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A potential role for epigenetic mechanisms in the regulation of mammary function in the dairy cow is emerging. Epigenetics is the
study of heritable changes in genome function that occur because of chemical changes rather than DNA sequence changes. DNA
methylation is an epigenetic event that results in the silencing of gene expression and may be passed on to the next generation.
However, recent studies investigating different physiological states and changes in milk protein gene expression suggest that DNA
methylation may also play an acute, regulatory, role in gene transcription. This overview will highlight the role of DNA methylation
in the silencing of milk protein gene expression during mastitis and mammary involution. Moreover, environmental factors such as
nutrition may induce epigenetic modifications of gene expression. The current research investigating the possibility of in utero, hence
cross-generational, epigenetic modifications in dairy cows will also be discussed. Understanding how the mammary gland responds
to environmental cues provides a potential to enhance milk production not only of the dairy cow but also of her daughter.
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Implications

Epigenetic regulation of gene expression is emerging as a
hitherto unknown level of biological control. We will discuss
how epigenetics may be part of the enormously complex
regulatory pathways underpinning milk production. Not only
may epigenetic regulation be directly involved in milk pro-
duction of the mother (‘acute epigenetics’), but it may also
indirectly affect milk production in its offspring through
transgenerational epigenetics, by effects on foetal develop-
ment in utero. Gaining a clearer understanding of this level
of regulatory control may lead to new insights in optimizing
milk production not only in today’s cows but also in future
generations.

Introduction

Milk production in dairy cows is influenced by numerous
factors, including the environment (e.g. nutrition, photo-
period and heat stress), hormones, local factors within the
mammary gland (e.g. autocrine, paracrine and homeostatic

feedback systems), diseases (e.g. mastitis) and management
practises (e.g. milking frequency). At the cellular level, these
factors influence both the number and the activity of the
mammary epithelial cells that synthesize milk. Multiple cell
signalling pathways have been identified that play a role in
regulating milk synthesis (Suchyta et al., 2003; Connor et al.,
2008; Finucane et al., 2008; Singh et al., 2008). At the
initiation of lactation, the rapid increase to peak milk yield
following parturition is primarily because of an increase in
mammary epithelial activity in response to milking. The
gradual decline in milk production following peak lactation is
anomalous to gradual involution and is predominantly a
result of mammary epithelial loss via apoptosis (Wilde et al.,
1997; Capuco et al., 2001). Microarray studies on rodent
(Master et al., 2002; Clarkson et al., 2004; Stein et al., 2004)
and bovine (Suchyta et al., 2003; Singh et al., 2008) mammary
tissues have identified multiple cell signalling pathways
that may orchestrate the switch from a lactating to a non-
lactating phenotype. Moreover, the cell-to-cell communica-
tions via tight junction proteins (Cooper et al., 2004) and
the cell–extra cellular matrix communication (Gilmore et al.,
2000; McMahon et al., 2004; Singh et al., 2005) are also
disrupted during involution.- E-mail: kuljeet.singh@agresearch.co.nz
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It is becoming increasingly evident that epigenetic
mechanisms play a role in the molecular regulation of milk
production in dairy cows. Epigenetics refers to changes in
genome function that occur because of chemical changes
in DNA and its surrounding chromatin rather than DNA
sequence changes. These changes can remain stable through
rounds of cell division and even from mother to offspring (i.e.
transgenerational; Riggs et al., 1996). Epigenetic mechanisms
modulate chromatin structure and may either repress or
enhance gene expression. These mechanisms include DNA
methylation (Jones and Takai, 2001; Jaenisch and Bird, 2003);
histone modifications, such as acetylation, ubiquitination,
methylation and phosphorylation (Strahl and Allis, 2000);
and microRNAs (Bartel, 2009). DNA methylation is the most
extensively studied epigenetic regulators (Jaenisch and Bird,
2003). A series of complex changes in methylation patterns
are essential for development and differentiation, and influ-
ence housekeeping, X-chromosome-linked, imprinted and
tissue-specific genes. DNA methylation occurs predominantly
at the 50-position of cytosine in cytosine–phosphate–guanine
(CpG) dinucleotides in motifs known as CpG islands. These
CpG islands are associated with protein-coding genes with
the majority being located in the promoter regions (Bird,
2002). It is proposed that DNA is methylated by atleast two
de novo methyltranferases – Dnmt3a and Dnmt3b. The
Dnmt1, through its actions on hemi-methylated DNA, ensures
complete methylation, and hence is responsible for main-
taining the methylation pattern. Demethylation may be
passive or can also occur actively, although the process of
demethylation mechanisms is less clear (Reik and Walter,
2001). Methylation may also occur at isolated CpG
dinucleotides in close proximity to functional transcription
factor binding sites (Vanselow et al., 2006). Furthermore, a
small fraction of methylation also occurs in non-CpG cyto-
sines (Ramsahoye et al., 2000). Two mechanisms have been
proposed to explain the mechanisms whereby DNA methy-
lation represses gene transcription. First, methylated CpGs
may prevent the binding of the transcriptional activators
(Bird and Wolffe, 1999). Second, transcriptional repressors
with methyl-CpG-binding domains may associate with
methylated CpGs and block transcription by modifying the
surrounding chromatin or prevent interaction by activators.
The methyl-CpG-binding proteins are thought to play a role
in this interaction between DNA methylation and chromatin
remodelling and modification (Klose and Bird, 2006).

