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Abstract 
 

Background: Plants still remain the prime source of drugs for the treatment of inflammation and can provide leads for 

the development of novel anti-inflammatory agents.  

Material and methods: An in vitro bioassay guide revealed that the 80% ethanol (EtOH) extract of the whole plant, 

Amomum tsao-ko (Zingiberaceae), displayed anti-inflammatory activity after assessing its effects on murine 

macrophage RAW 264.7 cells.  

Result: Phytochemical study of the 80% EtOH extract of Amomum tsao-ko led to the isolation of eight compounds: 

4-hydroxy-3-methoxy-benzoic acid (1), meso-hannokinol (2), (+)-hannokinol (3), coumaric acid (4), 

4-hydroxy-benzoic acid (5), (+)-epicatechin (6), (-)-catechin (7), and myrciaphenone A (8). The results indicated that 

two of the isolated components, (+)-epicatechin (6) and (-)-catechin (7), inhibited the production of nitric oxide (NO) 

significantly in lipopolysaccharide treated RAW 264.7 cells.  

Conclusion: LPS-induced interleukin tumor necrosis factor-alpha (TNF- IL-1β and IL-10 production was also 

decreased in a dose-dependent manner. In addition, western blot analysis revealed that (+)-epicatechin (6) and 

(-)-catechin (7) reduced the expression of inducible nitric oxide synthase and inhibited nuclear localization of nuclear 

factor kappa-B (NF-κB).  
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Introduction 
 

Amomum tsao-ko (A. tsao-ko) Crevost et Lemaire is a plant of the genus Amomum in the family Zingiberaceae, 

native to several countries Asia and Africa such as southern China, northern Viet Nam and Ethiopia. The dried fruit of 

A. tsao-ko used as an eliminate phlegm, warm the spleen, reduce abdominal pain, dyspepsia, and vomiting agent in 

Oriental traditional medicine (Lim et al., 2013; Zhao et al., 2010). Tsaokoin, a bicyclic nonane, and antioxidants, 

including hannokinol diarylheptanoids, have been isolated from this plant (Teresita et al., 2000). An antibacterial, 

spiroketal aculeatin (Moon et al., 2004), an antimalarial, diterpene peroxide (Kamchonwongpaisan et al., 1995), and 

eicosenones (Donga et al., 1988) have been identified from other species of the genus Amomum. Although the plant A. 

tsao-ko has long been used as a spice and perfume in addition to its medicinal usage, very few studies have reported its 

anti-inflammatory constituents (Lee et al., 2008). As a result of our ongoing search for novel bioactive natural products 

from medicinal plants, the 80% ethanol (EtOH) extract of the powdered fruit of A. tsao-ko was found to show 

significant anti-inflammatory activity in lipopolysaccharide (LPS)-treated RAW 264.7 cells. To investigate the 

anti-inflammatory properties of A. tsao-ko Ext. and its main components, we performed their effects on the survival and 

immune status of RAW 264.7 murine macrophage cells. Cell viability was determined using a MTT assay after 

treatment with various concentrations of the isolated constituents. Inhibition of NO production and iNOS expression 

were measured by reaction with Griess reagent and western blot analysis in LPS-induced RAW 264.7 cells, 

respectively. Constantly, we investigated the effects of compounds 6 ((+)-epicatechin) and 7 ((-)-catechin) on tumor 

necrosis factor (TNF)-α, IL-1β, and IL-10, which are related to inflammatory response at both reverse 
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transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). NF-κB is 

known to play an important role in gene expression on inflammation (Eliopoulos et al., 2002). The present study 

confirmed that the inhibitory effects of (+)-epicatechin and (-)-catechin were mediated via inhibition of nuclear 

localization of NF-κB, which were also determined by western blot analysis. 

 

Materials and Methods 
General Procedures  

 

Ultraviolet (UV) spectra were obtained using a Shimadzu UV-1650PC spectrometer. Nuclear magnetic 

resonance (NMR) spectra were measured on a Bruker Advance (700MHz 54mm Asecnd shilded Magnet). Chemical 

shifts were expressed in terms of values. Electrospray ionization (ESI) mass spectra were obtained using a LTQ 

Orbitrap XL (Thermo Scientific) mass spectrometer. Preparative high performance liquid chromatography 

(prep-HPLC) was performed using a Shimadzu system (LC-8A pump and Diode Array Detector) and a YMC-Pack 

octadecyl (ODS) A column (250 × 20 mm i.d.), using a gradient solvent system of methanol MeOH-water 

(0:100-100:0) at a flow rate of 8 mL/min. Medium pressure liquid chromatography (MPLC; Combi Flash RF, Teledyne 

ISCO) separations were performed using a RediSep Rf C18 column (50g-150 g C18 Reverse Phase with a flow rate of 

40mL-85 mL/min). Open column chromatography was performed using silica gel (Kieselgel 60, 70-230 mesh Merck) 

and thin layer chromatography (TLC) was performed using pre-coated silica gel 60 F254 (0.25 mm, Merck).  

