
Multi-dimensional Resource Allocation for Data-intensive
Large-scale Cloud Applications

Foued Jrad1, Jie Tao1, Ivona Brandic2 and Achim Streit1
1Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

2Information Systems Institute, Vienna University of Technology, 1040 Vienna, Austria
ffoued.jrad, jie.tao, achim.streitg@kit.edu, ivona@infosys.tuwien.ac.at

Keywords: Cloud Computing, Multi-Cloud, Resource Allocation, Scientific Workflow, Data Locality.

Abstract: Large scale applications are emerged as one of the important applications in distributed computing. Today,
the economic and technical benefits offered by the Cloud computing technology encouraged many users to
migrate their applications to Cloud. On the other hand, the variety of the existing Clouds requires them to
make decisions about which providers to choose in order to achieve the expected performance and service
quality while keeping the payment low. In this paper, we present a multi-dimensional resource allocation
scheme to automate the deployment of data-intensive large scale applications in Multi-Cloud environments.
The scheme applies a two level approach in which the target Clouds are matched with respect to the Ser-
vice Level Agreement (SLA) requirements and user payment at first and then the application workloads are
distributed to the selected Clouds using a data locality driven scheduling policy. Using an implemented Multi-
Cloud simulation environment, we evaluated our approach with a real data-intensive workflow application in
different scenarios. The experimental results demonstrate the effectiveness of the implemented matching and
scheduling policies in improving the workflow execution performance and reducing the amount and costs of
Intercloud data transfers.

1 INTRODUCTION

With the advantages of pay-per-use, easy-to-use and
on-demand resource customization, the Cloud com-
puting concept was quickly adopted by both indus-
try and the academia. Over the last decade, a lot of
Cloud infrastructures have been built which distin-
guish themselves in the type of offered service, ac-
cess interface, billing and SLA. Hence, today Cloud
users have to make manual decisions about which
Cloud to choose in order to meet their functional
and non-functional service requirements while keep-
ing the payment low. This task is clearly a burden
for the users because they have to go through the
Web pages of Cloud providers to compare their ser-
vices and billing policies. Furthermore, it is hard for
them to collect an maintain the all needed information
from current commercial Clouds to make accurate de-
cisions.

The raising topic of Multi-Cloud addresses the in-
teroperability as well the resource allocation across
heterogeneous Clouds. In this paper we focus from
a user perspective on the latter problem, which has
been proved to be NP-hard. A challenging task for

the resource allocation is how to optimize several
user objectives like minimizing costs and makespan
while fulfilling the user required functional and non-
functional SLAs. Since in Multi-Cloud data trans-
fers are performed through Internet between data-
centers distributed in different geographical locations,
another challenge is how to distribute the workloads
on these Clouds in order to reduce the amount and
cost of Cloud-to-Cloud (Intercloud) data transfers.

Today, related work on Cloud resource allocation
is typically restricted to optimizing up to three ob-
jectives which are cost, makespan and data locality
(Deelman et al., 2008). Attempts to support other
objectives (e.g. reliability, energy efficiency) (Fard
et al., 2012) cannot be applied directly to Multi-
Cloud environments. However, the support for more
SLA constraints like the Cloud-to-Cloud latency and
Client-to-Cloud throughput, which both have high
importance for data-intensive Mutli-Cloud applica-
tions, is still missing.

Motivated by the above considerations, we pro-
pose a multi-dimensional resource allocation scheme
to automate the deployment of large scale Multi-
Cloud applications. We facilitate the support of multi-

691

ple generic parameters by applying a two stage alloca-
tion approach, in which the target Clouds are selected
using an SLA-based matching algorithm at first and
then the application workloads are distributed to the
selected Clouds using a data locality driven schedul-
ing policy. For the SLA-based matching, we adopted
from the economic theory a utility-based algorithm
which scores each non-functional SLA attribute (e.g.
availability, throughput and latency) and then calcu-
lates the user utility based on his payment willing-
ness and the measured Cloud provider SLA metrics.
Overall, our optimization is done with four objectives:
makespan, cost, data locality and the satisfaction level
against the user requested non-functional SLA.

In order to validate our resource allocation
scheme, we investigate in this paper the deployment
of data-intensive Multi-Cloud worlflow applications.
Our idea of supporting Multi-Cloud workflows comes
from the observation of following scenario: A cus-
tomer works on several Clouds and stores data on
them. There is a demand of jointly processing all of
the data to form a final result. This scenario is simi-
lar to the collaborative work on the Grid. For exam-
ple, the Worldwide LHC Computing Grid (WLCG)
1 involves more than 170 computing centers, where
the community members often work on a combined
project and store their data locally on own sites. A
workflow application within such a project must cover
several Grid resource centers.

We evaluated our allocation scheme using a Mutli-
Cloud workflow framework, we developed based on
the CloudSim (Calheiros et al., 2011) simulation
toolkit. The reason for applying a simulator rather
than real Clouds is that our evaluation requires dif-
ferent Cloud platforms with various properties in in-
frastructure Quality of Service (QoS). In addition, the
simulator allows us to fully validate the proposed con-
cept with various scenarios and hence to study the
developed resource matching and data locality opti-
mization schemes.