Epigenetic marks are generally maintained for the life of an
organism; however, the acute nature of DNA methylation for
regulating gene expression has been described (Vanselow
et al., 2006; Kangaspeska et al., 2008; Métivier et al., 2008)
and will be discussed below with respect to milk protein gene
expression (see section ‘Acute DNA methylation regulation of
casein expression in mammary epithelial cells’). In mammals,
there is limited evidence that these marks can be passed on to
the next generation. The direct evidence in rodents and indirect
evidence in humans and livestock will be discussed below
(see section ‘Transgenerational epigenetic inheritance studies
in mammals’). Unravelling the epigenetic mechanisms that

regulate milk production may explain how environmental
factors influence lifetime lactation performance of the dairy cow,
as well as the lactation performances of her offspring. Studies
investigating epigenetic mechanisms regulating milk protein
gene expression in rodent mammary gland development and
functional differentiation (Rijnkels et al., 2010), and bovine
mammary gland regression, have recently been reviewed
(Singh et al., 2010a). This current review will focus on DNA
methylation and will provide an update of, first, the evidence
that DNA methylation may play an acute role in regulating the
decline in milk protein gene expression during bovine mammary
involution and disease, and, second, the possibility of trans-
generational epigenetic inheritance in dairy cows.

Acute DNA methylation regulation of casein
expression in mammary epithelial cells

Epigenetic modifications and chromatin conformation during
normal mammary gland development has recently been
reviewed (Rijnkels et al., 2010). Studies indicate that lactogenic
hormones can induce an open chromatin conformation at
regulatory regions, which correlates with milk protein gene
expression. Focussing on DNA methylation, in this review,
methylation levels are associated with the expression of several
casein genes. Studies in rodents demonstrate that b- and
g-casein genes are hypomethylated in the lactating mammary
gland. In contrast, in the liver, these genes are hypermethylated,
and thus not expressed (Johnson et al., 1983). The k-casein
gene is also hypomethylated in lactating mammary glands
but hypermethylated in non-mammary and non-lactating tissue
(Thompson and Nakhasi, 1985). Hypomethylation during
lactation has also been described for the bovine aS1-casein
gene (Platenburg et al., 1996). Methylation and expression of
this gene has been studied in mammary tissue of cows at
different physiological states and during disease.

DNA methylation of bovine aS1-casein gene during
mastitis and involution
Vanselow et al. (2006) have described the association of
DNA methylation and chromatin structure around a signal
transducer and activator of transcription (STAT)5-binding
lactation enhancer, which occurs at approximately 210 kb of
the aS1-casein-encoding gene. In the bovine lactating
mammary gland, this region of DNA is hypomethylated.
During Escherichia coli infection of the mammary gland, this
region becomes methylated at three CpG dinucleotides and
is associated with chromatin condensation. These changes
accompany the shutdown of aS1-casein synthesis, with the
mRNA levels dropping to 50% and protein levels to 2.5% of
that in the non-mastitic control glands (Vanselow et al.,
2006). Similar results have been demonstrated with a
Streptococcus uberis infection of the mammary gland. The
aS1-casein mRNA declined by 2.3-fold in mastitic tissue
compared with non-mastitic controls (Swanson et al., 2009),
and there was an increase in methylation levels of the three
CpG sites in the mastitic tissue (ranging from 28% to 68%)
compared with non-mastitic controls (ranging from 10% to
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25%; Singh et al., 2010b). Preliminary results demonstrated
that DNA compaction in this region of the aS1-casein gene
was increased from 31% to 45% during infection (Molenaar
et al., 2010).