 

Plant Material 

  

Dried A. tsao-ko was purchased from the Kyungdong Oriental Herbal Market in Korea (August 2012) and 

identified by one of the authors (Prof. Joa Sub Oh). A voucher specimen (G47) was deposited at the Natural Products 

Research Laboratory, Gyeonggido Business and Science Accelerator. 

  

Extraction and Isolation 

  

Dried A. tsao-ko (9.6 kg) was extracted with 5 L of 80% EtOH at room temperature for 5 days. After 

filtration with a cotton ball, the filtrate was combined and evaporated to dryness to give 538.5 g of dark syrupy extract, 

which was suspended in water (10 L) and partitioned with equal volumes of dichloromethane (CH2Cl2), ethylacetate 

(EtOAc), and n-butanol (n-BuOH) successively to give a CH2Cl2 soluble fraction (146 g), an EtOAc soluble fraction 

(33.5 g), a n-BuOH soluble fraction (85 g), and a residual aqueous fraction (267 g). The EtOAc soluble fraction (33.5 

g) was subjected to silica gel column (Ø = 5.0 × 100 cm) chromatography and eluted with MeOH in CH2Cl2 in a 

step-gradient manner (1% to 50%) to afford seven fractions (F1: 1.7 g, F2: 0.98 g, F3: 2.6 g, F4: 2.4 g, F5: 4.0 g, F6: 

4.0 g, and F7: 17.5 g). The fraction F2 (0.98 g) was further purified using ODS column (Ø = 1.0 × 80 cm) 

chromatography to give 18.8 mg of 1. Fraction F3 (2.4 g) was also purified by silica gel column chromatography eluted 

with MeOH in CH2Cl2 (1% to 50%) in a stepwise gradient manner to produce five fractions (F31–F35). F32 was 

further purified using RP-18 column chromatography to produce 5.6 mg of 2 and 7.3 mg of 3. F4 (2.4 g) was purified 

with RP-18 column chromatography to produce 16.1 mg of compound 4 and 27.7 mg of 5. F5 (4.0 g) was purified with 

RP-18 column chromatography to produce 9.4 mg of 6 and 10.4 mg of 7. Repeated RP-18 chromatography of F6 (4.0 

g) with step-gradient elution of MeOH in water resulted in the purification of 4.3 mg of 8.  

 

Compound 1 - white amorphous powder; EI-MS m/z: 168 [M]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 7.58 (1H, d, J = 1.2 

Hz, H-3), 7.57 (1H, dd, J = 1.8 & 7.5 Hz, H-5), 6.85 (1H, d, J = 7.5 Hz, H-6), 3.91(3H, s, OCH3); 
13

C-NMR (175 MHz, 

MeOH-d4): δ 168.9 (C-7), 151.1 (C-1), 147.2 (C-2), 123.8 (C-5), 122.0 (C-4), 114.4 (C-3), 112.4 (C-6), 55.0 (C-OMe). 

Compound 2 - white amorphous powder; ESI-MS m/z: 317 [M+H]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 6.99 (4H, d, J 

= 8.4 Hz, H-2', H-6', H-2", H-6"), 6.67 (4H, d, J = 8.4 Hz, H-3', H-5', H-3", H-5"), 3.78 (2H, m, H-3, H-5), 2.68-2.50 

(4H, m, H2-1, H2-7), 1.69-1.63 (4H, m, H2-2, H2-6), 1.53 (2H, dd, J = 6.5 & 5.8 Hz, H2-4); 
13

C-NMR (175 MHz, 

MeOH-d4): δ 32.2 (C-1), 41.4 (C-2), 68.7 (C-3), 45.6 (C-4), 68.7 (C-5), 41.4 (C-6). 32.2 (C-7), 134.5 (C-1'), 130.3 

(C-2'), 116.1 (C-3'), 156.3 (C-4'), 116.1 (C-5'), 130.3 (C-6'), 134.5 (C-1"), 130.3 (C-2"), 116.1 (C-3"), 156.3 (C-4"), 

116.1 (C-5"), 130.3 (C-6"). 