The experimental results show that our multi-
dimensional allocation scheme offers benefits to users
in term of performance and cost compared to other
policies. Overall, this work makes the following con-
tributions:

1. A multi-dimensional resource allocation scheme
for large scale Multi-Cloud applications.

2. An efficient utility-based matching policy to se-
lect Cloud resources with respect to user SLA re-
quirements.

3. A data locality driven scheduling policy to mini-
mize the data movement and traffic cost.

1http://lcg.web.cern.ch

4. An extensive simulation-based evaluation with a
real workflow application.

The remainder of the paper is organized as fol-
lows: Section 2 presents the related work on data
locality driven workflow scheduling. Section 3 de-
scribes the Multi-Cloud workflow framework used to
validate our approach. Section 4 and Section 5 de-
scribe the functionality of the matching and schedul-
ing algorithms implemented in this work. Section 6
presents the simulation environment and the evalua-
tion results gathered from the simulation experiments.
Finally, Section 7 concludes the paper and provides
the future work.

2 RELATED WORK

Over the past decade, the scheduling of data-intensive
workflows is emerged as an important research topic
in distributed computing. Although the support of
data locality have been heavily investigated on Grid
and HPC, only few approaches apply data locality for
Cloud workflows. A survey of these approaches is
provided in (Mian et al., 2011). In this section we fo-
cus on works dealing with data locality driven work-
flow scheduling in Multi-Cloud environments.

The authors in (Fard et al., 2013) adopted from
the game theory a dynamic auction-based schedul-
ing strategy called BOSS to schedule workflows in
Multi-Cloud environments. Although their conducted
experiments show the effectiveness of their approach
in reducing the cost and makespan compared to tra-
ditional multi-objective evolutionary algorithms, the
support for data locality is completely missing in their
work. Szabo et al. (Szabo et al., 2013) implemented a
multi-objective evolutionary workflow scheduling al-
gorithm to optimize the task allocation and ordering
using the data transfer size and execution time as fit-
ness functions. Their experimental results prove the
performance benefits of their approach but not yet
the cost effectiveness. Although the authors claim
the support for Multi-Cloud, in their evaluation they
used only Amazon EC2-based 2 Clouds. Yuan et al.
(Yuan et al., 2010) proposed a k-means clustering
strategy for data placement of scientific Cloud work-
flows. Their strategy clusters datasets based on their
dependencies and supports reallocation at runtime.
Although their simulation results showed the bene-
fits of the k-means algorithm in reducing the num-
ber of data movements, their work lacks the evalua-
tion of the execution time and cost effectiveness. In
(Pandey et al., 2010) the authors use particle swarm

2http://aws.amazon.com/ec2

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

692

optimization (PSO) techniques to minimize the com-
putation and traffic cost when executing workflows on
the Cloud. Their approach is able to reduce execution
cost while balancing the load among the datacenters.
The authors in (Jin et al., 2011) introduced an effi-
cient data locality driven task scheduling algorithm
called BAR (Balance and reduce). The algorithm ad-
justs data locality dynamically according to the net-
work state and load on datacenters. It is able to reduce
the completion time. However, it has been tested only
with MapReduce (Dean and Ghemawat, 2008)-based
workflow applications.

The examination of the previous mentioned works
shows that the support of data locality in the schedul-
ing improves the performance and minimizes the cost
of workflow execution on Cloud. A more clever so-
lution allowing the support of more generic workflow
applications is to implement task scheduling as part
of a middleware on top the Cloud infrastructures. In
such way, it would be possible to support more user-
defined SLA requirements, like latency and availabil-
ity in the task scheduling policies. Since, a proper
SLA-based resource selection can have also signifi-
cant impact on the performance and cost, we inves-
tigate in this work the effect of different resource
matching policies on the scheduling performance of
data-intensive workflows. The cost effectiveness of
such matching policies in Multi-Cloud environments
have been investigated in (Dastjerdi et al., 2011), but
they have not been evaluated with scientific work-
flows.

In contrast to the previous works, the resource
allocation scheme introduced in this paper allows
the execution of workflows on top of heterogeneous
Clouds by supporting an SLA-based resource match-
making combined with a data locality driven task
scheduling. In addition to a cost evaluation, we study
the impact of the matching and scheduling on data
movement and makespan using a real scientific appli-
cation.

3 BACKGROUND

In order to validate and evaluate our multi-
dimensional resource allocation scheme we use a
broker-based workflow framework, we implemented
in a previous work (Jrad et al., 2013b) to support
the deployment of workflows in Multi-Cloud environ-
ments. In this section we describe briefly the main
components of the framework.

Figure 1 depicts the architecture of the Multi-
Cloud workflow framework developed on top of
Cloudsim. The Cloud Service Broker, as shown in

the middle of the architecture, assists users in find-
ing the suitable Cloud services to deploy and execute
their workflow applications. Its main component is
a Match-Maker that performs a matching process to
select the target Clouds for the deployment. A sched-
uler assigns the workflow tasks to the selected Cloud
resources. The architecture includes also a Data Man-
ager to manage the data transfers during the work-
flow execution. The entire communication with the
underlying Cloud providers is realized through stan-
dard interfaces offered by provider hosted Intercloud
Gateways. A Workflow Engine deployed on the client
side, delivers the workflow tasks to the Cloud Service
Broker with respect to their execution order and data
flow dependencies.

Client

Workflow Engine Clustering Engine
Replica
catalog

UI Workflow Parser

Intercloud Gateway

CloudSim

Monitoring and Discovery Manager

Match Maker

Data Manager
Deployment

Manager

Scheduler

Abstract Cloud API

Cloud Service Broker

IaaS Clouds

Service and
Provider

Repository

Figure 1: Multi-Cloud workflow framework architecture.

