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C. Caşcaval
E. Duesterwald
P. F. Sweeney

R. W. Wisniewski

Our research is aimed at characterizing, understanding, and
exploiting the interactions between hardware and software to
improve system performance. We have developed a paradigm
for continuous program optimization (CPO) that assists in and
automates the challenging task of performance tuning, and we have
implemented an initial prototype of this paradigm. At the core of
our implementation is a performance- and environment-monitoring
(PEM) component that vertically integrates performance events
from various layers in the execution stack. CPO agents use
the data provided by PEM to detect, diagnose, and alleviate
performance problems on existing systems. In addition, CPO can
be used to improve future architecture designs by analyzing PEM
data collected on a whole-system simulator while varying
architectural characteristics. In this paper, we present the CPO
paradigm, describe an initial implementation that includes PEM
as a component, and discuss two CPO clients.

Introduction

The need for increased computing performance and

functionality has resulted in a complex execution stack

consisting of multiple hardware and software layers, each

layer being complicated and challenging to understand.

For example, hardware resources may be added to or

removed from the system dynamically, current machines

may run a varying set of applications (both scientific and

commercial), and even an individual application may go

through phases with different performance behavior and

resource requirements. Therefore, understanding and

tuning performance that involves multiple execution

layers requires considerable expertise and sophisticated

tools.

In this paper, we present a continuous program

optimization (CPO) paradigm that assists in and

automates the challenging task of performance tuning.

The CPO paradigm may be conceptualized as two

recurring phases of monitoring and optimization.

Monitoring involves obtaining and analyzing

performance information at varying granularities across

layers of the system. Optimization involves using the

information in a continual process of feedback-directed

adaptation along two dimensions: adapting applications

to their current execution environment and adapting

the execution environment to enhance application

performance. Examples include just-in-time (JIT)

compiler optimizations [1], hot-swapping operating-

system (OS) components [2], and redistributing

application workloads. While CPO is conceptually

divided into two phases, both are continually occurring

in order to evaluate the effectiveness of tuning and to

instantiate adjustments as needed.

We have developed an initial implementation of the

CPO paradigm. An important component of the

implementation, and the focus of this paper, is the

monitoring functionality that captures system runtime

behavior. This component is a vertically integrated

performance- and environment-monitoring (PEM)

framework that supports understanding the interactions
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among hardware and software and enables optimizations

based on these interactions. For example, an optimization

could take the form of an architectural design

improvement achieved by varying hardware

characteristics on a simulator, with PEM providing data

on the total system performance and details of the effects

on components of the entire execution stack. Another

optimization approach supported by PEM is vertical

performance tuning across execution layers. PEM

provides data about the interaction of hardware and

software, and of all the layers within the software stack.

To be effective in a complex environment, performance

tuning must be able not only to analyze data from all of

the layers of the execution stack, but also to continuously

tackle performance problems as they arise throughout the

lifetime of an application and a system.

In this paper, we describe two CPO clients. The first is a

visualization client that supports vertical performance

visualization. The second is a page-size client that

automatically optimizes large page use in an application.

The visualization client uses PEM to log monitored

events and produce a PEM trace. The event trace is

converted by a CPO offline agent by aggregating events

into intervals that are more suitable for visualization and

generating a new trace in the format expected by the

Performance Explorer (PE) visualization tool [3].

Continuous program optimization
In CPO, performance tuning is viewed as a continuous

process of feedback-directed adaptation. It involves

dynamically identifying and characterizing performance

problems, modeling application behavior and negotiating

resources on behalf of the application, applying

optimizations on the basis of resource availability, and

validating the effectiveness of the applied optimizations.

The idea of feedback-directed optimization is not

new. Previous approaches have focused on compiler

optimizations. Our CPO paradigm goes beyond compiler

optimizations and includes system and environment

adaptation, such as the page-size client, which optimizes

large page use in an application.