Compound 3 - white amorphous powder; ESI-MS m/z: 317 [M+H]
+
; 

1
H-NMR (700 MHz, MeOH-d4) : δ 6.99 (4H, d, J 

= 8.4 Hz, H-2', H-6', H-2", H-6"), 6.67 (4H, d, J = 8.4 Hz, H-3', H-5', H-3", H-5"), 3.74 (2H, m, H-3, H-5), 2.63-2.52 

(4H, m, H2-1, H2-7), 1.66-1.70 (4H, m, H2-2, H2-6), 1.60 (2H, dd, J = 6.5 & 5.8 Hz, H2-4); 
13

C-NMR (175 MHz, 

MeOH-d4): δ 30.5 (C-1), 39.5 (C-2), 69.5 (C-3), 43.4 (C-4), 69.5 (C-5), 39.5 (C-6). 30.5 (C-7), 133.0 (C-1'), 128.9 

(C-2'), 114.7 (C-3'), 154.9 (C-4'), 114.7 (C-5'), 128.9 (C-6'), 133.0 (C-1"), 128.9 (C-2"), 114.7 (C-3"), 154.9 (C-4"), 

114.7 (C-5"), 128.9 (C-6"). 

Compound 4 - white amorphous powder; EI-MS m/z: 164 [M]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 7.57 (1H, d, J = 

15.8 Hz, H-7), 7.44 (2H, d, J = 8.5 Hz, H-3 & 5), 6.80 (2H, d, J = 8.5 Hz, H-2 & 6), 6.29 (1H, d, J = 15.8 Hz, H-8); 
13

C-NMR (175 MHz, MeOH-d4): δ 159.7 (C-1), 115.4 (C-2), 129.6 (C-3), 126.0 (C-4), 129.6 (C-5), 115.4 (C-6), 144.8 

(C-7), 115.1 (C-8), 171.5 (C-9). 

Compound 5 - white amorphous powder; EI-MS m/z: 138 [M]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 7.87 (2H, d, J = 8.8 

Hz, H-3 & 5), 6.82 (2H, d, J = 8.8 Hz, H-2 & 6), 6.80 (2H, d, J = 8.5 Hz, H-2 & 6), 6.29 (1H, d, J = 15.8 Hz, H-8); 
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13
C-NMR (175 MHz, MeOH-d4): δ 162.0 (C-1), 114.6 (C-2), 131.6 (C-3), 121.4 (C-4), 131.6 (C-5), 114.6 (C-6), 168.7 

(C-7). 

Compound 6 - white amorphous powder; EI-MS m/z: 290 [M]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 7.00 (1H, d, J = 1.9 

Hz, H-2'), 6.82 (1H, d, J = 1.9 Hz & 8.1 Hz, H-6'), 6.78 (1H, d, J = 8.1 Hz, H-5'), 5.96 (1H, d, J = 2.1 Hz, H-6), 5.94 

(1H, d, J = 2.1 Hz, H-8), 4.84 (1H, s, H-2), 4.20 (1H, m, H-3), 2.89 (1H, dd, J = 4.63 & 16.6 Hz, H-4a), 2.76 (1H, dd, J 

= 2.93 & 16.6 Hz, H-4b); 
13

C-NMR (175 MHz, MeOH-d4): δ 78.5 (C-2), 66.1 (C-3), 27.9 (C-4), 156.6 (C-5), 95.0 

(C-6), 156.3 (C-7), 94.5 (C-8), 156.0 (C-9), 98.7 (C-10), 130.9 (C-1'), 113.9 (C-2'), 144.5 (C-3'), 144.4 (C-4'), 114.5 

(C-5'). 118.0 (C-6'). 

Compound 7 - white amorphous powder; EI-MS m/z: 290 [M]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 6.85 (1H, d, J = 1.9 

Hz, H-2'), 6.78 (1H, d, J = 8.1 Hz, H-5'), 6.74 (1H, dd, J = 1.9 & 8.1 Hz, H-6'), 5.94 (1H, d, J = 2.1 Hz, H-6), 5.87 (1H, 

d, J = 2.1 Hz, H-8), 4.58 (1H, d, 7.6 Hz, H-2), 3.99 (1H, m, H-3), 2.87 (1H, dd, J = 7.6 & 16.0 Hz, H-4a), 2.52 (1H, dd, 

J = 8.6 & 16.0 Hz, H-4b); 
13

C-NMR (175 MHz, MeOH-d4): δ 81.5 (C-2), 67.4 (C-3), 27.1 (C-4), 156.5 (C-5), 94.9 

(C-6), 156.2 (C-7), 94.1 (C-8), 155.5 (C-9), 94.4 (C-10), 130.8 (C-1'), 113.8 (C-2'), 144.9 (C-3'), 144.8 (C-4'), 114.7 

(C-5'), 118.6 (C-6'). 

