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In order to describe the lactation curves of milk yield (MY) and composition in buffaloes, seven non-linear mathematical equations
(Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook) were used. Data were 116 117 test-day records for MY, fat (FP) and protein
(PP) percentages of milk from the first three lactations of buffaloes which were collected from 893 herds in the period from 1992 to
2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly production records of dairy buffaloes using the NLIN
and MODEL procedures in SAS and the parameters were estimated. The models were tested for goodness of fit using adjusted
coefficient of determination ( R2adj ), root means square error (RMSE), Durbin–Watson statistic and Akaike’s information criterion (AIC).
The Dijkstra model provided the best fit of MY and PP of milk for the first three parities of buffaloes due to the lower values of RMSE
and AIC than other models. For the first-parity buffaloes, Sikka and Brody models provided the best fit of FP, but for the second- and
third-parity buffaloes, Sikka model and Brody equation provided the best fit of lactation curve for FP, respectively. The results of this
study showed that the Wood and Dhanoa equations were able to estimate the time to the peak MY more accurately than the other
equations. In addition, Nelder and Dijkstra equations were able to estimate the peak time at second and third parities more accurately
than other equations, respectively. Brody function provided more accurate predictions of peak MY over the first three parities of
buffaloes. There was generally a positive relationship between 305-day MY and persistency measures and also between peak yield and
305-day MY, calculated by different models, within each lactation in the current study. Overall, evaluation of the different equations
used in the current study indicated the potential of the non-linear models for fitting monthly productive records of buffaloes.
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Implications

Mathematical models that describe milk yield in time can be
very useful in genetic breeding programs, herd nutritional
management, decision making on the culling animals and milk
production systems. The lactation curve is important because
its wide characterization of the animal production throughout
lactation allows estimating the peak yield, days in milk and
lactation persistency. Accurate knowledge of lactation curves
has a significant relevance to management and study of dairy
production systems. Mathematical modeling of lactation curve
by appropriate functions widely applied in dairy cattle. These
equations can represent also for buffaloes a fundamental tool
for management and breeding decision making.

Introduction

There are about 480 000 water buffaloes, mostly present in
south and northwest Iran. All of the Iranian buffaloes are

riverine (Ghavi Hossein-Zadeh, 2014b). Some archeological
evidence suggests that water buffaloes have been tamed in
Iran and migrated to southern Europe through this region.
The ancestry of Iranian buffaloes is not clearly known, but it
has been suggested that the main forerunner of these animals
are Indian buffaloes such as Murrah due to their phenotypic
similarity (Ghavi Hossein-Zadeh et al., 2012).
The term lactation curve refers to a graphic representation

of the association between milk production and lactation
time starting at calving (Papajcsik and Bodero, 1988). The
mathematical description of the temporal evolution of milk
production in ruminant species reared for milk production
represents one of the most important applications of
mathematical models in animal science (Pulina and Nudda,
2001). Several reasons can be found for the need of a
mathematical modeling of the lactation pattern. Mathematical
models of the lactation curve and, in general, of the mammary
gland represent a valuable tool for basic research studies
aimed at increasing the scientific knowledge of complex
physiological mechanisms that underlie the milk secretion
process (Dimauro et al., 2005). Lactation curves may be† E-mail: nhosseinzadeh@guilan.ac.ir or navid.hosseinzadeh@gmail.com
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applied by physiologists, nutritionists and other researchers
to mimic the lactation process and to study the relationships
existing between secretory cells, hormones, energy supply
and environmental effects affecting the milk production
process (Steri et al., 2012). On a dairy farm scale, the pattern
of milk yield (MY) across the year depicts the trend of the
main farm income. Moreover, it is strongly associated with
evolution of the nutritive requirements of the animals and,
consequently with feeding costs, that represent one of the
most important expenses in dairy farming. Thus, a mathe-
matical function able to accurately describe the pattern of
MY during the year and to predict future production supplies
useful information to help the farmer and the agricultural
extension workers in several management decisions. Such
information is of great importance in the programs of genetic
improvement, herd management, feeding, health monitoring
and profits evaluation, besides the construction and validation
of bio-economic models and software for livestock species
(Ghavi Hossein-Zadeh, 2014a).
According to the theoretical approach used to describe the