The architecture of our initial implementation of the

CPO paradigm is shown in Figure 1. It has several

components. The PEM runtime [4] allows vertically

integrated performance-monitoring information to be

gathered from all layers in the execution stack. CPO

agents analyze this data and perform optimizations based

on the analysis. The analysis consists of modeling salient

aspects of system behavior using static information about

different layers in the execution stack, and obtaining

dynamic data from PEM. Some CPO agents execute

online while others execute offline. Offline CPO agents are

used to optimize applications between runs and are

usually invoked once, unless the optimization fails the

validation phase.

The CPO database acts as a repository for the history

of past optimizations and their performance metrics and

also as a unified place to resolve competing or conflicting

optimizations. CPO agents store behavior information in

the CPO database. There may be several CPO agents

active concurrently, and their resource requirements may

be conflicting. The common database and PEM provide

the means to resolve potential conflicts by providing each

agent with a view of performance events across the entire

system. CPO agents can coordinate their activities by

monitoring the system for performance events issued by

other agents.

CPO clients are implemented through online and

offline agents. On the basis of performance models, CPO

agents negotiate resources that may either enhance

performance directly or do so indirectly by enabling

further code adaptations.

The validation of optimizations is a vital aspect of the

CPO paradigm. It is crucial because modeling will not be

able to capture all of the complex interactions in current

or future systems. Therefore, it is critical to monitor the

optimized execution stack continuously in order to

validate that the modeled optimizations are having the

intended effect and take action if they are not. Both

optimization and validation occur automatically, with no

programmer intervention.

Examples of the CPO paradigm include tuning of

compiler optimization heuristics in a Java** JIT compiler,

such as inlining policies, loop unrolling, and tiling

parameters; tuning of linear algebra [5–7] and

communication libraries to adapt to the actual

Figure 1

Continuous program optimization (CPO) architecture (CPO 
elements shaded in yellow).
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application usage; selecting different algorithms to solve a

specific problem based on the characteristics of the input

data set [8]; environment adaptation, such as the tuning of

Java Virtual Machine (JVM) components (e.g., heap size

and garbage collection policies), tuning OS resources, such

as memory available for the JVMor changing the page size

for different regions of memory allocated to an application

[9]; and modifying the OS page replacement policy on the

basis of application memory usage patterns [10].

PEM
PEM is a crucial component of CPO. Figure 2 illustrates

its architecture and the way it interacts with other CPO

components. PEM comprises several components,

discussed in the following subsections.

The PEM runtime provides an implementation of

the event specification and the PEM Application

Programming Interface (PEMAPI) on a given system [4].

We implemented PEM on the K42 open source research

OS [11]. K42 already has a significant performance

monitoring infrastructure [12] and provides an easy

prototyping environment. Further, K42 was designed to

be scalable and contains support for hot swapping [10], a

useful feature for CPO. As we develop experience with

the PEM runtime, the successful portions can be

implemented on other operating systems. For example,

we have recently ported to IBM AIX* the portions of

PEM relevant to the page-size agent.

XML event specification

The first component of PEM consists of a repository of

Extensible Markup Language (XML) event specifications

that define the monitoring scope. An XML event

specification defines the semantics of the event and may

contain several fields to describe event attributes. It

provides a unified location for encoding event semantics.

For example, the fact that a send and a receive event in a

library (such as Message Passing Interface) establish a

communication pair based on a common communication

port identifier constitutes semantic information. Any two

such events will be linked, even though the ports may

differ between pairs of events. Figure 3 shows an example,

in XML, of encoding the event of reading the contents of

hardware performance counters. The XML specification

defines the context of the HW::HWPerf::HPMsAndPC event

with the layerId, classId, and specifier XML tags,

and defines, with the field XML tag, the event attributes

that will be stored with the event.