In order to execute workflows using the frame-
work, the Workflow Engine receives in a first step a
workflow description and the SLA requirements from
the user. After parsing the description, the Work-
flow Engine applies different clustering techniques
to reduce the number of workflow tasks. The re-
duced workflow and the user requirements are then
forwarded to the Broker. In the following, the Match-
Maker selects the Cloud resources that can fit the user
given requirements by applying different matching
policies. After that all the requested virtual machines
(VMs) and Cloud storage are deployed on the selected
Clouds, the Workflow Engine transfers the input data
from the client to the Cloud storage and then starts to
release the workflow tasks with respect to their ex-
ecution order. During execution, the scheduler as-
signs each task to a target requested VM according

Multi-dimensional�Resource�Allocation�for�Data-intensive�Large-scale�Cloud�Applications

693

to different scheduling policies while the Data Man-
ager manages the Cloud-to-Cloud data transfers. A
Replica Catalog stores the list of data replicas by map-
ping workflow files to their current datacenter loca-
tions. Finally, the execution results are transferred to
the Cloud storage and can be retrieved via the user
interface. The requested VMs and Cloud Storage are
provisioned to the user until the workflow execution
is finished. However, if the same workflow should be
executed many times (e.g. with different input data),
a long-term lease period can be specified by the user.

4 SLA-BASED MULTI-CLOUD
MATCHING POLICIES

min latency
min throughput
min Availability

Budget

SL
A

sa
ti

sf
ac

ti
o

n

cost

m
ak

es
p

an

data localitynon-functional SLA
requirements

util
ity

perfo
rm

ance

Matching Scheduling

(2) (4)
(1)

(5)(3)

Compute Cloud A
Europe

Compute Cloud C
US

Storage Cloud B
Europe

Storage cost
 Availability
Throughput

Latency
Bandwidth
Traffic cost

VM cost
Availability
Throughput

Figure 2: Multi-dimensional resource allocation scheme.

As illustrated in Figure 2, our multi-dimensional re-
source allocation is performed in five steps. After that
the user gives his SLA requirements and budget (step
1), a matching process is started (step 2), where the
functional and non-functional SLA requirements are
compared to the measured Cloud SLA metrics as well
as their service usage costs. The selection of the opti-
mal Clouds (step 3) is then performed using a utility-
based matching algorithm with the goal to maximize
the user utility for the provided QoS. In the follow-
ing step, The application workloads are distributed to
the requested compute resources using a scheduling
policy. For this purpose, a data-locality scheduling
scheme is used to achieve a minimal data movement
and improve the overall application performance (step
5). In the following subsections we describe in details
the used utility-based matching algorithm. In addi-
tion, we describe another simple matching algorithm,
we used for a comparative study with the utility-based
algorithm. The used scheduling policies are described
in the next Section.

4.1 Sieving Matching Algorithm

On the search for efficient matching algorithms, we
implemented a simple matching policy called Siev-
ing. Given a service list forming the requested Mutli-
Cloud service composition and a list of candidate
datacenters, the Sieving matching algorithm iterates
through the service list and selects randomly for
each service a candidate datacenter, which satisfies
all functional and non-functional SLA requirements.
Therefore, for each selected datacenter the measured
SLA metrics and his usage price should be respec-
tively within the ranges specified by the user in his
SLA requirements and budget. In addition, the algo-
rithm checks if the current datacenter capacity load
allows the deployment of the requested service type.
However, it may be possible that the result set is
empty in case that none of the Cloud providers ful-
fill the requested criteria. The following pseudo code
describes in detail the functionality of the Sieving al-
gorithm:

Algorithm 1: Sieving matching.

Input : r e q u i r e d S e r v i c e L i s t , D a t a c e n t e r L i s t
For each s e r v i c e S i n r e q u i r e d S e r v i c e L i s t Do

For each d a t a c e n t e r D i n D a t a c e n t e r L i s t Do
I f S i n o f f e r s (D) and i s D e p l o y a b l e I n (D) Then

I f p r i c e (D) <= b ud ge t (S) &
a v a i l a b i l i t y (D)>= r e q u i r e d A v i l a b i l i t y (S) &
t h r o u g h p u t (D)>= r e q u i r e d T h r o u g h p u t (S) Then
add D t o C a n d i d a t e s L i s t

Endif
Endif

Endfor
I f s i z e o f (C a n d i d a t e s L i s t) >0 Then

Choose random d a t a c e n t e r D from C a n d i d a t e s L i s t
CloudComposit ionMap . add (S ,D)

Else r e t u r n n u l l
Endif

Endfor
Output : CloudComposit ionMap

4.2 Utility-based Matching Algorithm

A major issue of the above described Sieving algo-
rithm is the lack of flexibility in the matching of
non-functional SLA attributes. Hence, it cannot han-
dle use cases like availability is more important than
throughput or select well qualified providers while
keeping the total costs low. In addition, the network
connectivity between the Clouds and traffic costs are
ignored in the matching. Therefore, we adopted
from the Attribute Auction Theory (Asker and Can-
tillon, 2008) a new economic utility-based matching
algorithm, which takes the payment of customers as
the focus. In a previous work (Jrad et al., 2013a),

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

694

we compared the utility algorithm with Sieving and
validated its cost benefits in matching single Cloud
services. This work, is our first attempt in using
the utility-for matching Multi-Cloud service compo-
sitions.