main components of the lactation pattern, mathematical
models suggested for studying the lactation curve can be
divided into two main classes: empirical models and
mechanistic models. The aim of empirical mathematical
models is to provide a basis for identifying the difference
between regular component and stochastic one. In addition,
interpretation of the parameters of the function used and
identification of the mechanisms which control the process
are important in empirical models (Steri et al., 2012).
These empirical models have large application in different
fields of animal science, basically due to their limited
mathematical complexity. Mechanistic models are essentially
aimed at translating in mathematical terms a hypothesis
about biological and biochemical processes that regulate the
phenomenon of interest. Such an approach, even if of great
interest for research and also for practical implementations,
has been little developed in animal sciences. This was due to
the high theoretical complexity of mechanistic models, to the
large number of input variables involved and to the high
computation requirements (Macciotta et al., 2008).
Mathematical modeling of lactation curve by appropriate

functions of time widely applied in the dairy cattle industry
(Silvestre et al., 2009; Gołębiewski et al., 2011; Ghavi
Hossein-Zadeh, 2014a), and there are various mathematical
equations describing lactation curves in dairy cows, from
the more empirical equations that relate input to output
statistically with little consideration of the biology of
lactation (e.g. Wood, 1967; Rook et al., 1993), to the more
mechanistic ones that describe the lactation curve based on
the biology of lactation (e.g. Dijkstra et al., 1997). These
equations can represent also for buffaloes a fundamental
tool for management and breeding decision. However,
information on the shape of lactation curves and its
description by the most appropriate mathematical model in
dairy buffaloes is very limited. Therefore, the aim of this
study was to evaluate the main features of lactation curves
for MY and its components (milk fat percentage and milk

protein percentage) for the first three lactations of buffaloes.
For this purpose, seven routine mathematical models (Wood,
Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook) were
examined to evaluate their efficiency in describing the
lactations of buffaloes. Therefore, seven non-linear equations
with various complexities were evaluated and compared using
lactation data collected from buffalo herds. Comparison of
the predictive ability of these models permits identification
of a mathematical function capable of characterizing and
providing a better perspective on the lactation curve shape of
the dairy buffaloes. When an appropriate lactation curve
model is determined, selection emphasis can then be focused
exclusively on the level of the lactation curve.

Material and methods

Data
Data set were 116 117 test-day records for MY, fat (FP) and
protein (PP) percentages of milk, from the first three lacta-
tions of buffaloes. Number of animals in the first three
parities was 4990, 4360 and 4024, respectively. Data were
recorded on 893 dairy herds in the period from 1992 to 2012
by the Animal Breeding Center of Iran. Outliers and out of
range productive records were deleted from the analyses.
Records from days in milk (DIM) <5 and >305 days were
eliminated. Records were also eliminated if no registration
number was present for a given buffalo. Analyses were
applied to only the first three parities and, therefore, data
from later parities were also discarded. First-parity buffaloes
represented 37.1%, whereas second and third parities
accounted for 33.6% and 29.3% of the total test-day
records, respectively.

Lactation curve models
The non-linear models used to characterize the lactation
curves for MY and compositions are presented in Table 1.
A first attempt to synthesize the temporal variation of MY
with a functional relationship was proposed by Brody et al.
(1923) that used an exponential function to describe the
declining phase of lactation in dairy cattle. The incomplete
γ function proposed by Wood (1967) has been used widely to

Table 1 Equations and their features used to describe the lactation
curve of Iranian buffaloes