We have written an XML specification containing

several hundred hardware, OS, and application-layer

events. In addition to the benefits of readability and

availability of XML parsers that can be used to build

tools, we chose to use XML to satisfy several crucial

design requirements:

� Language-independent support for building tools to

aid in the development of CPO agents, as explained in

the next section.
� Flexibility to add and modify events. Additional

execution layers that produce new events (e.g., new

libraries) can easily be integrated into PEM by adding

new event specifications into the repository.
� Documentation providing a single place for explicit

field names and descriptions for entities stored in an

event record, which encourages developers to better

document event semantics.

PEM toolset

We have implemented a set of tools that take the XML

specification as input and generate language-specific

interfaces and stubs. We currently support the C, Cþþ,
Fortran, and Java languages. The PEM toolset generates

Figure 2

Overview of PEM.
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Figure 3

Example of an XML event specification.

<event name='HW::HWPerf::HPMsAndPC'
     description='Hardware counter events 
     and program counter for threadId'>
  <layerId value='HW' />
  <classId value='HWPerf' />
  <specifier value='HPMsAndPC' />
  <fields>
    <field name='pc' type='uint64'
       description='program counter' />
    <field name='threadId' type='uint64'
       description='kernel thread id' />
    <field name='counterValues' type='list'
       eltType='uint64'
       description='counter values.' />
  </fields>
</event>
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support for the functionality of the PEM runtime and the

CPO agents.

The support for the PEM runtime includes interfaces

used by the execution layers for instrumentation to

invoke event notifications, and interfaces and stubs used

for event processing. The event-processing interfaces

react to event notification by emitting event records that

can be either written to a trace file or consumed by a CPO

online agent. The support for CPO agents generates code

that tailors the XML event specifications to the specific

needs of a client using the agent.

Both the PEM runtime and the CPO agents are

concerned with event streams. However, the requirements

for the way in which events in a trace should be structured

in the event stream may differ between the PEM runtime,

which produces the trace, and PEM clients, which

consume the trace. To reduce system perturbation, event

generation is best implemented as a raw event stream that

minimizes the information contained in each event record

so that events can be logged as quickly and as efficiently

as possible with respect to space. For example, context

information, such as the currently executing process

and thread identification, is omitted because it can be

recovered from previously logged context switch events.

In contrast, event consumption in PEM clients

typically requires that the lost information be computed

by interpreting the event stream. During interpretation,

information that was omitted from individual raw event

records at trace time is recovered on the basis of agent-

specific semantic criteria. For example, consider our

vertical performance visualization client, which uses the

toolset to convert the raw event stream into a stream

more suitable for visualization (see the visualization client

section below).

PEMAPI

PEMAPI provides an interface between PEM producers

and consumers. A PEM producer is an execution layer

or a component in a layer that produces monitoring

information as events. A PEM consumer processes and

regulates the information that is monitored. CPO online

agents are examples of PEM consumers that benefit from

PEMAPI. Using PEMAPI, PEM consumers can be built

to implement specific performance-monitoring tasks, such

as logging events to a disk or online event processing. To

facilitate the programming of PEM consumers, PEMAPI

provides the following performance-monitoring

abstractions:

� An event is a type of action taken by the system.

Examples of events are cache misses, page faults, OS

interrupts, garbage collection invocations, dynamic

compiler invocations, and transaction completions.

Events are defined in the XML event specification.

� An event attribute is data associated with an event.

For example, a page fault event may have as an

attribute the address that caused the page fault.
� An eventSet specifies a set of events. All events in a

set can be handled as a single entity.
� A context specifies the state of the system. For

purposes of PEMAPI, context is determined by the

processor, process, and thread identifiers.

A PEM consumer can specify the context of an event in

which it is interested. When an event occurs in a context

that is specified by a PEM consumer, the consumer action

is taken. In particular, any PEM consumer can create

(private) statistics or log an event through PEMAPI.