The main strategy of the utility-algorithm is to
maximize the user profit for the requested service
quality by using a quasi-linear utility function (Lam-
parter et al., 2007). The user preferences for the non-
functional SLA attributes are modeled by weighted
scoring functions, whereas all functional require-
ments must be fulfilled similar to Sieving. Let Q be
the set of m required non-functional SLA attributes q
with q2Q= f1; :::;mg. The utility of a customer i for
a required service quality Q with a candidate Cloud
composition j is computed as follows:

Ui j(Q) = aiFi(Q)�Pj; (1)

where ai represents the maximum willingness to
pay of consumer i for an “ideal” service quality, and
Fi(Q) the customer’s scoring function translating the
aggregated service quality attribute levels into a rel-
ative fulfillment level of consumer requirements. Pj
denotes the total price that has to be paid for using all
Cloud services in the Cloud composition j with:

Pj = T �C j
V M +Dst �C j

st +Dtr �C j
tr (2)

where C j
V M , C j

st and C j
tr denote respectively the

charged compute, storage and traffic cost with com-
position j, whereas Dst and Dtr denote respectively
the amount of data to be stored and transferred. The
lease period T is defined as the time period in which
the Cloud services are provisioned to the user. The
scoring function Fi(Q) is defined as follows:

Fi(Q) =
m

å
q=1

li(q) fi(q)! [0;1]; (3)

where li(q) and fi(q) denote respectively the rel-
ative assessed weight and the fitting function for
consumer i regarding the SLA attribute q, where
å

m
q=1 li(q) = 1. The fitting function maps properly

to the user behavior each measured SLA attribute to
a normalized real value in the interval [0,1] with 1
representing an ideal expected SLA value. An exam-
ple for three non-linear fitting functions is provided in
Section 6. The aggregated SLA values for the Cloud
composition are calculated from the SLA values of
the component services by applying common used ag-
gregation functions as in (Zeng et al., 2003) presented
in Table 1.

A candidate Cloud service composition j is opti-
mal if it is feasible and if it leads to the maximum
utility value with:

Uioptimal(Q) =
n

max
j=1

Ui j(Q) (4)

Table 1: Aggregated SLA attributes of N component ser-
vices S.

SLA attribute Aggregation function
Throughput minN

i=1 T h(Si)

Latency Lat(Si j)

8<:i 2 f1; : : : ;N�1g

j 2 fi+1; : : : ;Ng
Availability Õ

N
i=1 Av(Si)

where n is the number of possible Cloud service
compositions. Hence, the match-making problem
can be formulated with a search for the Cloud com-
position with the highest utility value for the user.
As this kind of multi-attribute selection problems is
NP-Hard, we apply a single objective genetic algo-
rithm combined with crossover and mutation opera-
tions to search for the optimal candidates. To evaluate
each candidate we use as objective function the utility
function in equation 1. Additionally, we use a death
penalty function to penalize candidates, which not
satisfy the service constraints and to discard Cloud
compositions with a negative utility. In order to in-
clude the Cloud-to-Cloud latency and the traffic cost
in the utility calculation, we model each candidate
service composition as a full connected undirected
graph (see Figure 2), where the nodes represent the
component services and the edges the network con-
nectivity between them.

5 DATA LOCALITY DRIVEN
WORKFLOW SCHEDULING

To support the data locality during the workflow ex-
ecution, we implemented two dynamic greedy-based
scheduling heuristics, which distribute the workflow
tasks to all the user requested VMs allocated by the
previous described matching policies (see Section 4).
In the following subsections we describe in details the
functionality of the implemented policies.

5.1 DAS Scheduler

We implemented a Data-Aware Size-based scheduler
(DAS) capable of scheduling tasks to the provisioned
VMs running in different Cloud datacenters with re-
spect to the location of the required input data. In a
first step, the algorithm iterates through the workflow
tasks and calculates for each task the total size of the
required input files found in each matched datacen-
ter and store the result in a map data structure called
task data size affinity Tsizea f f . If we assume that task
T has m required input files f reqi, i 2 f1; :::;mg and
there are k matched datacenters, the task affinity of

Multi-dimensional�Resource�Allocation�for�Data-intensive�Large-scale�Cloud�Applications

695

the datacenter dc j, j 2 f1; :::;kg is calculated using
the following equation:

Tsizea f f (dc j) = å
f reqi2dc j

size(f reqi); (5)

After sorting the task affinity map by the data size
values in descending order, the policy assigns the task
to the first free provisioned VM running on the data-
center dccand containing the maximum size of located
input files, where:

Tsizea f f (dccand) =
k

max
j=1

Tsizea f f (dc j) (6)

In case that all the provisioned VMs in the selected
datacenter are busy, the algorithm tries the next can-
didate datacenters in the sorted map to find a free
VM. So that, a load balancing between the datacen-
ters is assured and an unnecessary waiting time for
free VMs can be avoided. The implemented data-
aware scheduling policy is described using the follow-
ing pseudo-code:

Algorithm 2: DAS/DAT Scheduler.

Input : r eques tedVMLis t , T a s k L i s t , s c h e d u l i n g P o l i c y
For each t a s k T i n T a s k L i s t Do

p r o c e s s A f f i n i t y (T)
I f s c h e d u l i n g P o l i c y =DAS Then

T a f f = s i z e A f f n i t y M a p
s o r t T a f f by s i z e i n d e s c e n d i n g o r d e r

E l s e i f s c h e d u l i n g P o l i c y =DAT Then
T a f f = t imeAf fn i tyMap
s o r t T a f f by t ime i n a s c e n d i n g o r d e r

Endelse
For each e n t r y i n T a f f Do

s i t e = e n t r y . g e t k e y ()
For each vm i n reques t edVMLis t Do

I f vm . g e t S t a t u s () = i d l e
& vm . g e t D a t a c e n t e r () = s i t e Then
s c h e d u l e T t o vm

s c h e d u l e d T a s k L i s t . add (T)
Break

Endif
Endfor

Endfor
Endfor
Output : s c h e d u l e d T a s k L i s t

Algorithm 3: Function processAffinity(Task T).