Equation Functional form

Wood y = at be−ct

Dhanoa y = at bce−ct

Parabolic (Sikka) y ¼ aeðbt + ct
2Þ

Inverse polynomial (Nelder) y ¼ t
ða+bt + ct2Þ

Brody y = ae−bt

Dijkstra y ¼ ae
bð1�e�ct Þ

c �dt
� �

Rook y ¼ a 1
1+ b

c + t

� �
e�dt

y = milk yield and composition; a, b, c, d = parameters that define the scale
and shape of the lactation curve; t = time from parturition.
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study lactation curves in animals. Dhanoa (1981) proposed a
model which is similar to the Wood (1967) model. This model
resulted in a lower correlation between parameters b and c,
than was the case between these parameters in the original
Wood model. The parabolic exponential function introduced
by Sikka (1950) to model MY resulted in a bell shaped
truncated curve that, as a result of the curve symmetry
around peak yield, only fitted MY reasonably during first
lactation (Gahlot et al., 1988). Nelder model is a derivation of
the Sikka model proposed by Nelder (1966) using an inverse
exponential parabolic function. Inverse polynomials are
generally non-negative, bounded, and have a second-order
form which has no built-in symmetry. The inverse polynomial
overcomes the objections of ordinary polynomials (Nelder,
1966). Rook et al. (1993) and Dijkstra et al. (1997) proposed
modified forms of mechanistic models, based on a set of
differential equations representing cell proliferation, and cell
death, in the mammary gland, which resulted in a four-
parameter equation. For all models, peak yield (PY) was
assumed as the maximum predicted test-day MY or minimum
predicted milk constituents and peak time (PT) was accepted
as the test time, at which predicted daily MY was maximum or
predicted milk constituents were minimum.

Statistical analyses
Each model was fitted to monthly productive records of
buffaloes using the NLIN and MODEL procedures in SAS (SAS
Institute, 2002) and the parameters were estimated. The
NLIN procedure produces least squares or weighted least
squares estimates of the parameters of a non-linear model.
For each non-linear model to be analyzed, the model (using a
single dependent variable) and the names and starting
values of the parameters to be estimated must be specified.
When non-linear functions were fitted, the Gauss–Newton
method was used as the iteration method. To begin this
process the NLIN procedure first examines the starting
value specifications of the parameters. If a grid of values is
specified, NLIN procedure evaluates the residual sum
of squares at each combination of parameter values to
determine the set of parameter values producing the lowest
residual sum of squares. These parameter values are used for
the initial step of the iteration. The MODEL procedure ana-
lyzes models in which the relationships among the variables
comprise a system of one or more non-linear equations.
Primary uses of the MODEL procedure are estimation, simu-
lation, and forecasting of non-linear simultaneous equation
models. The models were tested for goodness of fit (quality
of prediction) using adjusted coefficient of determination
(R2

adj), residual standard deviation or root means square
error (RMSE), Durbin–Watson statistic (DW) and Akaike’s
information criterion (AIC).
R2
adj was calculated using the following formula:

R2
adj ¼ 1� ðn�1Þ

ðn�pÞ
� �

ð1�R2Þ

where R 2 is the coefficient of determination R2 ¼ 1� RSS
TSS

� 	
,

TSS the total sum of squares, RSS the residual sum of

squares, n the number of observations (data points) and p
the number of parameters in the equation. The R2 value is an
indicator measuring the proportion of total variation about
the mean of the trait explained by the lactation curve model.
The coefficient of determination lies always between 0 and 1,
and the fit of a model is satisfactory if R 2 is close to unity
(Ghavi Hossein-Zadeh, 2014a).
RMSE is a kind of generalized standard deviation and was

calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS

n�p�1

s

where RSS is the residual sum of squares, n the number of
observations (data points) and p the number of parameters
in the equation. RMSE value is one of the most important
criteria to compare the suitability of used lactation curve
models in terms of expression of lactation MY properties
(Fernandez et al., 2002). Therefore, the best model is the one
with the lowest RMSE.
DW was used to detect the presence of autocorrelation in

the residuals from the regression analysis. In fact, the presence
of autocorrelated residuals suggests that the function may be
inappropriate for the data. The DW statistic ranges in value
from 0 to 4. A value near 2 indicates non-autocorrelation; a
value toward 0 indicates positive autocorrelation; a value
toward 4 indicates negative autocorrelation. DW was
calculated using the following formula:

DW ¼
Pn

t ðet�et�1Þ2Pn
t¼1 e

2
t

where et is the residual at time t and et− 1 the residual at time
t-1.
AIC was calculated as using the equation

AIC ¼ n ´ lnðRSSÞ + 2p
AIC is a good statistic for comparison of models of different
complexity because it adjusts the RSS for number of
parameters in the model. A smaller numerical value of AIC
indicates a better fit when comparing models.
Predicted 305-day MYs were obtained for every model

using the following equation with substitution of y(t ) by the
corresponding model equation (Table 1):

