time investigated
in this study (Ferrell and Otrosina, 1996). Furthermore, non-
metropolitan expansion of human settlements has increased
dramatically in the last decade due to regional suburbaniza-
tion, causing extensive alteration in land cover (e.g., grad-
ing, road and building construction) (Scott and Soja, 1998).

Satellite and Ancillary Data
Two Landsat TM 5 images acquired on 24 June 1990 and
08 June 1996 were geometrically registered to the UTM WGS84
projection with 41 ground control points (GCPs) at major
road intersections. GCPs dispersed throughout the entire
scene yielded less than a 0.45-pixel root-mean-square
error. A nearest-neighbor algorithm was used to resample
the images to a 30-m output grid. The two images were
normalized for atmospherical illumination differences in-
dependently and converted to reflectance values using a
dark-object subtraction approach described by Chavez
(1989). Recent change-detection studies have found this
method adequate for correction of atmospheric effects
(Pax-Lenney et al., 2001; Song et al., 2001).

The Landsat TM Multitemporal Kauth Thomas (MKT)
linear transformation was selected to spectrally enhance the
radiometrically corrected data prior to classification. The
MKT produces six features of interest: three features that
represent change in brightness, change in greenness, and
change in wetness, and three features that represent mean
or stable brightness, greenness, and wetness, between image
dates (Collins and Woodcock, 1996). The MKT approach is
similar to multitemporal principal components analysis
(PCA) in that major components are termed stable compo-
nents and minor components are termed change compo-
nents. However, recent studies have demonstrated the supe-
riority of the MKT over multitemporal PCA (Rogan and Yool,
2001) due to the biophysically based features produced by
the MKT versus the scene-dependent components derived by
PCA. To date, few studies have examined the utility of stable
MKT features in a change-detection study (Seto et al., 2002).
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TABLE 1. REMOTE SENSING/ANCILLARY DATA VARIABLES USED AS INPUT TO

CLASSIFICATION (30-METER RESOLUTION)

Variable Data Data 
Variable Name Range Units

� Brightness MKT1 0–255 Rescaled 
reflectance

� Greenness MKT2 0–255 Rescaled 
reflectance

� Wetness MKT3 0–255 Rescaled 
reflectance

Stable MKT4 0–255 Rescaled 
Brightness reflectance

Stable MKT5 0–255 Rescaled 
Greenness reflectance

Stable MKT6 0–255 Rescaled 
Wetness reflectance

Elevation Elevation 0–1991 Meters
Slope Slope 0–66 Degrees
Aspect Aspect 0–360 Degrees
Fire History Fire 0–1 (0 � no fire; Binary

1 � fire);
Existing Land Vegetation Nine classes: Categorical

Cover shrub, hardwood, 
conifer, mixed, 
urban, herbaceous, 
barren, water, 
agriculture

TABLE 2. HIERARCHICAL LAND-COVER CHANGE CLASSIFICATION SCHEME USED

IN THIS STUDY

Level 1 Level 2 Level 3

No change �15% canopy 
No Change (nochange) change (1)

Change Decrease �71 to �100% canopy change (2)
in vegetation �41 to �70% canopy change (3)
(decrease) �16 to 40% canopy change (4)

Shrub/grass decrease � 15% (5)

Increase �16 to �40% canopy change (6)
in vegetation �41 to 100% canopy change (7)
(increase) Shrub/grass increase � 15% (8)

Change in Change in developed areas (9)
developed area
(changedev)

Furthermore, Rogan et al. (2002a) compared the easily im-
plemented MKT to the more complex process of multitempo-
ral spectral mixture analysis and found that both were sta-
tistically comparable in emphasizing changes in forest and
shrub cover in southern California.

Ancillary data layers were chosen based on our knowl-
edge of land-cover changes in California (Rogan et al.,
2002b). We hypothesize that elevation is useful in discrim-
inating land-cover change classes that occur in lowland
coastal areas versus forested mountain ranges (e.g., urban
change in coastal cities versus wildfire in montane forest).
Slope is useful in reducing the effects of terrain shadowing
on satellite imagery covering steep montane areas. Aspect
is useful in identifying areas susceptible to severe wildfires
(e.g., equator-facing aspects in Mediterranean ecosystems,
such as San Diego County, are typically drier than others
and are fire-prone). Fire can aid in the distinction between
change and nochange areas. Finally, a Vegetation-type
layer can help in the discrimination of change in vegeta-
tion type-specific change categories, where the specificity
of land-cover change class is a defining characteristic (e.g.,
Shrub/grass decrease more than 15 percent and Shrub/
grass increase less than 15 percent). These categories are
described in the next section.