Compound 8 - white amorphous powder; ESI-MS m/z: 331 [M+H]
+
; 

1
H-NMR (700 MHz, MeOH-d4): δ 6.20 (1H, d, J 

= 2.2 Hz, H-4), 5.97 (1H, d, J = 2.2 Hz, H-6), 5.05 (1H, d, J = 7.8 Hz, H-1'), 2.71 (3H, s, H-8); 
13

C-NMR (175 MHz, 

MeOH-d4): δ 203.4 (C-7), 166.3 (C-1), 164.9 (C-5), 161.2 (C-3), 105.3 (C-2), 100.6 (C-1'), 96.7 (C-4), 93.9 (C-6), 77.1 

(C-5'), 77.0 (C-3'), 73.3 (C-2'), 69.7 (C-4'), 61.0 (C-6'), 32.1 (C-8). 

 

Reagents 

 

Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) were purchased from Gibco 

Life Technologies (Rockville, MD, USA). Penicillin-streptomycin was purchased from Invitrogen (Carlsbad, CA, 

USA). N-(1-naphthyl) ethylenediamine dihydrochloride and sulfanilamide were purchased from Merck Millipore 

(Billerica, MA, USA). Lipopolysaccharide from Escherichia coli serotype 0111:B4, bovine serum albumin, RIPA 

buffer, protease inhibitor cocktail, Dexamethasone and N
G
-methyl-l-arginine acetate salt (L-NMMA) were purchased 

from Sigma Aldrich (St. Louis, MO, USA). Rabbit polyclonal anti-iNOS antibody was purchased from Abcam 

(Cambridge, UK). Anti-β-actin, anti-NF-κB p65, anti-NF-κB p50 and rabbit IgG-horseradish peroxidase conjugated 

secondary antibodies were purchased from Cell Signaling (Danvers, MA, USA). Goat polyclonal anti-Lamin B and 

goat IgG-horseradish peroxidase conjugated secondary antibodies were purchased from Santa Cruz Biotechnology 

(Dallas, TX, USA). 

 

Cell culture 

 

RAW 264.7 mouse macrophage cells (TIB-71) were obtained from the American Type Culture Collection 

(Manassas, VA, USA). Cells were maintained in DMEM supplemented with 10% Korean Cell Line Bank were 

cultured in DMEM supplemented with 10% FBS and 1% penicillin (100 U/mL)-streptomycin (100 μg/mL) in a 

humidified incubator with 5% CO2 at 37˚C. 

 

Cell viability 

 

RAW 264.7 cells were seeded on 96-well plates (5 × 10
4
 cells/well), were treated with A. tsao-ko EtOH 

extracts or either of its main components for 1 h prior to LPS (1 μg/mL) stimulation for 24 h. MTT solution (5 mg/mL) 

was added to each well After 2 h of incubation at 37°C with 5% CO2, the supernatant was removed and dissolved in 

DMSO. The absorbance of each well was measured at a wavelength of 540 nm using a SpectraMax 190PC microplate 

reader (Molecular Devices, Sunnyvale, CA, USA). Data are presented as the mean ± standard deviation of three 

replicates. 

 

Nitric oxide production assay 

 

RAW 264.7 cells (5 × 10
4 
cells/well in 96-well plates) were examined with A. tsao-ko EtOH extracts or either 

of its main components for 1 h prior to LPS (1 μg/mL) stimulation for 24 h. Nitrite in culture medium was measured by 

using Griess reagent (N-(1-naphthyl) ethylenediamine dihydrochloride and sulfanilamide). Absorbance was 

subsequently measured at 540 nm, using a SpectraMax 190PC microplate reader (Molecular Devices, Sunnyvale, CA, 

USA). 

Reverse transcription-polymerase chain reaction (RT-PCR) 

 

RAW 264.7 cells were seeded on 6-well plates (1 × 10
6
 cells/well), were treated with main components 

((+)-epicatechin and (-)-catechin) for 1 h prior to LPS (1 μg/mL) stimulation for 24 h. The total RNA was extracted 

using TRIzol
Ⓡ

 reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer’s protocol. The 

integrity of the RNA was evaluated using agarose gel electrophoresis and ethidium bromide staining. Briefly, 1 µg 

RNA was used as a template for each RT-PCR, using the SuperScript
® 

III First-Strand Synthesis System and Platinum® 

PCR SuperMix which contains Taq DNA polymerase (Invitrogen; Thermo Fisher Scientific, Inc.), according to the 



 