Furthermore, in healthy mammary tissue, there is an
increase in DNA methylation at these three CpG dinucleotides
at the functional STAT5-binding site of the aS1-casein
promoter, following an 8-day non-milking period when milking
was ceased at mid-lactation (Singh et al., 2009a). Interestingly,
there was a decline in methylation following an 18 h non-
milking period compared with lactation. This is in the same
time frame in which multiple physiological events start to occur
in response to the cessation of milk removal in dairy cows
(Stelwagen, 2001). These events occur before the decline in
prolactin–STAT5 signalling (Singh et al., 2009b) and milk
protein gene expression that occurs at 24 to 36 h post milking
(Singh et al., 2008). The average percentage compaction of
15% appeared relatively constant for the first 24 h, but then
increased by an average of 1.9% per day to 30% by day 8 of
non-milking (Molenaar et al., 2010). Although DNA methyla-
tion may not initiate the decline in aS1-casein mRNA during
involution, it plays a role in silencing aS1-casein expression in
both involution and infection of the udder.

Variability in DNA methylation of the bovine aS1-casein
gene and rate of involution between cows
There is wide variation in the rate of DNA compaction in
mammary glands from different cows, with most exhibiting a
relatively moderate to high rate of compaction and a few
showing very little compaction. Comparison of the casein
mRNA expression and DNA compaction revealed a close but
inverse relationship (Molenaar et al., 2010). The variability in
DNA methylation and association with gene expression are
supported by a subsequent study demonstrating an increase
in DNA methylation in mammary tissue in mid-lactation dairy
heifers that have undergone non-milking periods of up to
28 days (Swanson et al., 2011). In this study, the between-
cow variation in the rate of involution was also observed
both by quantitative real time-PCR and by histology, with
two out of five cows showing high casein expression and
histological characteristics of lactation, whereas the remain-
ing three had low to no casein expression and histological
characteristics of involution (data not shown). The causes and
mechanisms of the variation in the rate of involution are
currently under investigation.

DNA methylation changes of the bovine aS1-casein gene
during reversible and irreversible involution
Studies of involution of the rodent mammary gland demon-
strate that this process occurs during two distinct stages,
that is, reversible and irreversible involution. The regression
of the mammary gland results in irreversibility of involution
during the second stage; however, this process is reversible
within the first 48 h (Jaggi et al., 1996; Li et al., 1997;
McMahon et al., 2004). The reversible nature of the initial
stages of involution in the rodent mammary gland has
been demonstrated following re-suckling of engorged and

involuting rat mammary glands (McMahon et al., 2004).
However, the extent to which mammary gland involution is
reversible varies widely among species. In contrast to the
rodent mammary gland, involution in cows does not occur to
the same extent (Capuco et al., 2001). During the extended
process of involution, which occurs in the bovine mammary
gland, many alveolar structures are retained (Holst et al.,
1987) and Capuco et al. (1997) suggest that during involu-
tion of the bovine mammary gland senescent and damaged
cells are being replaced, rather than extensive remodelling of
the mammary epithelial cell compartment. Thus, in the cow,
mammary involution may potentially be reversible following
extended non-milking periods (Noble and Hurley, 1999).

Indeed, cessation of milk removal for up to 7 days from
mid-lactation cows demonstrated that lactation could be
fully restored following re-initiation of milking twice daily for
7 days (Dalley and Davis, 2006). Numerous other studies
have demonstrated re-initiation of lactation following short-
term non-milking periods (Wheelock et al., 1965; Stelwagen
et al., 2008). Extended non-milking periods of 14 days
demonstrated recovery of milk yield to pre-trial levels fol-
lowing 16 days of re-milking (Hamann and Reichmuth,
1990). However, cessation of milking was in one udder half,
whereas the contralateral udder half was continuously
milked. Therefore, the presence of lactogenic signals and
hormones such as prolactin may have delayed the onset
of involution in the unmilked glands (Akers and Keys, 1985;
Feng et al., 1995; Noble and Hurley, 1999). Previous studies
from our laboratory have shown a significant down-
regulation in bovine milk protein gene expression following
24 to 36 h post milking. By 8 days post milking, apoptotic
factors increased and mammary epithelial cells undergoing
apoptosis were identified, suggesting that the mammary
gland had entered the process of involution (Singh et al.,
2008). However, the complete recovery of milk yield fol-
lowing cessation of milking for up to 7 days suggests that
the process of involution is fully reversible at this stage
(Dalley and Davis, 2006). Following which, previous studies
have suggested that the process of involution becomes
increasingly irreversible (Noble and Hurley, 1999).