Twenty 7.5-minute, 30-m USGS digital elevation mod-
els (DEMs) were mosaicked and used to produce elevation,
slope, and aspect layers for classification. In addition, fire
perimeter data were subset to years including 1990
through 1996 for the study site, and converted to binary
grid format. The minimum mapping unit (MMU) for this
layer was 4 ha for U.S. Forest Service lands, 121 ha or
greater for California Department of Forestry lands, and no
MMU for Vegetation Management Program perimeters (Cali-
fornia Department of Forestry, http://www.fire.ca.gov; last
accessed July 2002). Finally, an existing vegetation land-
cover map was obtained (MMU � 1 to 2 ha) and aggregated
to nine categories (USFS, 2001). Descriptions of the layers
used in the classification are shown in Table 1.

Land-Cover Change Categories and Reference Data Collection
A three-level hierarchical land-cover change classification
scheme was used in this study and is shown in Table 2.
Level 3 is the most detailed and describes three discrete
categories of forest canopy cover decrease and two classes
of canopy increase. Furthermore, a shrub cover increase
and shrub decrease class is used, along with change in de-
veloped (urban) areas and no-change (�15 percent canopy
change) categories. The �15 percent change class was de-
signed to reduce the confusion between phenological dif-
ferences between image dates and post-disturbance change
classes. This classification scheme was developed and is
currently in statewide use by the LCMMP (Levien et al.,
1999; Levien et al., 2002).

Figure 2 presents the processing flow of reference
sample allocation and data collection for training the clas-
sifier and assessing map accuracy. The study site was strat-
ified into preliminary change versus unchanged areas
using the change in greenness feature and vegetation life-
form categories (i.e., conifer, chaparral, hardwood, scrub,
and non-forest) of an existing vegetation map (USFS, 2001).
This ensured that an adequate number of samples could be
acquired, employing random stratified sampling, and that
these samples would be representative of the wide variety
of land-cover types found in the study area. Plot size was
based on a 60- by 60-m sample area, following recommen-
dations of Justice and Townshend (1981). In this approach,
the minimum dimensions of a sample area A should be
estimated as A � P(1 � 2L), where P is the ground sam-

pling distance and L is the positional accuracy of the geo-
metric registration in terms of pixels. In a multitemporal
context, therefore, when at least two image dates are used,
Amultitemp � (Atime1 � Atime2), where is the mean value
between time periods.

Ground reference cover proportion data for July 1996
(second date) were estimated through dot grid sampling
of tree canopy/shrub cover by interpretation of 1:15,840-
scale (resolution better than 1 m) color-infrared imagery
(digital images were captured using a DCS420 Kodak in-
frared camera), acquired over 250 selected sites. In addi-
tion, field visits facilitated the collection of 550 addi-
tional canopy-cover measurements (i.e., per-plot
percentage tree and shrub canopy cover recorded using a
densitometer), and the recording of additional site infor-
mation (i.e., dominant vegetation species, slope, aspect,
elevation, the probable cause of change, and GPS loca-
tion). Ground reference land-cover and forest-cover data
for July 1990 (first date) were acquired and interpreted
using the same dot grid aerial photointerpretation ap-
proach based on 1:15,840-scale true-color forest resource
photographs.

Once cover estimates were recorded for both dates,

xx
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Figure 2. Flow diagram depicting stratification and
ground reference data collection.

the 1990 percent cover estimates were subtracted from
the 1996 percent cover estimates, producing sample val-
ues representing “percent change tree and shrub cover.”
These categorized “change” data were then randomly di-
vided into train (70 percent) and test (30 percent) subsets.
This provided 560 samples for training the classifier and
240 samples for testing the accuracy of the resultant clas-
sification map. These sample data were aggregated to each
land-cover change level (Table 2) and a separate classifier
was developed and assessed for each categorical level.

Classification trees are sensitive to large discrepancies
in the number of training samples among individual classes,
such that a class with a larger number of training pixels
might have greater weight in the analysis (Borak and
Strahler, 1999; McIver and Friedl, 2002). Therefore, the
number of training samples per class was kept roughly
equal (i.e., 80 samples per class) so that within-class varia-
tions did not overwhelm the among-class distinctions that
are the primary interest of classification. Furthermore, map
accuracy assessment was performed on subsets of 40 sam-
ples per class for each change level (1–3) to prevent bias in
the accuracy statistics.