29 
 

manufacturer’s protocol. RT-PCR amplification was performed using MyGene
™ 

Series Peltier Thermal Cycler 

(LongGene
®
 Scientific Instruments Co., Ltd., Hangzhou, China) and AccuPower

®
 Pfu PCR PreMix (Bioneer 

Corporation). The following conditions were used for each PCR reaction: 95°C for 5 min (1 cycle); 95°C for 30 sec, 

55°C for 40 sec, and 72°C for 1 min (30 cycles); and a final extension phase at 72°C for 10 min. The following primers 

(Bioneer Corporation, Daejeon, Republic of Korea) were used for PCR amplification: TNF-α, 5'-CTGAGA 

CAATGAACGCTACA-3' (sense) and 5'-TTCTTCCACATCTATGCCAC-3' (antisense); IL-1β, 5' 

-CTTTGAAGAAGAGCCCATCC-3' (sense) and 5'-TTTGTCGTTGCTTGGTTCTC-3' (antisens e); IL-10, 

5'-CCTGGTAGAAGTGATGCCCCAGGCA-3' (sense) and 5'- CTATGCAGTTGATGA AGATGTCAAA-3' 

(antisense); glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 5'-CAG GTACCAGGAGAGTG-3' (sense) and 

5'-GTAGACTCCACGACATCTC-3' (antisense). PCR pro ducts were electrophoresed on a 1% agarose gel and stained 

with ethidium bromide. Bands were captured using a ChemiDoc
™

 XRS system (Bio-Rad Laboratories) and quantified 

using Quantity One software version 4.6.3 (Bio-Rad Laboratories). Data was compared with the housekeeping gene 

GAPDH. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

RAW 264.7 cells (1 × 10
6
 cells/well in 6-well plates) were examined with main components ((+)-epicatechin 

and (-)-catechin) for 1 h prior to LPS (1 μg/mL) stimulation for 24 h. Levels of TNF-α, IL-1β, and IL-10 in cell culture 

supernatants were quantified using platinum TNF-α, IL-1β, and IL-10 ELISA kits (eBioscience, Inc., San Diago, CA, 

USA), according to the manufacturer’s instructions. 

 

Western blot analysis 

 

Following treatment as indicated, cells were washed twice with PBS and lysed with RIPA buffer containing protease 

inhibitor cocktails. Cell lysates were clarified at 13,000 × g for 10 min at 4 ºC, and the supernatants were subjected to 

Western blot analysis as described previously. All western blot analyses are representative of at least three independent 

experiments. 

 

Preparation of nuclear extract 

 

RAW 264.7 cells were plated at a density of 1 × 10
6
 cells/well in 6-well plates and treated with main 

components ((+)-epicatechin and (-)-catechin) for 1 h prior to LPS (1 μg/mL) stimulation for 30 min. cells were washed 

twice with ice-cold PBS prior to trypsinization and centrifugation at 90 x g and 4˚C for 5 min. Cells were then 

centrifuged at 20,000 x g and 4˚C for 5 min and resuspended in 200 μl buffer (10 mM HEPES at pH 7.9, 10 mM KCl, 1 

mM DTT, 0.5 mM PMSF and 0.1 mM EDTA). After incubation on ice for 10 min, cells were lysed by the addition of 

12.5 μl of 10% NP-40. Cells were then centrifuged at 20,000 x g for 2 min at 4˚C, and the supernatants were collected 

as cytosolic extract. Pellets were resuspended in 50 μl of extraction buffer (20 mM HEPES at pH 7.9, 0.4 M NaCl, 1 

mM DTT, 1 mM PMSF, 1 mM EDTA and 1% NP-40) and incubated on ice for 10 min. Nuclear extract was collected 

by centrifugation at 15,000 x g for 15 min at 4˚C. 

 

Statistical analysis 

   

Statistical analysis was performed by a Student’s t-test using Microsoft Excel 2007 software (Microsoft 

Corporation, Redmond, WA, USA). Results are presented as the mean ± standard deviation. P<0.05 was considered to 

indicate a statistically significant difference. 

 

Results 
  

LPS, a component of the cell wall of gram-negative bacteria, increases the levels of pro-inflammatory cytokines, 

including NO, TNF-α, IL-10, and IL-1β, in macrophages and monocytes. It also induces diverse disease-related 

inflammatory responses (Willeaume et al. 1995). As shown in Table 1, we showed that 80% EtOH extract of the 

powdered fruit of A. tsao-ko decreased LPS-induced NO production in RAW 264.7 cells.  