305MY ¼
X305
t¼5

yðtÞ

where 305MY is the predicted 305-day MY and y (t ) the MY
at day t (5, …, 305) estimated by corresponding lactation
models. In addition, two types of persistency measures were
used in the current study. The first type uses mathematical
functions for determining the MY persistency (S ) as follows:

S ¼ � b + 1ð Þ ln cð Þ for Woodmodel

S ¼ � bc + 1ð Þ ln cð Þ for Dhanoamodel
where b and c are already fitted parameter estimates
obtained from Wood or Dhanoa models. The second type of
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persistency measures uses ratios between different parts of
the lactation (P2 : 1, P3 : 1 and PWeller). The P2 : 1 and P3 : 1 were
proposed by Johansson and Hansson (1940). P2 : 1 and P3 : 1
are the ratios between the MYs of the second and third
100 days of lactation, respectively, and that of the first
100 days. In addition, Weller et al. (2006) defined milk per-
sistency as estimated milk production at 180 day after peak
divided by estimated peak production in percent as follows:

PWeller ¼ 100´ PRODð270Þ=PRODð90Þ For parity ¼ 1

PWeller ¼ 100 ´ PRODð225Þ=PRODð45Þ For parity>1
where PROD(270), PROD(225), PROD(90) and PROD(45) are
milk production at 270, 225, 90 and 45 DIM, respectively.

Results and discussion

Estimated parameters of non-linear equations for the first-,
second- and third-parity buffaloes are presented in Tables 2,
3 and 4. In addition, goodness of fit statistics for the seven
models fitted to average standard curves of MY according to
parity class are shown in Table 5. In general, R2

adj and DW
values were not different among the models for the first
three parities. For all parities, Dijkstra and Rook models
provided the lowest values of RMSE for MY, but Brody
equation had the greatest value. For the first three parities,
Dijkstra model provided the lowest AIC values, but Brody
model had the greatest value of AIC (Table 5). Therefore,
Dijkstra equation provided the best fit of MY for the first
three parities of buffaloes.
Goodness of fit statistics for the seven equations fitted to

average standard curves of FP according to parity class are
shown in Table 6. In general, R2

adj, DW and RMSE estimates
were not different among the models. For the first parity,
Sikka and Brody model provided the lowest AIC values, but
Dijkstra model had the greatest value. For the second parity,
Sikka model provided the lowest value of AIC, but Nelder
equation had the greatest one. For the third parity, Brody
model provided the lowest AIC value, but Dijkstra and Rook
models had the greatest values (Table 6).
Goodness of fit statistics for the seven functions fitted to

average standard curves of PP according to parity class are
shown in Table 7. Brody model provided the lowest values of
DW (0.04) for the first three parities and this indicated
positive autocorrelation, but DW values were not different
among other models. In addition, RMSE and R2

adj estimates
were not different among the models. For the first three
parities, Dijkstra model provided the lowest AIC values, but
Sikka model had the greatest values of AIC (Table 7).
Therefore, Dijkstra equation provided the best fit of PP for
the first three parities of buffaloes.
It is necessary to develop an optimal method (such as

genetic selection) to obtain a desired lactation shape through
modifying the parameters of lactation model. The shape of
the lactation curve has been shown to be influenced by parity,
mainly because of a less well-defined peak (associated with Ta
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Table 5 Comparing goodness of fit for average standard curves of milk yield according to parity class, for Wood, Dhanoa, Sikka, Nelder, Brody,
Dijkstra and Rook models

Model

Parity Statistics Wood Dhanoa Sikka Nelder Brody Dijkstra Rook

1 DW 0.74 0.74 0.74 0.74 0.75 0.74 0.74
R2
adj 0.8412 0.8412 0.8413 0.8407 0.8403 0.8414 0.8414

RMSE 3.0172 3.0172 3.0158 3.0172 3.0254 3.0149 3.0151
AIC 292 916 292 916 292 896 292 986 293 045 292 882 292 884

2 DW 0.73 0.73 0.73 0.73 0.73 0.73 0.73
R2
adj 0.8463 0.8463 0.8464 0.8459 0.8457 0.8464 0.8464

RMSE 3.0725 3.0725 3.0725 3.0725 3.0778 3.0710 3.0710
AIC 26 7420 267 420 267 404 267 471 267 494 267 399 267 400

3 DW 0.74 0.74 0.74 0.74 0.74 0.74 0.74
R2
adj 0.8505 0.8505 0.8506 0.8501 0.8499 0.8507 0.8507

RMSE 3.1616 3.1616 3.1603 3.1616 3.1680 3.1598 3.1599
AIC 247 114 247 114 247 098 247 167 247 196 247 093 247 094

R2
adj = adjusted coefficient of determination; RMSE = root means square error; DW = Durbin–Watson; AIC = Akaike information criteria.