Classification and Evaluation
A classification tree algorithm was applied to the 11-vari-
able set (Table 1) for each of the three sets of training data

to produce rule sets for three separate maps of land-cover
change. Classification trees were developed using S-plus
statistical software (Clark and Pregibon, 1992). The uni-
variate classification tree approach employs tree-struc-
tured rules that recursively divide the data into increas-
ingly homogeneous subsets based on splitting criteria. At
each split, the values of each explanatory variable are ex-
amined and the particular threshold value of a single vari-
able that produces the largest reduction in a deviance
measure (e.g., increase in subset homogeneity) is chosen
to partition the data (Breiman et al., 1984; Franklin, 1998).
Explanatory variables that have already been used in the
model may be reexamined and potentially reintroduced
into the tree structure. As a result, hierarchical, non-linear
relationships within the data are revealed (Borak and
Strahler, 1999). However, classification trees can neither
“look forward nor back,” when divisively classifying a
data set, regarding the decision about a variable selected
for a particular split.

Classification trees were pruned to an optimum size
based on cross-validation using ten independent subsets of
the training data. This results in a parsimonious tree model
that does not overfit the training data, thus leading to more
generalizable results (i.e., how well will the algorithm clas-
sify new data?) (DeFries and Chan, 2000). Because the train-
ing observations were evenly distributed among classes,
the class assignment at each terminal node was determined
by the majority of per-class observations at that node
(Breiman et al., 1984). The three tree models were used to
generate three land-cover change maps using the ERDAS
Imagine Expert Classifier. A 3 by 3 “moving window” ma-
jority filter was applied to the final land-cover change maps
to smooth the classification results (Bauer et al., 1994) and
achieve an effective minimum mapping unit (MMU) of 0.9
ha.

Accuracy assessment is an important aspect of land-
cover change mapping as a guide to map quality, or fitness
for use, and also in understanding map error and its likely
implications (Congalton and Mead, 1983; Congalton, 1991).
For each of the three levels of land-cover change, the effec-
tiveness of the classifier was evaluated in the following
ways:

● Change map accuracy was assessed with the training data
used originally to generate the classification tree (resubsti-
tution accuracy). This measure was used as a classification
calibration metric because it is useful as a guide to the
maximum possible accuracy that can be achieved.

● Change map accuracy was assessed with the independent
set of testing data not yet encountered by the classifica-
tion tree algorithm. This step is necessary because classi-
fier accuracy and map accuracy are not always the same
(Richards, 1996) and the end-user is normally more inter-
ested in the accuracy of the resulting thematic map rather
than the performance of the classifier.

The set of accuracy parameters used to evaluate each ap-
proach were (1) Overall accuracy, (2) Producer’s accuracy
(omission error), and (3) User’s accuracy (commission
error).

Furthermore, the kappa statistic was used to examine
the accuracy of the maps. The kappa statistic is based on
the difference between the actual agreement in the error
matrix (i.e., the agreement between the remotely sensed
classification and the reference data as indicated by the
major matrix diagonal) and the chance agreement which is
indicated by the row and column totals (i.e., marginals) of
the matrix (Fitzgerald and Lees, 1994). The kappa statistic
describes agreement achieved beyond chance, as a propor-
tion of that agreement which is possible beyond chance.
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Figure 3. Classification tree used classify Level 1
change.

TABLE 3. BINARY CLASSIFICATION TREE RESPONSE VARIABLES FOR LAND-COVER

CHANGE CLASSIFICATION LEVELS 1–3

Level 1 Response Level 2 Response Level 3 Response 
Variables Variables Variables

MKT2 (3) MKT2 (3) MKT2 (2)
MKT3 (1) Elevation (1) Elevation (5)
Fire (1) MKT3 (1) MKT3 (2)

MKT6 (1) MKT6 (2)
MKT1 (2) MKT5 (2)
Fire (1) MKT1 (2)
Slope (3) Slope (1)
Vegetation (1) Fire (1)
MKT4 (1) MKT4 (2)

Number of times that a variable was selected in the classification
tree in parentheses.

TABLE 4. TRAINING ACCURACY RESULTS FOR LAND-COVER

CHANGE LEVELS 1–3.