PEM producers

A PEM producer is a hardware or software layer that

generates events. In order for the PEM runtime to collect

these events, a PEM producer is instrumented with

PEMAPI event notification calls. This is the only

modification to the PEM producer layer. The reaction to

event notification calls in PEM is fully programmable

through other PEMAPI functions. The PEMAPI

provides event-specific notification interfaces that are

automatically generated from the XML event

specifications. An event-specific notification explicitly

passes the event attributes as arguments. For example,

int notifyPageFault (attr_t tid,

attr_t faultAddr, attr_t faultIAR)

specifies that a page fault has occurred with the attributes

thread ID, faulting data address, and faulting instruction

address.

If the event has not been enabled by any PEM

consumer, event notification does nothing. If the event

has been enabled by a PEM consumer for the current

context, event notification takes the action specified by

that PEM consumer.

PEM consumer

A PEM consumer uses a stream of events to model,

analyze, or display behavior. The consumer must specify

both the context and level of detail of an event in which

the consumer is interested. The level of detail determines

the amount of information available about an event. For

example, a consumer might want an event and all of its

attributes to be saved every time the event executes, while

another consumer might only want to count the number

of times the event occurs.

The PEMAPI provides two levels of details: logging

and statistics. At the logging level, whenever the event

occurs in the specified context, the event and its attributes

are saved as a log record (typically in a trace). At the

statistics level, whenever the event occurs in the specified
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context, an operation is executed that summarizes the

event. The operation may count the number of times this

event occurs or compute the maximum, minimum, or

average values of one of the event attributes. The

statistics level usually leads to the loss of the event

attributes. For example, a count of page faults contains

only the number of page faults, and not the set of faulting

addresses.

Example

We illustrate the use of the PEMAPI with a specific

example (Figure 4). In this example, a PEM consumer

counts the number of page faults and data cache misses

that occur between invocations of the garbage collector

(GC) in a JVM.

A process-specific context (context) is created for this

JVM. An event set (events) is defined to contain the two

aggregated events. The event set is registered at the

statistics detail level using the COUNT operation. A

callback is registered for the end of a GC with the

gcEndEvent event in the context context such that, when

the JVM ends a GC, the callback routine gcEnd is

invoked with the gcEndEvent log record passed as the

first parameter. The gcEnd callback saves the timestamp

at the end of GC in the static variable timestamp and

enables and resets the stats handle, which counts the

number of page faults and data cache misses. A second

callback is registered for the start of a GC with the

gcStartEvent event in the context context such that,

when the JVM starts a GC, the callback routine gcStart

is invoked with the gcStartEvent log record passed as

the first parameter. This callback disables the statistics

handle and logs the GC end and start timestamps and the

number of page faults and data cache misses that

occurred since the last GC. After both callback handles

are enabled, one of the callbacks is triggered whenever

this JVM starts or ends a GC.

By unregistering the handles, the JVM stops counting

the number of page faults and data cache misses that

occur between GC events. The XML specifications for the

events pageFault, dataCacheMiss, gcStart, and gcEnd,

and the logBetweenGCs routine are not shown here.

Visualization client
This section presents our first experience using PEM with

a vertical performance visualization client that enables

users to understand the correlation of events across layers

in the execution stack. We have collected PEM event

traces for UMT2K [13], a scientific application, running

on K42 on an Apple Power Mac** G5 [14] with two IBM

PowerPC* 970FX processors. The UMT2K application,

written in a mix of C and Fortran, is a three-dimensional

PEMAPI example to count number of page faults and data cache misses between garbage collection (GC) invocations.