Table 6 Comparing goodness of fit for average standard curves of fat percentage of milk according to parity class, for Wood, Dhanoa, Sikka, Nelder,
Brody, Dijkstra and Rook models

Model

Parity Statistics Wood Dhanoa Sikka Nelder Brody Dijkstra Rook

1 DW 1.55 1.55 1.55 1.55 1.55 1.55 1.55
R2
adj 0.9152 0.9152 0.9152 0.9152 0.9152 0.9152 0.9152

RMSE 1.9654 1.9654 1.9654 1.9654 1.9654 1.9655 1.9654
AIC 251 239 251 239 251 238 251 241 251 238 251 242 251 240

2 DW 1.58 1.58 1.58 1.58 1.58 1.58 1.58
R2
adj 0.9144 0.9144 0.9145 0.9144 0.9144 0.9144 0.9144

RMSE 1.9760 1.9760 1.9757 1.9760 1.9759 1.9759 1.9757
AIC 226 407 226 407 226 400 226 408 226 405 226 406 226 401

3 DW 1.60 1.60 1.60 1.60 1.60 1.60 1.60
R2
adj 0.9135 0.9135 0.9135 0.9135 0.9135 0.9134 0.9135

RMSE 1.9818 1.9818 1.9817 1.9818 1.9817 1.9818 1.9818
AIC 207 863 207 863 207 862 207 863 207 861 207 865 207 865

R2
adj = adjusted coefficient of determination; RMSE = root means square error; DW = Durbin–Watson; AIC = Akaike information criteria.

Table 7 Comparing goodness of fit for average standard curves of protein percentage of milk according to parity class, for Wood, Dhanoa, Sikka,
Nelder, Brody, Dijkstra and Rook models

Model

Parity Statistics Wood Dhanoa Sikka Nelder Brody Dijkstra Rook

1 DW 1.33 1.33 1.34 1.33 0.04 1.33 1.33
R2
adj 0.9717 0.9717 0.9717 0.9717 0.9718 0.9718 0.9718

RMSE 0.7028 0.7028 0.7030 0.7028 0.7030 0.7022 0.7024
AIC 78 236 78 236 78 241 78 226 78 224 78 221 78 226

2 DW 1.36 1.36 1.36 1.36 0.04 1.36 1.36
R2
adj 0.9716 0.9716 0.9715 0.9716 0.9716 0.9716 0.9716

RMSE 0.6898 0.6898 0.6900 0.6898 0.6900 0.6897 0.6898
AIC 66 154 66 154 66 158 66 154 66 156 66 152 66 155

3 DW 1.41 1.41 1.41 1.41 0.04 1.41 1.41
R2
adj 0.9721 0.9721 0.9721 0.9721 0.9721 0.9721 0.9721

RMSE 0.6827 0.6827 0.6829 0.6827 0.6829 0.6825 0.6827
AIC 61 811 61 811 61 816 61 811 61 815 61 809 61 811

R2
adj = adjusted coefficient of determination; RMSE = root means square error; DW = Durbin–Watson; AIC = Akaike information criteria.
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high variation at the start of lactation) and greater lactation
persistency in first-lactation animals (Ghavi Hossein-Zadeh,
2014a). Lack of consistent milk recording (with many missing
data) has made it difficult to construct the complete lactation
curve for individual animals and to estimate their total
(e.g. 305 day) MYs, which is a major hindrance to genetic
evaluation and selection of candidate animals in the field
(Dematawewa and Dekkers, 2014). However, the lactation
curve of an individual or a group can be expressed as a
mathematical model that describes the relevant general
pattern of milk production throughout the lactation (Aziz
et al., 2006). Once the parameters of the model are esti-
mated using the available yield information, it can be used
to predict the missing values and thereby construct the
complete (i.e. 305 day) lactation yield (Dematawewa and
Dekkers, 2014). Variations between the lactation curve
characteristics of primiparous and multiparous buffaloes are
likely to be responsible for the significant difference between
goodness of fit of the models for the different lactations. In
addition, the difference between fit of models may have
arisen from the variations in mathematical functions of the
models (Ghavi Hossein-Zadeh, 2014a).
Consistent with the current study, Dimauro et al. (2005)