Input : m a t c h e d D a t a c e n t e r L i s t , R e p l i c a c a t a l o g R
For each d a t a c e n t e r D i n m a t c h e d D a t a c e n t e r L i s t Do

Time =0; S i z e =0;
i n p u t F i l e L i s t = T . g e t I n p u t F i l e L i s t ()
For each f i l e i n i n p u t F i l e L i s t Do

maxBwth=0
s i t e L i s t = R . g e t (f i l e)
I f s i t e L i s t . c o n t a i n s (D) Then

s i z e = s i z e + f i l e . g e t S i z e ()
Else

For each s i t e i n s i t e L i s t Do
I f r e g i o n (s i t e)= r e g i o n (D) Then

bwth=Cloud�to�Cloud I n t r a�c o n t i n e n t a l
Else

bwth=Cloud�to�Cloud I n t e r�c o n t i n e n t a l
Endelse
I f bwth>maxBwth Then

maxBwth=bwth
Endfor

Endelse
t ime = t ime + f i l e . g e t S i z e () / maxBwth

Endfor
s i z e A f f n i t y M a p . add (D, s i z e)
t imeAf fn i tyMap . add (D, t ime)

Endfor
Output s i z e A f f n i t y M a p , t imeAf fn i tyMap

5.2 DAT Scheduler

The second scheduling policy called Data-Aware
Time-based (DAT) scheduler has a strong similarity
with the previous described DAS policy except in the
method of calculating the task affinity. Instead of cal-
culating the maximum size of existing input files per
datacenter, the algorithm computes the time needed to
transfer the missing input files to each datacenter and
stores the transfer time values in a Map data structure
called Ttimea f f , which is calculated using the follow-
ing equation:

Ttimea f f (dc j) = å
f reqi =2dc j

trans f ertime(f reqi); (7)

As target datacenter, the algorithm chooses the data-
center, which assures the minimum transfer time by
sorting the affinity map in the ascending order.

Ttimea f f (dccand) =
k

min
j=1

Ttimea f f (dc j) (8)

For each workflow task the algorithm (see func-
tion processAffinity() above) iterates through the
matched datacenters and checks the existence of local
input files. For each missing input file, it calculates
the needed time to transfer the file from a remote lo-
cation to that datacenter. For this, it fetches the replica
catalog and selects a source location, which assures
the maximum bandwidth and consequently the mini-
mal transfer time to that datacenter.

6 EVALUATION

In order to evaluate our proposed multi-dimensional
resource allocation scheme with a real large scale
workflow, we conducted a series of simulation experi-
ments. The simulation setup and results are presented
in the following subsections.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

696

6.1 Simulation Setup

We implemented the matching and scheduling poli-
cies presented in Section 4 and 5 as part of the
Multi-Cloud simulation framework. As workflow en-
gine, we use WorkflowSim (Weiwei and Ewa, 2012),
a CloudSim-based version of the Pegasus WfMS 3.
In addition, we use the opt4j (Lukasiewycz et al.,
2011) genetic framework to perform the utility-based
matching. For all the conducted simulation exper-
iments, we configured 20 compute and 12 storage
Clouds located in four world regions (Europe, USA,
Asia and Australia). Each compute Cloud is made
up of 50 physical hosts, which are equally divided be-
tween two different host types with respectively 8 and
16 CPU cores. In order to make the simulation more
realistic, we use real pay-as-you-go prices for com-
putation, storage and network traffic for each mod-
eled Cloud. Traffic inside the same datacenter is free.
The real Cloud SLA metrics values (average for last 3
months) for availability and Client-to-Cloud through-
put were acquired through CloudHarmony4 network
tests from the same client host. In order to consider
the network traffic and latency in the matching and
scheduling, we defined based on the location of the
datacenters three constant bandwidth and latency val-
ues, which are presented in Table 2. The use of syn-
thetic values is justified by the lack of free accessible
Cloud-to-Cloud network metrics from current Cloud
benchmarking tools.

Table 2: Defined Cloud-to-Cloud latency and bandwidth
values.

Cloud-to local intra-con- inter-con-
Cloud transfer tinental tinental

Bandwidth 100 Mbit/s 30 Mbit/s 10 Mbit/s
Latency 10 ms 25 ms 150 ms

With the help of the framework, we modeled
the following use case for a workflow deployment
on Multi-Cloud. A user located in Europe requests
10 VMs of the type small and 10 VMs of the type
medium and one storage Cloud to store the workflow
input and output data. The configuration of each VM
type is reported in Table 3. We assume that all the
VMs located in the same datacenter are connected
to a shared storage. The Workflow Engine transfers
at execution start the input data from the Client to
the Cloud storage. The output data is stored in the
Cloud storage when the execution is finished. The
Data Manager fetches the Replica catalog and trans-
fers all the missing input files before each task execu-

3http://pegasus.isi.edu/
4http://www.cloudharmony.com

tion from their source datacenters with the maximal
possible bandwidth. We configured the Workflow En-
gine to release maximal 5 tasks to the broker in each
scheduling interval (default value used in Pegasus).

Table 3: VMs Setup; 1 CPU Core: 1GHZ Xeon 2007 Pro-
cessor of 1000 MIPS; OS: Linux 64 bits.

VM Type Cores RAM (GB) Disk (GB)
small 1 1.7 75

medium 2 3.75 150

It is worth to mention that if the user executes the
same workflow multiple times, our implemented data
locality scheduling scheme reuses the existing repli-
cated input data in order to save on data transfers
and costs. For simplicity, we consider in our evalu-
ation only the first run of the workflow. For collecting
the simulation results we repeated each of the exper-
iments ten times from the same host and then com-
puted the average values.