Figure 4

gcEnd(void *record) {
   timestamp = ((gcEndRecord *)record)->timestamp;
   stats.enable();
   stats.reset();
}
gcStart(void *record) {
   gcStartRecord *rec = (gcStartRecord *)record;
   long long *vals;
   stats.disable();
   vals = stats.read();
   logBetweenGCs(timestamp, rec->timestamp, vals);
}
context_t    context   = {UNRESTRICTED, myPid, myTid};
eventSet_t   events    = {pageFaultEvent, dataCacheMissEvent};
statistics_t stats     = registerStatistics(events, context, COUNT);
callback_t   gcStartCB = registerCallBack(gcStartEvent, context, gcStart);
callback_t   gcEndCB   = registerCallBack(gcEndEvent, context, gcEnd);
static long  timestamp = 0;
gcStartCB.enable();
gcEndCB.enable();

... // application execution

gcStartCB.unregister();
gcEndCB.unregister();
stats.unregister();
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deterministic multigroup photon transport code for

unstructured meshes. We collected events across the

following execution layers:

� Application layer: The core of UMT2K takes place in

a loop nest, and we instrumented the code to emit

phase marker events that indicate the iterations in the

loop nest. Although we instrumented the application

manually, the insertion of phase markers at code

boundaries, such as loops and subroutines, can easily

be automated in a compiler.
� OS layer: K42 was instrumented to emit a variety of

OS events, including context switches, system and

kernel calls, locking and synchronization events, and

page faults.
� Hardware layer: The PowerPC 970FX provides a rich

set of hardware performance counter events. Among

others, we collected cycles per instructions completed

(CPI), L1 data cache load misses (L1 D-cache misses),

and data translation lookaside buffer (TLB) misses.

We used the PEM toolset to build a CPO offline agent

that acts as a bridge between the raw event stream coming

from the PEM runtime and the event requirements of the

PE visualizer. PE expects complete context information

to be available in every record in the visualization event

stream. The semantic information about what constitutes

the event context is fully contained in the XML event

specification. Thus, we were able to write an agent-

specific PEM tool to automatically generate the code for

the CPO offline agent, in this case, as Java classes.

We used the vertical performance visualization client to

investigate the effects that different memory page sizes

have on performance. The PowerPC 970FX supports two

page sizes: small (4 KB) and large (16 MB). Using large

pages generally increases application performance by

reducing TLB misses and page faults.

First, we produced a trace for UMT2K with a baseline

small-page allocation. Figure 5(a) shows a view of the

UMT2K event trace in PE. The x-axis represents time

and the y-axis represents four event plots that show data

for a selected interval. The overview plot at the top of the

figure shows the entire run for the highlighted CPI plot,

and the top arrows indicate the selected interval in the

overview plot. Through the vertical integration of events

in the trace, we can analyze, within the same view,

application, library, virtual machine (if applicable), OS,

and hardware events. In this view we are analyzing

application and hardware events. The Inner loop strip

shows the application markers for an innermost loop

(a) PE view of UMT2K across execution layers for small pages. (b) PE view of UMT2K comparing metrics for small- and large-page 
executions. (SP = small page; LP = large page.)

Figure 5

Inner loop

TLB misses

L1 D-cache misses

CPI

(a)

(b)

Small page: CPI

SP pgflts

SP: TLB misses

Large page: CPI

LP: pgflts

LP: TLB misses
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(phase 6). Each marker indicates the beginning of a loop

iteration. The remaining strips show frequency plots of

hardware events, with each line segment indicating the

frequency of events for a four-million-cycle interval. The

first frequency plot shows CPI. In general, the more cycles

that are required to execute an instruction, the worse the

application performance. Thus, the lower the CPI line

segment, the more performance improves. The next

frequency plot shows TLB misses, and the last frequency

plot shows L1 D-cache misses. Figure 5(a) is just one of

the multiple views that PE provides, and we show only a

sample of the data events that can be collected with PEM.

The second observation is the correlation of the

behavior within each periodic phase (i.e., within each

loop iteration). Figure 5(a) shows a strong correlation

between TLB misses and CPI. As TLB misses rise during

an iteration, CPI also rises, suggesting that TLB miss

behavior is a strong factor in overall application

performance. In contrast, the L1 D-cache misses both

correlate and inversely correlate with CPI. When L1

D-cache misses correlate with CPI, such misses are a

factor in overall application performance. A metric that

inversely correlates with CPI indicates that it is not a

factor in overall application performance. For example,

when CPI rises and L1 D-cache misses fall, it is less likely

that L1 D-cache misses are causing CPI to rise.