Research from our laboratory support and further extend
the current studies on lactation re-initiation in the dairy cow.
Extended non-milking periods in mid-lactation heifers for
either 7, 14 or 28 days resulted in large variation in the
recovery of milk yield and composition for the different
treatment groups (Swanson et al., 2011). Greater than 92%
recovery of milk yield was observed by 5 days after
resumption of milking following a 7-day non-milking period.
This recovery decreased to 48% for the 14-day non-milking
period and to less than 20% for the 28-day non-milking
period. Results suggest that STAT5/STAT3 and insulin-like
growth factor-I signalling pathways play a central role in the
reversible and irreversible phases of bovine mammary gland
involution (Singh et al., 2011). Results from this and previous
reports suggest that alveoli may enter the process of invo-
lution at varying rates and the observed flexibility in bovine
mammary function may be because of this heterogeneity.
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Heterogeneity within the bovine mammary gland
The retention of functional alveoli has been demonstrated
using histological techniques where small populations of
involuting alveoli are present in lactating tissue (Molenaar
et al., 1992and 1996). Cessation of milk removal in the bovine
mammary gland induces morphological, physiological and
structural changes, which result in the initiation of involu-
tion. However, the retention of alveolar structures ensures
that unlike rodents, lactation can still be re-initiated in
the bovine mammary gland after extended non-milking
periods. Therefore, the shutdown of milk production may be
partially due to other regulatory mechanisms, such as epi-
genetics. This is currently being addressed by investigating
the re-initiation of milking following extended periods of
non-milking in the trial described above (Swanson et al.,
2011). Methylation levels of CpG dinucleotides at the
STAT5-binding site 210 kb in the aS1-casein promoter were
increased following both 7 and 28 days non-milking, com-
pared with lactating cows (Swanson et al., 2011). Further-
more, the full recovery of lactation following re-initiation of
milking after the 7 days non-milking was associated with
demethylation of DNA, returning to levels similar to those in
lactating control cows. However, the DNA methylation levels
remained high following the re-initiation of milking after
28 days non-milking, which corresponded with the low
partial recovery of milk yields. These results suggest that
DNA methylation at a functional STAT5-binding site of the
aS1-casein-encoding gene may play a role in regulating both
reversible and irreversible involution. Future studies are
focussed on addressing the heterogeneity within a gland
to understand the relationship of DNA methylation events
with gene expression. An understanding of how chromatin
remodelling mechanisms may be manipulated for the reg-
ulation of milk production is necessary to potentially devise
novel approaches and/or technologies to enhance the lactation
performance of dairy cows.

Transgenerational epigenetic inheritance studies
in mammals

The epigenetic state of the mammalian genome undergoes
dynamic reprogramming events in the germ cells and in
the early embryo (Dean et al., 2003; Jirtle and Skinner, 2007).
There is increasing evidence that prenatal and early post-
natal environmental factors can modify the epigenome to
develop stable alterations in the phenotype (Jirtle and
Skinner, 2007). Barker et al. (1993) proposed the ‘foetal
origin hypothesis’, whereby the environment in utero may
lead to permanent effects in subsequent generations. Evi-
dence supporting this is from human epidemiological studies,
suggesting foetal undernutrition, is associated with foetal
growth and programming of several adult diseases (Barker,
1995). Although it is possible that permanent influences on
the foetus may be because of the direct influences of the
environment on the foetus, rather than mediated via maternal
epigenetic mechanisms, transgenerational inheritance in
humans has been suggested by epidemiological studies of