showed that the models commonly used to fit the lactation
curve in dairy cattle are able to describe with a high degree of
accuracy average curves of water buffaloes. Dimauro et al.
(2005) reported peak time, peak yield and 300-day MY of
Italian water buffaloes predicted by Wood model were
33 days, 10.9 kg/day and 2327 kg, respectively. Dematawewa
and Dekkers (2014) reported Dijkstra model provided a slightly
better fit of MY than Wood model for Murrah buffaloes in
Sri Lanka, but Rook function can be recommended for

lactation curve modeling of buffaloes in Sri Lanka. Aziz et al.
(2006), Barbosa et al. (2007) and Abdel-Salam et al. (2011)
reported Wood function provided the best fit of lactation curve
in Murrah buffaloes, crossbred buffaloes in the Amazonian
region of Brazil and Egyptian buffaloes, respectively. However,
these researchers did not fit Dijkstra model in their study. The
Dijkstra equation provided the best fit of lactation curve for
MY and PP in the current study. This model has two advan-
tages over the Wood equation, namely, the precise biological
meaning of the parameters and the value of the intercept that
is not nil (Ghavi Hossein-Zadeh, 2014a). It is important to
note that mechanistic models, such as Dijkstra and Rook, were
developed for lactation yield considering cell proliferation
rates, apoptosis and secretion rates and their underlying
mechanisms. Therefore, when such mechanistic models
developed for yield data are fitted to percentage traits of milk
(FP and PP), they act like another empirical models.
For the first parity, the peak MY was 8.22 kg/day on day

59 of lactation and minimum values of FP and PP were
5.24% and 2.89% on day 31 of lactation, respectively. For
the second parity, the peak yield of milk was 8.38 kg/day on
day 35 of lactation and minimum values of FP and PP were
5.71% and 3.71% on days 17 and 39 of lactation, respectively.
For the third parity, the peak yield of milk was 9.08 kg/day on
day 31 of lactation and minimum values of FP and PP were
5.85% and 3.63% on days 19 and 57 of lactation, respectively.
Time to the peak and production at peak for average standard
lactations of MY and minimum production and corresponding
time for FP and PP according to parity class predicted by the
seven non-linear equations are shown in Table 8. Predicted
MY, FP and PP lactation curves across the parities are shown
in Figures 1 to 9, respectively. Evaluation of first lactation

Table 8 PT and PY for average standard lactations of MY, FP and PP according to parity class, predicted by Wood, Dhanoa, Sikka, Nelder, Brody,
Dijkstra and Rook models

Model

Trait Parity Statistics Wood Dhanoa Sikka Nelder Brody Dijkstra Rook

MY 1 PT 64 64 95 43 5 86 84
PY 7.36 7.36 7.28 7.41 7.48 7.33 7.37

2 PT 45 45 40 31 5 57 55
PY 7.80 7.81 7.67 7.86 8.05 7.71 7.69

3 PT 42 43 40 30 5 55 59
PY 8.20 8.24 8.08 8.30 8.52 8.12 8.16

FP 1 PT 5 5 5 5 5 10 7
PY 5.99 5.99 6.01 5.83 6.04 6.06 5.78

2 PT 5 5 5 16 5 14 7
PY 6.08 6.08 7.00 6.14 6.08 6.07 6.01

3 PT 5 5 5 13 5 17 9
PY 6.17 6.17 6.12 6.18 6.15 6.20 6.17

PP 1 PT 48 48 5 45 5 32 38
PY 4.07 4.07 4.04 4.07 4.04 4.09 4.06

2 PT 63 61 5 41 5 53 57
PY 4.00 4.00 4.00 3.99 3.99 4.01 4.00

3 PT 70 70 50 45 5 51 60
PY 3.99 4.00 4.01 3.99 3.99 4.00 3.99

PT = peak time; PY = maximum value for MY and minimum value for FP and PP; MY = milk yield; FP = fat percentage; PP = protein percentage.
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features showed that the Wood and Dhanoa equations
were able to estimate the time to the peak more accurately
than the other equations. In addition, Nelder and Dijkstra
equations were able to estimate the peak time at second and
third parities more accurately than other equations, respectively.
Brody function provided more accurate predictions of peak