6.2 Montage Workflow Application

1111

2 2 2 2

3

4

5 5 5 5

6

7

8

9

mProjectPP

mDiffFit

mBackground

mJPEG

mShrink

mAdd

mConcatFit

mBgModel

mImgTbl

Figure 3: A sample 9-level Montage workflow.

Montage (Berriman et al., 2004) is a data-
intensive (over 80% I/O operations) workflow appli-
cation used to construct large image mosaics of the
sky obtained from the 2MASS observatory at IPAC 5.
A sample directed acyclic graph (DAG) of a 9 level
Montage workflow is illustrated in Figure 3. The
tasks at the same horizontal level execute the same

5http://www.ipac.caltech.edu/2mass/

Multi-dimensional�Resource�Allocation�for�Data-intensive�Large-scale�Cloud�Applications

697

Table 5: User preferences expressed using fitting functions f and relative weights l; g = 0:0005; b = 1� g.

Availability Latency Throughput
Scenario lav f (av) llat f (lat) lth f (th)

EU 3
10

g

g+be(�0:9(av�84))
6
10

g

g+be(0:2(lat�100))
1
10 1�be�0:2th

EU-US 2
5

g

g+be(�0:9(av�84))
2
5

g

g+be(0:2(lat�150))
1
5 1�be�0:6th

Table 4: User non-functional SLA Requirements; Availabil-
ity (av); Latency (lat); Throughput (th).

deployment min av max lat min th
scenario (%) (ms) (Mbit/s)

EU 95 50 12
EU-US 95 100 2

executable code (see right side of the figure) with
different input data. For all our conducted experi-
ments we imported with the help of the WorkflowSim
Parser a real XML formatted Montage trace executed
on the FutureGrid testbed using the Pegasus WfMS.
The tasks runtime and files’ size information are im-
ported from separate text files. The imported trace
contains 7463 tasks within 11 horizontal levels, has 3
GB of input data and generates respectively about 31
GB and 84 GB of intermediate output and traffic data.

6.3 Simulation Scenarios

For the purpose of evaluation, we modeled two sim-
ulation scenarios. In the first scenario, named “EU-
deployment”, all the requested VMs and storage
Cloud are deployed in the same user region (Europe).
In the second scenario, named “EU-US deployment”,
all the 10 VMs of type small are deployed on Clouds
located in the US region, while the 10 VMs of type
medium and the storage Cloud are located in Eu-
rope. The non-functional SLA requirements for both
scenarios, given in Table 4, express the user desired
ranges for availability, latency and throughput in or-
der to deploy the workflow with an acceptable quality.
These values are consumed by the Sieving matching
algorithm described in Section 4 to select the target
Clouds for the workflow deployment.

The fitting functions and the relative weight for
each SLA parameter, both required for the utility-
based matching, are given in Table 5. As we can
see from the table, the user prefers for the first sce-
nario Clouds with low Cloud-to-Cloud latency values

to advantage the data transfer time, while for the sec-
ond scenario availability is equally weighted with the
latency and the Client-to-Cloud throughput has more
significance.

The maximum user payment willingness for each
VM type as well as for storage and network traffic are
given in Table 6.

Table 6: Maximal payment for VMs, storage and traffic.

VM small VM medium storage traffic
($/hour) ($/hour) ($/GB) ($/GB)

0.09 0.18 0.1 0.12

6.4 Impact of Clustering

As mentioned before we use clustering to reduce
the scheduling overhead of large scale workflows on
Multi-Cloud. A well suited clustering technique for
the Montage workflow structure is horizontal cluster-
ing. Herewith tasks at the same horizontal level are
merged together into a predefined number k of clus-
tered jobs. Table 7 shows the resulted total number of
clustered jobs for each used k.

Table 7: Total Number of clustered jobs with different clus-
ter numbers k.

k 20 40 60 80 100
Jobs number 92 152 212 272 332

In order to evaluate the impact of clustering with
respect to increasing cluster number k, we measured
in a first experiment the total time needed to execute
a single run of the sample Montage workflow and the
total consumed time for data transfer in minutes for
the “EU-deployment” scenario. For this experiment,
we configured the Cloud Service Broker to use utility-
based matching together with DAS as scheduling pol-
icy. For an accurate calculation of the execution time,
we extracted from the workflow trace the real delay

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

698

overhead resulted from clustering, post-scripting and
queuing. Figure 4 illustrates the results achieved.

0

20

40

60

80

100

120

140

160

180

k=20 k=40 k=60 k=80 k=100

ti
m

e
 (

m
in

)

makespan data transfer time

Figure 4: Workflow makespan and total data transfer time
with utlity+DAS EU for different cluster numbers k.

As depicted in the figure, the continually increase
of k results in a steady increase of the workflow ex-
ecution time. This demonstrates that our allocation
scheme scales well with increasing number of the
clustered workflow jobs. Although the transfer time
is nearly constant, as file transfers are performed with
a high throughput and low latency values because the
matched Clouds are close to the user, we observed
a slow decrease of the transfer time for small num-
bers of k. In the latter case more files are merged in a
clustered job, so that the amount of Intercloud trans-
fers is heavily reduced. For all the next conducted
experiments, we fixed the cluster number to k=20, as
it gives us the best results in term of makespan and
consequently execution cost.

6.5 Makespan Evaluation

We repeated the previous experiment with the “EU”
and “EU-US” scenarios with the different matching
and scheduling policies presented in Section 4 and 5.
For a comparative study we executed the workflow
using a simple Round Robin scheduler, which sched-
ules tasks to the first free available VMs regardless
of their datacenter location and the from the literature
well established “Min-Min” scheduler (Freund et al.,
1998), which prioritizes tasks with minimum runtime
and schedule them on the medium VM types. The re-
sults with k=20 for all the possible combinations are
shown in Figure 5.