the Dutch Famine of 1944, referred to as the Dutch Famine
Birth Cohort Study (Lumey, 1992). This investigation showed
that women who were pregnant during the extreme famine
conditions gave birth to children who were smaller than
average and who were also more susceptible to health pro-
blems (e.g. diabetes, obesity, cardiovascular disease, micro-
albuminuria, etc). The children of these children were also
smaller. Although these early findings suggest that nutrition
may have an influence for at least two subsequent genera-
tions, the effect of severe in utero maternal malnutrition on
offspring size was not confirmed in a subsequent analysis,
perhaps because of sampling variability or study design
(Lumey et al., 1995). Morgan and Whitelaw (2008) have
reviewed several studies in humans, suggesting that environ-
mental factors may play a role in transgenerational inheritance
effects; however, there is no direct molecular evidence and it is
difficult to interpret whether transgenerational effects are due
to social factors or epigenetic mechanisms.

In contrast to human studies, in mice, there is direct
evidence of transgenerational epigenetic inheritance. This
is from studies investigating nutritional supplementation
of methyl donors and genes with metastable epialleles
(Morgan et al., 1999), although, even here, there are con-
tradicting results, such that the evidence for transgenera-
tional inheritance of these marks is not robust. The Avy allele
is a dominant mutation of the agouti (A) locus, caused by the
insertion of an intracisternal A-particle (IAP) retrotransposon
upstream of the agouti coding exons. A cryptic promoter in
the proximal end of the Avy IAP promotes constitutive ecto-
pic expression of the agouti gene, resulting in a yellow coat
colour (Duhl et al., 1994). However, DNA methylation at this
promoter results in its silencing and the agouti colour is
expressed (Morgan et al., 1999). Furthermore, the dam’s
nutrition when pregnant can influence coat colour of the
offspring, for example, supplementing the diet with methyl
donors shifts the offspring’s coat colour from yellow to
brown (Wolff et al., 1998; Waterland and Jirtle, 2003).
Although, there is evidence that transgenerational inheri-
tance of these DNA methylation marks occur (Cropley et al.,
2006), there is also a report suggesting that the increased
DNA methylation levels at the Avy locus were not due to
transgenerational inheritance (Waterland et al., 2007).
Another possible direct example of transgenerational epige-
netic inheritance reported in mice describes the axin-fused,
AxinFu, allele. This allele contains a retrotransposon within an
intron of the gene, which may result in a kinked tail Vasicek
et al., 1997; (Zeng et al., 1997). Both the Avy and AxinFu alleles
demonstrate phenotypic variability (Morgan et al., 1999).

Genomic imprinting is a non-Mendelian epigenetic pro-
cess that is inherited through the germline. The epigenetic
mechanisms involve DNA methylation and histone mod-
ifications for gene expression in a parent-of-origin-specific
manner, that is, the paternally and maternally inherited
alleles are expressed to different degrees. Lactation is a
maternal trait, hence it is possibly imprinted and in agree-
ment with the parental conflict hypothesis. In livestock,
reviewed by Ruvinsky (1999), studies in multiple pig breeds,
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reciprocal crosses between different sheep breeds, callipyge
mutant allele studies in heterozygous sheep and reciprocal
crosses between horse and donkey provide evidence of
genomic imprinting. In cattle, it has been shown that manip-
ulation of pre-implantation embryos in vitro (i.e. in vitro
fertilization, nuclear transfer and embryo transfer) can result
in a condition known as large calf syndrome, leading to
developmental abnormalities. This may possibly be because of
shifts in a balance between paternal and maternal contribu-
tions (Moore and Reik, 1996). Cloning may lead to epigenetic
errors resulting from incomplete reprogramming of the donor
cell’s nucleus. Nevertheless, milk produced by cloned cows
was similar to that of cows in commercial herds managed
under similar conditions (Laible et al., 2007).

We are currently investigating whether transgenerational
epigenetic inheritance, with regard to milk production,
occurs in dairy cows. Epigenetic regulation is not specifically
accounted for in current animal genetic models. The current
animal genetic models (Van Tassell et al., 1997) assume that
30% of phenotypic variance in milk yield is due to Mendelian
genetic (additive) effects, whereas 15% is associated with
the cow’s permanent environment (PE) effect. PE effects
refer to those factors that are responsible for a consistent
deviation from the cow’s expected yield following adjust-
ment for genetic gain, management, herd effects and herd
by sire interactions. The PE effect can account for as much as
40% of variance in milk production (Bormann et al., 2003)
and likely include epigenetic effects. When subdivided into
the within- and across-lactation components, PE effects for
milk production ranged from 22% to 26% and 6% to 16%,
respectively, for phenotypic variation, suggesting that a
significant portion of PE within an individual cow is carried
forward across lactations (Bormann et al., 2003).