MY over the first three parities of buffaloes. For first and third
lactation FP, Dijkstra equation was able to estimate the time
to the minimum FP, but Nelder equation provided more
accurate estimate of minimum time than other models for
the second parity. Rook equation was able to predict more
accurately the minimum values of FP at first and second

Figure 1 Lactation curves for milk yield predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in the first-parity buffaloes.

Figure 2 Lactation curves for milk yield predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in second-parity buffaloes.
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parities, but Sikka model provided more accurate prediction
of minimum FP for third-parity buffaloes. Dijkstra, Nelder and
Rook equations provided more accurate estimates of time
to the minimum values of PP for the first three parities,
respectively. For first parity PP, Sikka and Brody equations
were able to estimate the minimum PP more accurately

than the other equations; but, for second parity PP, the
minimum value of PP was predicted more accurately by
the Nelder and Brody models. Although all equations
over-predicted the minimum PP for third-parity buffaloes,
but Wood, Nelder, Brody and Rook equations provided
slightly better predictions of minimum PP. It must be noted

Figure 3 Lactation curves for milk yield predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in third-parity buffaloes.

Figure 4 Lactation curves for fat percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in the first-parity buffaloes.
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that peak yield and overall milk production of buffaloes is
lower than in dairy cattle. Such a relevant limitation of the
productive ability of buffaloes can be assigned to the lack
of selection in this species (Catillo et al., 2002). The state
of pregnancy results in a markedly reduced MY for lactating
buffalo cows, as happened in dairy cattle before the
development of selection programs for the improvement of

MY (Coulon et al., 1995). Latest peak production observed in
first lactation for most models in the current study, while
third lactation buffaloes generally had the earliest day of
peak production and this might be explained by the milk
secretary tissue in primiparous buffaloes taking longer to
reach its peak activity than in multiparous buffaloes (Ghavi
Hossein-Zadeh, 2014a).

Figure 5 Lactation curves for fat percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in second-parity buffaloes.

Figure 6 Lactation curves for fat percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in third-parity buffaloes.
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Different persistency measures and 305-day MY for average
standard lactations of buffaloes according to parity class,
predicted by different equations are presented in Table 9. For
first-parity buffaloes, Nelder model and Dijkstra equation
provided the greatest and lowest 305-day MY, respectively.

Brody and Rook models predicted the greatest 305-day MY
at the second- and third parities, respectively, but Sikka and
Wood models provided the lowest 305-dayMY for the second-
and third parities, respectively. According to the persistency
measures obtained from different models, the highest MY

Figure 7 Lactation curves for protein percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in the first-parity
buffaloes.

Figure 8 Lactation curves for protein percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in second-parity
buffaloes.
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persistency was obtained during first parity. For first-parity
buffaloes, Sikka equation provided the most persistent
lactation curves based on P2 : 1, but Nelder and Brody models
provided lactations with better persistency than other
equations according to P3 : 1 and PWeller, respectively. For
second-parity buffaloes, Sikka, Dijkstra and Rook models
provided the most persistent lactation curves based on P2 : 1,

but Nelder and Brody models provided lactations with better
persistency than other equations according to P3 : 1 measure.
In addition, Brody equation provided the most persistent
lactation curves based on PWeller. On the other hand, Sikka
and Rook equations provided the most persistent lactation
curves based on the measures of P2 : 1, but Brody and Rook
models provided lactations with better persistency than

Figure 9 Lactation curves for protein percentage of milk predicted by Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models in third-parity
buffaloes.