To explore the effect of large pages on performance, we

ran a second experiment in which we mapped the heap

data of UMT2K to large pages. Figure 5(b) shows a view

of the event traces for both small and large pages. For the

large page run, the number of page faults is reduced by

99.34%, and the number of TLB misses is reduced by

98.55%. The overall execution time is reduced by 6.6%.

We used the visualization client together with other

tools to understand which situations benefit most

from large pages. We then applied the results of

this investigation in our second CPO client, which

automatically predicts and exploits the benefits of large

pages.

Page-size client
Our second CPO client automates the manual process

used in the visualization client for exploiting large-page

benefits. This client consists of an offline and an online

CPO agent that cooperate to optimize large-page usage.

The offline agent models page allocation behavior using

data gathered from the hardware, OS, and application

events. The predictive model produced by the offline

agent allows the online agent to optimize page usage

across different applications and varying inputs. Details

of the page-size modeling can be found in [15]. Here we

provide an overview.

The first time an application is run on the system, the

online agent programs PEM to collect a trace consisting

of data address samples and TLB misses using hardware

counters, page-fault information from the OS, and

memory allocation events from the runtime library. This

trace is used by the offline agent to model the behavior of

the application and predict the relative benefits of using

large pages for different application data structures. The

analysis results are stored as a set of page-size directives

in the CPO database. For subsequent invocations of the

application, the online agent examines the database and

the number of large pages currently available and

determines which data structures to back with large

pages. Consistent with the CPO paradigm, these

subsequent runs are monitored to validate that the chosen

mapping had the predicted benefits.

The offline agent takes as input a stream of memory

references and a stream of memory allocation events from

the collected PEM trace. The agent transforms the

memory reference stream into a page reference stream

using the memory allocation events and then applies reuse

distance analysis [16] to compute the number of TLB

misses and page faults for different mappings of data

structures to large pages. The result of the analysis is a

ranking of individual mappings based on relative benefits

over the baseline all-small-page mapping.

The ranking is expressed as percentage of maximal

benefits (PMB). The mapping with the greatest reduction

in TLB and page-table misses has a PMB ranking of

100%. Other mappings will have a fraction of the

maximal benefits, between 0 and 100%. An example of

the benefit ranking for the SPECfp**2000 benchmark

galgel is presented in [15]. The benefit ranking shows the

percentage of maximal benefits against the number of

large pages that are needed for five different mappings.

The five mappings map all, none, or a certain subset of

the categories to large pages. The figure shows both the

PMB ranking predicted by the model and the actual

ranking that results from execution times.

We evaluated the page-size agent using the

SPECfp2000 [17] benchmark suite and two large scientific

applications, UMT2K [13] and RF-CTH [18], by

comparing the predicted PMB ranking with the actual

PMB ranking. We compute the ranking error per

mapping to be the distance between the predicted and the

actual PMB rankings. The overall ranking error for a

benchmark is determined as the average ranking error

across all mappings. For example, in Figure 6, the

ranking error is 6.59%. The geometric mean of the

ranking error over the entire set of benchmarks is 3.72%,

indicating that the CPO page-size agent makes accurate

benefit predictions and is effective in making optimal

page-size mapping decisions. Our initial implementation

of the page-size client was on the K42 operating system,

and we have recently ported the client to IBM AIX.
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Related work
There is a significant amount of work related to feedback-

directed and dynamic optimization. A comprehensive

survey of dynamic JIT compiler optimizations in virtual

machines can be found in [19]. In the context of virtual

machines, the term continuous compilation has been used

to describe an approach in which compilation is

overlapped with program interpretation and native

execution [20]. Dynamic optimization has also been

applied to native binaries without compiler support [21].