Diverse environmental factors and management practices
influence dairy cow milk production. Nutrition of the animal
is a key environmental factor affecting milk production,
either directly, during lactation, or indirectly, through mam-
mary development. Sejrsen et al. (1982) showed that a high
plane of nutrition during the first 9 months of a heifer’s life
may lead to changes in the mammary tissue, resulting in a
lower subsequent milk yield. Furthermore, nutrition during
gestation may influence not only subsequent lactation
(Park et al., 1989) but also performance during the second
lactation (Ford and Park, 2001). In this study, heifers were
subjected to energy restriction during mid-gestation, fol-
lowed by re-feeding during late gestation. It was hypothe-
sized that epigenetic mechanisms may play a role in these
carryover effects on lactation (Park, 2005). To support this,
there was a decrease in 50-methyldeoxycytidine levels in late
gestation mammary tissue from heifers subjected to the
stair-step compensatory nutrition compared with controls,
which was associated with increased casein gene expression
(Choi et al., 1998).

Adverse environmental effects, relating to suboptimal
nutritional and health status, are often associated with a
reduction in milk yield and the depletion of body energy
reserves. Such adverse maternal conditions may in turn have

an impact on the phenotype of the offspring of the affected
cows, which may be, in part, due to epigenetic modifications
in utero. Body condition score (BCS) is often used as an
indicator of a cow’s energy or nutritional status. Previous
New Zealand studies suggest a significant effect of BCS on
subsequent reproductive performance of female progeny
(Roche et al., 2006; Pryce and Harris, 2006). In a recent Irish
study, using their national database, intrauterine conditions
were quantified by a maternal variance component to
determine the potential relationship between dam milk
production and daughter milk yield in the Irish Holstein
population (Berry et al., 2008). Maternal milk production
effects on daughter milk yields were small and negatively
related. This association increased with gestation trimester.
Further, there was no PE effect of dam on daughter perfor-
mance. High-producing cows tend to be in greater negative
energy balance. Thus, greater metabolic stress during
pregnancy may have subsequent negative effects on the
daughters’ lactation performance.

In contrast, our preliminary results suggest a positive
association of dam’s milking performance and nutritional
status with her daughter’s first lactation performance. The
dam’s nutritional status was indicated by BCS measured
either during late first trimester or early second trimester of
the dam’s second pregnancy (i.e. during their first lactation).
A total of 11 593 unique dam–daughter pairs with data on
the first lactation and BCS of the dam and the daughter’s
first lactation milk yield were analysed. These dam–daughter
pairs were physically distributed throughout New Zealand,
belonging to 1373 different herds, representing three different
genetic groups (Holstein–Friesian, Jersey and Kiwi-cross).
The dam data were obtained over the period between 2002
and 2006 and the daughter’s performance was measured
between 2005 and 2009. After correcting for the environ-
mental effects (year, herd) and the additive genetic effect on
milk yield (via the daughters estimated breeding value for
that trait), the dam’s maternal environment was found to
influence their daughter’s subsequent milk production in the
Jersey breed, but not in the Holstein–Friesian or Kiwi-cross.
The contradictory results between this and the Irish studies
(Berry et al., 2008) are likely a reflection of the different
management systems between the two countries. Further-
more, Berry et al. (2008) kept only animals with greater than
81% Holstein–Friesian lineage with 100% Holstein–Friesian
sires. There is currently no direct evidence for transgenera-
tional epigenetic inheritance in dairy cows. The limited
indirect evidence suggests that the lactation performance
of the dam has a strong influence on the daughter’s lactation
performance in the Jersey breed. Further analyses of larger
datasets are required to more accurately account for the dif-
ferent genetic effects using an animal model. It is a logistical
challenge to design transgenerational cow trials in order to
distinguish between genetic and epigenetic mechanisms
because of the large generation intervals of cattle. However,
this type of a study may result in novel approaches to
enhancing the lifetime lactation performance of the dam and
also that of its offspring. As some of the phenotypic variation
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could be due to epigenetic factors, continued research into the
epigenetic regulation of milk production may have significant
economic and environmental benefits.
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