Table 9 Different measures of persistency and 305-day milk yield for average standard lactations of buffaloes according to parity class, predicted by
Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook models

Model

Parity Variable Wood Dhanoa Sikka Nelder Brody Dijkstra Rook

1 305MY(kg) 2055 2054 2059 2091 2066 2050 2058
S 7.12 7.12 – – – – –

P2 : 1 0.97 0.97 0.99 0.96 0.94 0.98 0.98
P3 : 1 0.88 0.88 0.88 0.91 0.90 0.87 0.88

PWeller (%) 0.85 0.85 0.84 0.90 0.91 0.83 0.83
2 305MY(kg) 2114 2116 2092 2115 2125 2105 2099

S 6.88 6.88 – – – – –

P2 : 1 0.93 0.93 0.94 0.92 0.91 0.94 0.94
P3 : 1 0.83 0.83 0.80 0.84 0.84 0.82 0.81

PWeller (%) 0.84 0.84 0.84 0.84 0.85 0.84 0.84
3 305MY(kg) 2193 2206 2205 2205 2215 2199 2234

S 6.80 6.81 – – – – –

P2 : 1 0.92 0.92 0.94 0.91 0.90 0.93 0.94
P3 : 1 0.80 0.81 0.80 0.82 0.83 0.80 0.82

PWeller (%) 0.82 0.82 0.84 0.82 0.84 0.83 0.85

305MY = predicted 305-day milk yield; S = milk yield persistency obtained from Wood or Dhanoa models; P2 : 1 = ratio between the milk yields of the second 100 days
of lactation and those of the first 100 days; P3 : 1 = ratio between the milk yields of the third 100 days of lactation and those of the first 100 days; PWeller = milk yield
persistency measure proposed by Weller et al. (2006).
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other equations according to P3 : 1 and PWeller for third-parity
buffaloes, respectively. More countries are currently shifting
to test-day models in genetic evaluation; hence, 305-day
yields may no longer be necessary for genetic evaluation.
However, 305-day yields will always be vital information for
the farm managers and veterinarians to provide a current
indicator of animal performance (Flores et al., 2013). Lactation
persistency is the ability of the animal to maintain milk
production at a high level after the peak yield, that is, a
persistent animal has a flatter milk curve (Cobuci et al.,
2003). High persistency is associated with more resistance to
disease, better utilization of feed, reduced stress from high
peak MY and low reproductive costs (Gengler, 1996; Cole
and Null, 2009). Persistent animals generate more return
(Dekkers et al., 1998); therefore, enhancing persistency could
promote efficient and economical milk production. For animals
with flatter lactation curves, the incidence of metabolic and
reproductive disorders that originate from the physiological
stress of high MY would be lower, and the proportion of
roughage in the ration could be increased, thus reducing
production costs (Tekerli et al., 2000). Therefore, a genetic
change towards a persistent lactation curve could be applied
as a means to lower the disease susceptibility in dairy
buffaloes. It was suggested that persistent buffaloes might
lose less BW indicating a favorable relationship between
persistency and reduced negative energy balance (Ghavi
Hossein-Zadeh, 2014a). There was generally a positive
relationship between 305MY and persistency measures
and also between peak yield and 305MY, calculated by
different models, within each lactation in the current study.
Persistency is dependent on total yields, but the direction of
the relationship depends on the measures used. The ratio
measures (such as the measures in the current study) show a
positive one, whereas the variation measures show a nega-
tive relationship (Gengler, 1996). The reason for this could be
that the first are highly affected by the level of production
and the second are influenced by variation in production,
with this variation more important for high producing
animals (Gengler, 1996). In addition, dairy buffaloes with
high daily MY at peak can produce more total MY over the
lactation than lower producing buffaloes at peak day.
Therefore, dairy buffaloes could be selected on the basis of
their peak yield.

Conclusions

A number of factors could be considered when selecting
the optimal model to describe the lactation curve of dairy
buffaloes. While the key factor is the accuracy of the fit of the
model, the possibility of calculating the curve characteristics
and the interpretation of the curve’s parameters is as
important. Of the seven functions investigated in the current
study, Dijkstra equation provided the best fit of MY and
protein percentage of milk for the first three parities of
buffaloes due to the lower values of RMSE and AIC than
other models. For the first-parity buffaloes, Sikka and Brody

models provided the best fit of fat percentage of milk, but
for the second- and third-parity buffaloes, Sikka model and
Brody equation provided the best fit of lactation curve for fat
percentage of milk, respectively.
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