There are a number of previous approaches that, like

CPO, emphasize the aspect of continuity in the

optimization process. The work by Kistler and Franz

[22] describes an approach to continuous program

optimization that has been applied to data layout

optimizations in object-oriented programs based on

online feedback. Childers et al. [23] describe an approach

to continuous compilation that applies aggressive code

optimization at all times, from static optimization to

online dynamic optimization. The continuous

compilation framework has been demonstrated for

adapting application code in embedded systems and has

also been used to describe a hardware dynamic

optimization mechanism to optimize an application

instruction stream [24].

There has been considerable work in tracing for

understanding kernel behavior—LTT [25], KernInst [26],

and K42 [12], and for understanding application

behavior—Paradyn [27] and SvPablo [28]. In addition,

DTrace [29] and CrossWalk [30] allow event collection

across system call boundaries. OProfile is a profiler

for Linux** for systemwide sampling of hardware

performance counters [31]. Most of the previous work

focuses on offline data collection and postmortem

visualization. The main contribution of this paper is

an infrastructure for vertical monitoring and online

optimization. In addition to previous work, we enable

data collection seamlessly across multiple layers of

hardware and software. Our system is also designed to

allow data to be processed online. If offline traces are

desired, we showed how a simple client can be written

to extract the data from the collection stream.

Other performance visualization tools include Intel

VTune** [32], SGI SpeedShop** [33], Apple Shark

[34], and Paraver [35]. Kimelman et al. [36] present

Performance Visualizer, which focuses on presenting

temporal information from multiple levels of the system.

Hauswirth et al. [3] show that for understanding modern,

object-oriented systems, a vertical approach to

performance understanding across system layers is

important, and thus we used the PE visualizer in this work.

As early as the 1990s, Romer et al. [37] acknowledged

the potential usefulness of large pages. The same work

also states that . . . good policies for superpages have been

elusive [because] a cost benefit analysis is required to

determine if the overhead of constructing a superpage is

outweighted by its benefit. Their work, as well as more

recent work [9], migrates data to large pages reactively,

with analysis performed at the OS level using data

gathered by the system. In contrast, we developed a

predictive model and use information gathered from

across the execution stack. Current operating systems,

such as Linux, AIX, and SunOS**, support restricted use

of large pages. Commonly, a fixed pool of large pages is

fixed at boot and may or may not be modified during

system execution. If modification is allowed, it is typically

an expensive operation. Thus, the ability to predict the

benefits obtained from using large pages and the number

of large pages required is helpful.

Future work

Work is ongoing to further strengthen the CPO

framework and build additional CPO agents for other

client optimizations. We have started work on a CPO

agent that monitors Message Passing Interface (MPI)

performance and attempts to tune MPI use and

parameters. Once a sufficiently large number of

concurrent CPO agents is available, we plan to address

the challenge of coordinating multiple concurrent agents.

With multiple optimizations taking place concurrently,

there is an increased potential for conflict and adverse

side effects from agent activity. We plan to address these

potential conflicts by using PEM as a communication

Figure 6

Benefit ranking for galgel. ©2005 IEEE. Reprinted from [15] 
with permission.
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channel so that concurrent agents coordinate their

activities through established protocols.

Conclusions
We have presented a continuous program optimization

(CPO) architecture to allow automatic tuning of

application performance in today’s complex hardware

and software environment. The focus of this paper was on

the performance- and environment-monitoring (PEM)

component of CPO and how we use PEM to build CPO

agents for performance tuning. PEM vertically integrates

events from the various layers of the execution stack and

thereby provides an integrated whole-system view of

performance to CPO agents. We presented our XML

specification for describing PEM events and our

implementation of the PEM runtime on K42, a prototype

open-source research OS.

We illustrated the use of PEM in two client

applications. The first was a vertical performance

visualization client that uses an offline agent to aid in

program understanding and manual performance tuning.

The second was a page-size client that uses both an offline

and an online agent to automatically tune system

performance by selecting the most beneficial data

structures to map to large pages.
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