Level 1 Level 2 Level 3

Overall % 94 93 76
Kappa % 87 89 75
Kno % 87 91 74

TABLE 5. ERROR MATRIX AND ACCURACY STATISTICS

FOR LEVEL 1 LAND-COVER CHANGE

Reference Class

Classified as change nochange Sites
change 38 4 42
nochange 2 36 38
Sites 40 40 80

Producer’s Accuracy User’s Accuracy
Class % Class %
change 95.0 Change 90.4
nochange 90.0 nochange 94.7

Overall Kappa Kno
92% 85% 85%

The kno statistic was also derived to compensate some of
the shortcomings of the kappa, as kno is not a chance-
corrected measure of agreement and does not make dis-
tinctions among various types and sources of disagreement
(Pontius, 2000). Finally, the improvement in map accuracy
attributed to the suite of ancillary data was assessed by
classifying the sets of spectral and ancillary data indepen-
dently, and then comparing the overall accuracy measure
for resultant maps.

Results
Figure 3 illustrates the hierarchical structure of the pruned
tree produced from the training data for Level 1. The path
highlighted in Figure 3 can be translated as the following
set of decision rules: “In the training data there were 14
observations where change in greenness falls between val-
ues of 6.1 and �5.0, change in wetness is greater than �3.4,
and a fire occurred in the last six years. Of these 14 obser-
vations, 13 were change and 1 was no change.” Classes with
little variability, such as nochange, have few terminal nodes,
whereas classes with high variability, such as change, have
several terminal nodes. Three variables were selected from
the original set of eleven (Table 3). Change in greenness
was the first split, followed by change in wetness, discrim-
inating change from nochange. Change in greenness was
selected three times, demonstrating a strong influence
throughout the tree. When two variables are equally suit-
able at a split, one is chosen arbitrarily, resulting in a tree
whose subset of variables may produce similar accuracies
to a tree with different variables.

The training accuracy for Level 1 was 94 percent, with
kappa and kno at 87 percent (Table 4). The Level 1 change
map produced by the splitting rules of the tree had an
overall accuracy of 92 percent (40 samples for both
classes), a kappa of 85 percent, and a kno of 85 percent,
showing very little degradation of “best achievable accu-
racy” (Table 5). Results from independent classifications of
spectral and ancillary data sets showed that the ancillary
data contributed 2 percent overall to the final classification
accuracy.

The tree generated for Level 2 is presented in Figure 4.
The nochange and changedev classes had few terminal
nodes, indicating little within-class variability. In contrast,
decrease exhibited high variability, followed by increase.
Nine variables were selected in this model (Table 3). Change
in greenness was used again for the first split, followed by
elevation and change in wetness. The left branch of the
tree with lower magnitude change in greenness predomi-
nantly sorted increase, and changedev classes from de-
crease (right). Elevation was selected to split changedev
from increase. This makes intuitive sense, because devel-
oped areas tend to be located at lower elevations in the
study area (Figure 1). Stable wetness was then selected to
further discriminate these two classes, indicating the util-
ity of this variable in distinguishing urban areas from non-
urban areas, where the abundance and type of vegetation is
very different.
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Based on high magnitude change in greenness, the
right branch of the tree predominantly sorted decrease and
nochange classes (although nochange appeared on both
branches). Change in wetness was selected to split decrease
from nochange, indicating its ability to discriminate a wide
variety of decrease from increase subclasses in the study
area. The training accuracy was 93 percent overall, with a
kappa of 89 percent and a kno of 91 percent (Table 4). The
overall map accuracy was 91 percent, with a kappa of
89 percent and kno of 89 percent (Table 6). Omission and
commission errors were low, with the most notable confu-
sion occurring between nochange and increase. As for
Level 1, the ancillary data set contributed only 2 percent
overall to Level 2 classification accuracy.