 

Table 1: Inhibitory effects of A. tsao-ko extract and isolated fractions on LPS-induced NO production RAW 264.7 

cells 

Fractions NO IC50 (μg/mL) MTT IC50 (μg/mL) 

80% EtOH ext. 59.5 ± 1.8
a
 >100 

CH2Cl2 <25 92.8 ± 1.6 

EtOAc <25 >100 
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BuOH 73.1 ± 3.3 >100 

H2O >25 >100 

PC
b
 27.3 ± 0.3 μM >100 

a
The experiments were repeated in triplicate; values are expressed as mean ± SD. 

b
N-Monomethyl-L-arginine 

(LNMMA) was used as a positive control. 

 

The concentration of extract required for 50% inhibition (IC50) of activity was 59.5 μg/mL. Among the four fractions 

obtained by serial solvent partition of A. tsao-ko (CH2Cl2 soluble fraction, EtOAc soluble fraction, n-BuOH soluble 

fraction, and remaining aqueous fraction), the CH2Cl2 and the EtOAc soluble fraction displayed potent inhibitory 

activity (IC50 < 25 μg/mL). The concentration of A. tsao-ko Ext. and the four fractions that is possibly cytotoxic to 

RAW 264.7 cells was determined by MTT assay. Cytotoxicity effect was not caused by CH2Cl2 soluble fraction, EtOAc 

soluble fraction, n-BuOH soluble fraction, and aqueous fraction in LPS-induced RAW 264.7 cells. Therefore, bioassay 

guided purification of the active fraction, i.e., the EtOAc soluble fraction of A. tsao-ko, was conducted to purify the 

active components that display anti-inflammatory activity against LPS-treated RAW 264.7 cells.  

Repeated column chromatography on silica gel and a RP-18 column of the EtOAc soluble fraction led to the 

isolation of eight compounds: 4-hydroxy-3-methoxy-benzoic acid (1) (Gonzalez-Baro 2008), meso-hannokinol (2) (Lee 

et al. 2008), (+)-hannokinol (3) (Lee et al. 2008), coumaric  acid (4) (Salum et al. 2010), 4-hydroxy-benzoic acid (5) 

(Sivakumar et al. 2010), (+)-epicatechin (6) (Teresita et al. 2000), (-)-catechin (7) (Teresita et al. 2000), and 

myrciaphenone A (8) (Gupte 2009) (Fig. 1).  

 

 
Figure 1: Structures of compounds isolated from the EtOAc fraction (1-8) 

 

NMR and mass spectra were analyzed to determine the structures of the compounds. In addition, all physical and 

spectroscopic data obtained in the present study were compared with those of previously published manuscripts. 

Isolated components were tested for their inhibitory effect on NO production in LPS-stimulated RAW 264.7 cell 

culture system. 

Among the isolated compounds, compounds 6 ((+)-epicatechin) and 7 ((-)-catechin) showed the highest activity (IC50 

= 70.6 μM and IC50 = 73.3 μM, respectively) against NO production without cytotoxicity (Table 2, Fig. 2). 
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 Table 2: Inhibitory effect of compounds 1-5 on LPS-induced NO production RAW 264.7 cells 

Compounds IC50 value (µM) MTT assay IC50 (µM) 

1 >100
a
 >100 

2 >100 >100 

3 >100 >100 

4 >100 >100 

5 >100 >100 

6 70.57 ± 0.3 >100 

7 73.32 ± 0.5 >100 

8 >100 >100 

PC
b
 25.29 ± 0.4 >100 

 a
The experiments were repeated in triplicate; values are expressed as mean ± SD.  

 b
N-Monomethyl-L-arginine (LNMMA) was used as a positive control. 

 

A. 

       
B. 

       
Figure 2: Effect of (+)-epicatechin (6) and (-)-catechin (7) on cytotoxicity and inhibition of NO production in RAW 

264.7 macrophages. Cells were examined with (+)-epicatechin and (-)-catechin for 1 h prior to LPS (1 μg/mL) 

stimulation for 24 h. A. Cytotoxicity of (+)-epicatechin and (-)-catechin was determined by MTT assay. B. NO 

production was determined by measuring the concentrations of NO2
-
 and NO3

-
 in cell culture supernatants. The bars 

represent the mean ± SD of three independent experiments. Statistical significance is indicated (*P < 0.05, **P < 0.01, 

compared with LPS-treated cells). 

 

Constantly, we conducted the effect of (+)-epicatechin and (-)-catechin on iNOS expression induced by LPS using 

western blot analysis. As shown in Fig. 3, (+)-epicatechin and (-)-catechin effectively inhibited LPS-induced expression 

of iNOS at protein level in RAW264.7 cells.  

 

       
 

Figure 3: Effect of (+)-epicatechin and (-)-catechin on the expression of iNOS in LPS-stimulated RAW 264.7 cells 

Expression levels of iNOS protein were determined by western blot. β-actin served as internal control western blot. 