It can be seen from the figure that for both scenar-
ios the use of utility-based matching combined with
the DAS or DAT scheduler gives the lowest execu-
tion time compared to Sieving. This result approves
how the efficiency of the utility matching affects the
scheduling performance. For the EU scenario, the
utility algorithm have a tendency to deploy all the re-
quested VMs on the cheapest datacenter to save cost

73

90

91

92

93

93

94

96

97

100

107

utility+All EU

sieving+DAS EU

sieving+DAT EU

sieving+RR EU

utility+DAS EU-US

utility+DAT EU-US

sieving+DAS EU-US

utility+RR EU-US

sieving+DAT EU-US

utility+MinMin EU-US

sieving+RR EU-US

makespan in minutes

Figure 5: Workflow makespan with different scheduling
and matching policies for k=20.

and minimize latency. So that, the user is charged
only for the costs to transfer input/output data from/to
storage Cloud. This explains the same makespan and
Intercloud transfer obtained with different schedul-
ing policies. We observed also that our implemented
DAS and DAT scheduler outperform Round Robin
and MinMin, especially for the EU-US scenario.

6.6 Intercloud Data Transfer

In order to assess the impact of our multi-dimensional
scheme on reducing the Intercloud data transfers, we
measured for the previous simulation experiment the
size of Intercloud transfers and the ratio of transfer
time over the total consumed processing time. The
results for different combinations of matching and
scheduling policies with k=20 are depicted respec-
tively in Figure 6 and Figure 7. Note that for the In-
tercloud transfer time calculation, we use the previous
defined ”Inter-Continental” and ”Intra-Continental”
bandwidth values from Table 2.

Figure 6: Total amount of Intercloud transfers with different
scheduling and matching policies for k=20.

It can be seen from Figure 6 that the DAS sched-
uler keeps the Intercloud transfer size under 10 GB
for both scenarios with utility and Sieving policies.
Next to DAS on saving Cloud-to-Cloud data move-
ments is DAT, whereas MinMin and Round robin oc-
cupy the last places. The evaluation results for the

Multi-dimensional�Resource�Allocation�for�Data-intensive�Large-scale�Cloud�Applications

699

0

1

2

3

4

5

6

7

co
st

 $

Computing cost Storage cost Traffic cost

Figure 8: Total execution cost with Sieving (left) and utility (right) matching for k=20.

Figure 7: Percentage of data transfers with different
scheduling and matching policies for k=20.

transfer time ratio approve also that DAS and DAT
are able to reduce the transfer time ratio up to 37%
and 50% respectively for the EU and EU-US scenario.
On the contrary, the use of Round Robin and Min-
Min scheduling regardless of the matching policy re-
sults in very high transfer ratios in particular for the
EU-US scenario, which disadvantages consequently
the workflow makespan. Therefore, data locality has
more impact when Clouds are not close to user, as in
this case latency and throughput affect more the trans-
fer time.

6.7 Cost Evaluation

In this subsection, we evaluate the impact of used
matching and scheduling policies on the traffic costs
for both simulation scenarios. The previous exper-
imental results show that the use of utility-based
matching and data-aware scheduling heavily reduces
the amount of Intercloud transfers and consequently
the data traffic costs. This result is approved in Figure
8, in which the amount of compute, storage and traffic
costs for different use cases is illustrated. Please note
that for the costs calculation the VMs are charged on
hourly basis. Therefore, the makespan of each sce-

nario is rounded up to the nearest next hour. Also, we
do not consider the additional license and VM images
costs which can be charged by some Cloud providers.
We found that the utility-based matching combined
with the DAS scheduler benefits more the compute
and traffic costs compared to the other use cases. For
example, comparing utility and Sieving with DAS,
respectively up to 25% and 15% cost-saving can be
achieved with the EU and EU-US deployment.

utility+DAS
EU-US

utility+DAT
EU-US

utility+DAS
EU-US (2 ST)

utility+DAT
EU-US (2 ST)

Traffic cost 0,68 0,97 0,53 0,75

Storage cost 0,3 0,3 0,585 0,585

Computing cost 3,54 3,54 3,54 3,54

0

1

2

3

4

5

6

co
st

 $

Figure 9: Total execution cost with one and two storage
Clouds (ST) for k=20.

We conducted another experiment by adding an-
other storage Cloud located in the US region for the
EU-US scenario. The gathered cost results are de-
picted in Figure 9. For the purpose of comparison,
we not consider the time needed to transfer the input
files from the Client to the US located storage Cloud.
It can be seen from the figure that the total costs for
the two storage Clouds use-case are very close to the
one storage use-case, even with the doubled storage
cost. This is due to the tendency of the utility algo-
rithm to deploy the US located VMs and the added
storage Cloud on the same provider to save on traffic
costs.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

700

7 CONCLUSIONS

This work presented a two-stage multi-dimensional
resource allocation approach for running data-
intensive workflow applications on a Multi-Cloud en-
vironment. In a first phase, a utility-based matching
policy selects the suitable Clouds for users with re-
spect to their SLA requirements and payment willing-
ness. In a second phase, a data locality driven sched-
uler brings the computation to its data to reduce the
Intercloud data transfer.

We evaluated our approach using an imple-
mented simulation environment with a real data-
intensive workflow application in different usage sce-
narios. The experimental results show the bene-
fits from utility-based matching and data locality
driven scheduling in reducing the amount of Inter-
cloud transfers and the total execution costs as well
improving the workflow makespan.