Classification of Level 3 classes presented the most
challenging task in this study. Figure 5 illustrates the tree
model for Level 3. Nine variables were selected by the
classification tree algorithm (Table 3). The selection of

variables was similar to that of the Level 2 tree, with change
in greenness, elevation, and change in wetness chosen for
lead splits. The left and right branches also followed the
structure of Level 2, by splitting increase classes (6 through
8) and changedev, right, and decrease classes (2 through 5)
and nochange, left. Following the left branch, elevation
split low-elevation shrub cover increase from the class rep-
resenting subtle increases in tree canopy cover. Significantly,
the stable MKT features, stable wetness and stable bright-
ness, were used to separate the two classes representing
tree-cover increase. Following the right branch, elevation,
change in brightness, and fire were selected to distinguish
the shrub cover decrease class (5) from the two lower-mag-
nitude tree cover decrease classes (3 and 4), while eleva-
tion and change in greenness separated the two largest mag-
nitude tree cover decrease classes (2 and 3). Unlike the
left branch, which exhibited reasonable discrimination of
the increase-related and changedev classes, the right branch

Figure 4. Classification tree used to classify Level 2 change.
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TABLE 6. ERROR MATRIX AND ACCURACY STATISTICS

FOR LEVEL 2 LAND-COVER CHANGE.

Reference Class

Sites
changedev decrease increase nochange

Classified as
changedev 39 2 1 42
decrease 37 37
increase 1 36 5 42
nochange 1 3 35 39
Sites

40 40 40 40 160

Producer’s Accuracy User’s Accuracy
Class % Class %
changedev 97.5 changedev 92.8
decrease 92.5 decrease 100.0
increase 90.0 increase 85.7
nochange 87.5 nochange 89.7

Overall Kappa Kno
91% 89% 89%

caused by wildfire and post-fire regeneration, respectively.
Change in developed areas was the next largest class, fol-
lowed by the largest-magnitude forest-cover decrease class.
The smallest class was the lowest-magnitude forest-cover de-
crease class. This decrease was almost entirely caused by fir
engraver infestation, mentioned earlier. Unlike the results of
Levels 1 and 2, the ancillary data increased the overall accu-
racy of the Level 3 change map by 15 percent. Level 2 land-
cover changes in the study area are shown in Plate 1.

Discussion and Conclusions
The results confirm the value of classification tree algo-
rithms for mapping land-cover change. Spectral and ancil-
lary variables were readily integrated and their contribu-
tion to map accuracy was revealed in the hierarchical
structure of the tree, and in the increase in accuracy when
ancillary data were included in the classification. The
methods used in this study were successful for mapping
discrete categories of land cover change at Levels 1 and 2.
Overall change map accuracies were about 85 percent in
both cases, falling within the target for studies of this na-
ture. The Level 3 change map accuracy was less than the
target, as the overall accuracy was 72 percent. Commission
errors greater than 20 percent, caused by class confusion,
are not generally acceptable in operational approaches.
However, classes such as changedev, nochange, and the
vegetation increase classes were successfully mapped.

The poorest result was the inability to discriminate among
the forest-cover decrease classes. The three error matrices
for Level 3 (Table 7), however, reveal that the majority of
the misclassification errors are confusions with other forest-
canopy decrease classes and are not mixed among vegeta-
tion increase classes, etc. There are several sources of error
that may have contributed to the lower accuracy of these
classes. It is possible that the canopy-cover change inter-
vals used are not suitable for operational change-detection
mapping. This issue will be investigated in future research.

exhibited a large degree of heterogeneity and confusion
within the three tree-cover decrease classes, and between
these decrease classes and the shrub-cover decrease class.

The training accuracy for Level 3 was 76 percent over-
all, with a kappa of 75 percent and kno of 74 percent (Table
4). The overall map accuracy was 72 percent, with a kappa
of 69 percent and kno of 71 percent (Table 7). This lower
accuracy was caused by larger commission errors in the
tree-cover decrease classes and by omission errors in the
shrub decrease class.

The mapped area of the Level 3 land-cover change cate-
gories are presented in Table 7. By far, the largest class is
�15% canopy change, which is not surprising for a land-
cover change study in such a large area. Among the change
classes, however, shrub decrease and increase are largest,

TABLE 7. ERROR MATRIX AND ACCURACY STATISTICS FOR LEVEL 3 LAND-COVER CHANGE

Reference Class

Sites % Area
1 2 3 4 5 6 7 8 9

1 35 2 1 6 44 96.90
2 28 7 2 1 38 0.422

Classified as 3 6 25 9 3 43 0.077
4 4 5 24 9 42 0.048
5 2 3 5 27 37 0.820
6 1 30 8 2 2 43 0.390
7 1 5 28 34 0.083
8 3 3 3 32 41 0.690
9 38 38 0.570

Sites
40 40 40 40 40 40 40 40 40 360

Class Name Class User’s Producer’s
Number Accuracy (%) Accuracy (%)