Values represent the mean ± SD of three independent replicates. 
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These results indicate that treated with (+)-epicatechin and (-)-catechin (25-100 μM) significantly suppress 

LPS-induced NO production related to down-regulating iNOS expression in RAW264.7 macrophages. NF-κB plays a 

crucial role in general inflammatory reaction by controlling the activation of iNOS. The activation of NF-κB caused 

translocation of active NF-κB p50 and p65 from the cytoplasm to nucleus (Chen et al. 1995). In this study, we 

investigated whether (+)-epicatechin and (-)-catechin could suppress the translocation of NF-κB (p65 and p50) into the 

nucleus. We showed that (+)-epicatechin and (-)-catechin inhibited the translocation of NF-κB (p65 and p50) into the 

nucleus (Fig. 4). 

 

  
 

Figure 4: Regulatory effects of (+)-epicatechin and (-)-catechin on NF-κB nuclear localization in LPS-stimulated 

RAW 264.7 cells. Cells were pretreated with (+)-epicatechin and (-)-catechin for 1 h, followed by LPS (1 μg/mL) 

stimulation for 30 min. Cytosolic and nuclear extracts were analyzed via western blot with anti-NF-κB p65, anti-NF-κB 

p50, anti-β-actin or anti-Lamin B antibodies. β-actin served as a marker for the cytoplasm and Lamin B for the nucleus. 

Results shown are representative of at least three independent experiments. 

 

Next, we examined the effect of (+)-epicatechin and (-)-catechin on inflammatory cytokines, such as TNF-α, IL-1β, 

and IL-10 in LPS-stimulated RAW 264.7 cells. In this study, we measured the expression levels of these inflammatory 

cytokines by RT-PCR and ELISA analysis. As shown in Fig. 5, (+)-epicatechin and (-)-catechin inhibited the expression 

of TNF-α, IL-1β, and IL-10 in a dose-dependent manner at both the mRNA and protein levels in RAW264.7 cells. 

These results showed that (+)-epicatechin and (-)-catechin have a potential activity on anti-inflammatory activity 

through the down-regulation of the NF-κB signaling pathway. 

 

 

A. 

       
B. 
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Figure 5: Effects of (+)-epicatechin and (-)-catechin on the expression and secretion of various cytokines in RAW 

264.7 cells. A. The expression of TNF-α, IL-1β, and IL-10 mRNA was determined by RT-PCR analysis. B. Cell culture 

supernatant was subjected to TNF-α, IL-1β, and IL-10 cytokine ELISA as described in Materials and methods. Values 

represent the mean ± SD of three independent experiments. Statistical significance is indicated (*P < 0.05, **P < 0.01, 

compared with LPS-treated cells). 

 

Discussion 
 

Macrophages play an important role in both passive and active immunity and regulate anti-inflammatory 

mediators including NO and pro-inflammatory cytokines (Alleva et al., 2002; Eliopoulos et al., 2002). iNOS (NOS II), 

one of the isoforms of the nitric oxide synthase (NOS) family, is found in macrophages and hepatocytes. iNOS is not 

expressed in most resting cells; however, upon exposure to endogenous and exogenous stimulators, such as LPS or 

pro-inflammatory cytokines like TNF-α, IL-1β and IL-10 the expression of the iNOS gene is increased and triggers 

several disadvantageous cellular responses, causing diseases, including inflammation, sepsis, and stroke (Nathan et al., 

1992; Marletta et al., 1993; Duval et al., 1996). In order to extend the understanding of the anti-inflammatory effects of 

(+)-epicatechin and (-)-catechin, which showed the potent inhibitory activity, on the expression of inflammatory 

proteins, iNOS expression and the production of NO were evaluated in LPS-stimulated RAW 264.7 cells. Treatment 

with (+)-epicatechin and (-)-catechin inhibited NO production and iNOS expression in a dose-dependent manner in 

LPS-stimulated RAW 264.7 cells (Fig. 3). TNF-α is an element of the innate immune response against stimulus and 

IL-1β is an important factor in the acute inflammation response (Strandberg et al., 2005). NF-κB activation leads to 

release of pro-inflammatory proteins production. NF-κB transcription factors are in the cytoplasm as an inactive state 

and when stimulation, NF-κB transfer to nuclear localization (Wu et al., 2008).  

Altogether, the results indicated that (+)-epicatechin and (-)-catechin, isolated from A. tsao-ko, effectively 

inhibited NO production in LPS-stimulated RAW 264.7 cells by suppression of iNOS expression and the production of 

inflammatory cytokines, such as TNF-α, IL-1β and IL-10. In addition, we confirmed that (+)-epicatechin and 

(-)-catechin have anti-inflammatory activity via down-regulating nuclear localization of NF-κB.  