In the next step of this research work, we will
evaluate our multi-dimensional approach with other
Mutli-Cloud real large scale applications like MapRe-
duce. In addition, we will automate the collection
of the newest SLA metrics from real public Clouds
by extending the simulation framework to fetch them
from third-party Cloud monitoring services. Also, we
will include more accurate network models to make
the simulation more realistic. Furthermore, we will
investigate the use of adaptive matching and schedul-
ing policies like in (Oliveira et al., 2012) in order to
deal with resource and network failures on Clouds.

REFERENCES

Asker, J. and Cantillon, E. (2008). Properties of scoring
auctions. The RAND Journal of Economics, 39(1):69–
85.

Berriman, G. B., Deelman, E., Good, J. C., Jacob, J. C.,
Katz, D. S., Kesselman, C., Laity, A. C., Prince, T. A.,
Singh, G., and Su, M.-H. (2004). Montage: a grid-
enabled engine for delivering custom science-grade
mosaics on demand. In Quinn, P. J. and Bridger,
A., editors, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, volume 5493 of
Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pages 221–232.

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A.
F. D., and Buyya, R. (2011). Cloudsim: A toolkit for
modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algo-
rithms. Software: Practice and Experience, 41(1):23–
50.

Dastjerdi, A. V., Garg, S. K., and Buyya, R. (2011). QoS-
aware Deployment of Network of Virtual Appliances
Across Multiple Clouds. 2011 IEEE Third Interna-

tional Conference on Cloud Computing Technology
and Science, pages 415–423.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113.

Deelman, E., Singh, G., Livny, M., Berriman, B., and Good,
J. (2008). The cost of doing science on the cloud:
The montage example. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08,
pages 50:1–50:12, Piscataway, NJ, USA. IEEE Press.

Fard, H. M., Prodan, R., Barrionuevo, J. J. D., and
Fahringer, T. (2012). A Multi-objective Approach
for Workflow Scheduling in Heterogeneous Environ-
ments. 2012 12th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (ccgrid
2012), pages 300–309.

Fard, H. M., Prodan, R., and Fahringer, T. (2013). A
Truthful Dynamic Workflow Scheduling Mechanism
for Commercial Multicloud Environments. IEEE
Transactions on Parallel and Distributed Systems,
24(6):1203–1212.

Freund, R., Gherrity, M., Ambrosius, S., Campbell, M.,
Halderman, M., Hensgen, D., Keith, E., Kidd, T.,
Kussow, M., Lima, J., Mirabile, F., Moore, L., Rust,
B., and Siegel, H. (1998). Scheduling resources in
multi-user, heterogeneous, computing environments
with smartnet. In Heterogeneous Computing Work-
shop, 1998. (HCW 98) Proceedings. 1998 Seventh,
pages 184–199.

Jin, J., Luo, J., Song, A., Dong, F., and Xiong, R. (2011).
Bar: An efficient data locality driven task scheduling
algorithm for cloud computing. In Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM In-
ternational Symposium on, pages 295–304.

Jrad, F., Tao, J., Knapper, R., Flath, C. M., and Streit,
A. (2013a). A utility-based approach for customised
cloud service selection. Int. J. Computational Science
and Engineering, in press.

Jrad, F., Tao, J., and Streit, A. (2013b). A broker-based
framework for multi-cloud workflows. In Proceedings
of the 2013 international workshop on Multi-cloud
applications and federated clouds, MultiCloud ’13,
pages 61–68, New York, NY, USA. ACM.

Lamparter, S., Ankolekar, S., Grimm, S., and R.Studer
(2007). Preference-based Selection of Highly Config-
urable Web Services. In Proc. of the 16th Int. World
Wide Web Conference (WWW’07), pages 1013–1022,
Banff, Canada.

Lukasiewycz, M., Glaß, M., Reimann, F., and Teich, J.
(2011). Opt4J - A Modular Framework for Meta-
heuristic Optimization. In Proceedings of the Genetic
and Evolutionary Computing Conference (GECCO
2011), pages 1723–1730, Dublin, Ireland.

Mian, R., Martin, P., Brown, A., and Zhang, M. (2011).
Managing data-intensive workloads in a cloud. In
Fiore, S. and Aloisio, G., editors, Grid and Cloud
Database Management, pages 235–258. Springer
Berlin Heidelberg.

Oliveira, D., Ocaña, K. a. C. S., Baião, F., and Mattoso,
M. (2012). A Provenance-based Adaptive Scheduling

Multi-dimensional�Resource�Allocation�for�Data-intensive�Large-scale�Cloud�Applications

701

Heuristic for Parallel Scientific Workflows in Clouds.
Journal of Grid Computing, 10(3):521–552.

Pandey, S., Wu, L., Guru, S., and Buyya, R. (2010). A par-
ticle swarm optimization-based heuristic for schedul-
ing workflow applications in cloud computing envi-
ronments. In Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International
Conference on, pages 400–407.

Szabo, C., Sheng, Q. Z., Kroeger, T., Zhang, Y., and Yu, J.
(2013). Science in the Cloud: Allocation and Execu-
tion of Data-Intensive Scientific Workflows. Journal
of Grid Computing.

Weiwei, C. and Ewa, D. (2012). Workflowsim: A toolkit for
simulating scientific workflows in distributed environ-
ments. In The 8th IEEE International Conference on
eScience, Chicago. IEEE, IEEE.

Yuan, D., Yang, Y., Liu, X., and Chen, J. (2010). A data
placement strategy in scientific cloud workflows. Fu-
ture Gener. Comput. Syst., 26(8):1200–1214.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q. Z. (2003). Quality driven web services
composition. In Proceedings of the 12th International
Conference on World Wide Web, WWW ’03, pages
411–421, New York, NY, USA. ACM.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

702