��15% canopy change 1 87.5 79.5
�71 to �100% canopy change 2 70.0 73.6
�41 to �70% canopy change 3 62.5 58.1
�16 to 40% canopy change 4 60.0 57.1
Shrub/grass decrease � 15% 5 67.5 72.9
�16 to �40% canopy change 6 75.0 69.7
�41 to 100% canopy change 7 70.0 82.3
Shrub/grass increase � 15% 8 80.0 78.0
Change in developed areas 9 95.0 100.0

Overall Kappa Kno
72% 69% 71%
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Other sources of error were revealed when misclassified
pixels were traced to their locations on the change maps
and against the 11-variable set. For example, from on-
screen inspection, training/test points that were observed

in the field were determined to be locations where fires oc-
curred, but located well outside the mapped perimeter of
the fire database. This discrepancy caused misclassification
of several samples in the classification and points to the li-

Figure 5. Classification tree used to classify Level 3 change.
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Plate 1. Level 2 land-cover changes in the study area.

abilities involved when using GIS layers of varying MMUs,
scales, and origin.

As has been shown previously (Seto et al., 2002), the
MKT variables proved very useful for mapping land-cover
changes. Change in greenness was selected as the lead
split in all three classification trees and was used more
than once in each case. Change in wetness was also useful
in discriminating vegetation decrease classes. However, in
this study discrimination among the more subtle change
classes was often determined by the stable MKT features,
such as stable brightness and stable wetness, rather than
the MKT change components. We posit that an area under-
going decrease in hardwood cover is spectrally different
from an area undergoing decrease in conifer cover, due to
intrinsic differences in canopy structure. Therefore, the
mean brightness, mean greenness, and mean wetness fea-
tures were selected to discriminate subclasses (i.e., change
in conifer vs. change in oak) of the same decrease category.
Including stable or mean/average layers in the classifica-
tion process, therefore, appears to be advantageous for
change mapping studies because these layers provide im-
portant information on the “direction” of change between
the two time periods.

Ancillary layers also proved discriminatory in this
study. Elevation was often selected to distinguish between
changes in urban areas and increase classes. Slope was
typically associated with increase classes and was selected
often to separate them from other classes. The fire perime-
ter layer was important in sorting between change and any
other classes, owing to its binary nature. Aspect was not
used in any of the classifications. This may be because
slope and elevation layers have a greater physical influ-
ence on change processes than does aspect (i.e., related to
fire severity, or location of new construction). The vegeta-
tion type layer was used only once, in the Level 2 tree.
This suggests that change in greenness is such a strong dis-
criminator of changes that categorical land-cover informa-
tion was not needed. The ancillary data contributed little
to change map accuracy in Levels 1 and 2 (i.e., 2 percent).

This may be because these change levels are fairly simple,
and spectral data alone provided enough discriminatory
information to resolve the classes therein. However, at
Level 3, the most complicated measurement space, ancil-
lary data increased overall accuracy by 15 percent, demon-
strating their importance in discriminating land-cover
change with a large number of classes. This is because, as
measurement space becomes increasingly complex, with
an increased number of change classes, and given an ade-
quate training sample and robust classifier, the addition of
ancillary information increases dimensionality and can
help separate these classes (Hughes, 1968).

Areal proportions (Table 7) reveal important information
about the spatial arrangement of the land-cover change
classes. Future work will investigate the use of prior proba-
bilities to improve areal estimates of land-cover change
classes derived from classification tree algorithms (McIver
and Friedl, 2002). Furthermore, we note that the classifica-
tion training and map accuracy assessment phases of this re-
search were based on stratified random selection of field sam-
ples at the pixel level. Recent research has demonstrated the
optimistic bias of pixel-level sampling approaches (Friedl et
al., 2000) and, therefore, our future research will address
map accuracy at the site/patch level, in order to provide
more realistic, unbiased estimates of change map accuracy.

Finally, this work presents a case study of the poten-
tial of classification trees for land-cover change monitor-
ing. Future work will apply this methodology to other re-
gions with different vegetation types and disturbance
regimes (e.g., upland conifer and hardwood vegetation
types in northern California, primarily disturbed by log-
ging and wildfire). Our long-term goal is to provide infor-
mation to resource managers in regions outside California
(national and international) on how this approach could be
adapted and applied in their management areas.
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