 

Acknowledgment  

 

 This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ01119301), 

Rural Development Administration, Republic of Korea. 

 

Conflict of Interest: Authors have declared that no competing interests exist. 

 

  

 

 

  



 

34 
 

References 
 

1. Alleva DG, John EB, Lio FM, Boehme SA, Conlon PJ, Crowe PD (2002) Regulation of murine macrophage 

pro-inflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated 

receptor-gamma: counter-regulatory activity by IFN-gamma. J Leukoc Biol., 71(4):677-685. 

2. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer C, Ballard D, Maniatis T (1995) Signal-induced site-specific 

phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev., 9(13):1586-1597. 

3. Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM (1994) Expression of inducible nitric oxide synthase causes 

delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology, 33:1425-1430. 

4. Donga H, Goua YL, Caob SG, Chena SX, Simb KY, Gohb SH, Kini RM (1988) Eicosenones and methylated 

flavonols from Amomum koenigii. Phytochemistry, 50:899-902. 

5. Duval DL, Miller DR, Collier J, Billings RE (1996) Characterization of hepatic nitric oxide synthase: identification 

as the cytokine-inducible form primarily regulated by oxidants. Mol Pharmacol., 50:277-284. 

6. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN (2002) Induction of COX-2 by LPS in macrophages is 

regulated by Tpl2-dependent CREB activation signals. EMBO J., 21(18):4831-4840. 

7. Gonzalez-Baro, AC (2008) Theoretical and spectroscopic study of vanillic acid. J Molecular Structure., 889:1-3.  

8. Gupte A (2009) Synthesis and biological evaluation of phloridzin analogs as human concentrative nucleoside 

transporter 3 (hCNT3) inhibitors. Bioorg Med Chem Lett., 19:917-921.  

9. Kamchonwongpaisan S, Nilanonta C, Tarnchompoo B, Thebtaranonth C, Thebtaranonth Y, Yuthavong Y, Kongsaeree 

P, Clardy J (1995) An antimalarial peroxide from Amomum krervanh Pierre. Tetrahedron Let.,t 36:1821-1824. 

10. Lee JY, Kim SH, Sung SH, Kim YC (2008) Inhibitory constituents of lipopolysaccharide -induced nitric oxide 

production in BV2 microglia isolated from Amomum tsao-ko. Planta Med., 74: 867-869.  

11. Lim TK (2013) Edible Medicinal and Non-Medicinal Plants (Vol 5). Springer, Las Vegas, NV. 

12. Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem., 268:12231-12234. 

13. Moon SS, Lee JY, Cho SC (2004) Isotsaokoin, an antifungal agent from Amomum tsao-ko. J Nat Prod., 67:889-891. 

14. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J., 6:3051-3064. 

15. Salum ML (2010) Photoisomerization of ionic liquid ammonium cinnamates: one-pot synthesis-isolation of Z-

cinnamic acids. Organic Lett., 12:4808-4811.  

16. Sivakumar S (2010) Synthesis and crystal structures of lanthanide 4-benzyloxy benzoates: influence of electron-

withdrawing and electron-donating groups on luminescent properties. Dalton Transactions, 39:776-786.  

17. Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R (2005) Lipopolysaccharide and 

lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine, 

31(1):72-86. 

18. Teresita SM, Hiroe K, Masashi H, Nobuji N (2000) Constituents of Amomum tsao-ko and their radical scavenging 

and antioxidant activities. JAOCS, 77:667-673. 

19. Willeaume V, Kruys V, Mijatovic T, Huez G (1995) Tumor necrosis factor-alpha production induced by viruses and 

by lipopolysaccharides in macrophages: similarities and differences. J Inflamm., 46:1-12. 

20. Wu W, Alexis NE, Chen X, Bromberg PA, Peden DB (2008) Involvement of mitogen-activated protein kinases and 

NFkappaB in LPS-induced CD40 expression on human monocytic cells. Toxicol Appl Pharmacol., 228:135-143. 

21. Zhao ZZ, Xiao PG (2010) Encyclopedia of Medicinal Plants. (Vol 4). World Publishing Corporation, Hong kong: 

36-38.  

 

https://www.infona.pl/resource/bwmeta1.element.elsevier-ebaa6901-9484-3cc6-8dd3-e89237b61a4c/tab/jContent
https://www.infona.pl/resource/bwmeta1.element.elsevier-ebaa6901-9484-3cc6-8dd3-e89237b61a4c/tab/jContent/facet?field=%5ejournalYear%5ejournalVolume&value=%5e_01995%5e_00036

