
Abstract
This study assesses the performance of five Machine Learning
Algorithms (MLAs) in a chronically modified mixed deciduous
forest in Massachusetts (USA) in terms of their ability to detect
selective timber logging and to cope with deficient reference
datasets. Multitemporal Landsat Enhanced Thematic Mapper-
plus (ETM+) imagery is used to assess the performance of three
Artificial Neural Networks – Multi-Layer Perceptron, ARTMAP,
Self-Organizing Map, and two Classification Tree splitting
algorithms: gini and entropy rules. MLA performance evalua-
tions are based on susceptibility to reduced training set size,
noise, and variations in the training set, as well as the
operability/transparency of the classification process. Classifi-
cation trees produced the most accurate selective logging
maps (gini and entropy rule decision tree mean overall map
accuracy � 94 percent and mean per-class kappa of 0.59 and
0.60, respectively). Classification trees are shown to be more
robust and accurate when faced with deficient training data,
regardless of splitting rule. Of the neural network algorithms,
self-organizing maps were least sensitive to the introduction of
noise and variations in training data. Given their robust
classification capabilities and transparency of the class-
selection process, classification trees are preferable algorithms
for mapping selective logging and have potential in other
forest monitoring applications.

Introduction
Various forest monitoring programs are being established
to document the status of forest composition and condi-
tion over time (e.g., Canada’s Earth Observation for
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Sustainable Development of Forests). Monitoring programs
cover large spatial extents, and require sizable quantities
of remotely sensed data, thus presenting a unique set of
data processing and image interpretation challenges. Aside
from the large volume of data to be processed, most
complications are related to the paucity of ground refer-
ence data caused by cost and time constraints (Wulder,
1998; Loveland et al., 2002). Training datasets used in
forest characterization are, therefore, often too small or
unrepresentative to capture changes in the spectral vari-
ance of forest canopies which exhibit low signal-to-noise
ratios in the presence of natural variability and myriad
anthropogenic disturbances (Rogan and Miller, 2006).
Machine learning algorithms (MLAs) however, offer the
potential to handle complex spectral measurement spaces
with minimal human intervention and reduced processing
time compared to conventional classifiers. MLAs can
process large volumes of multi-dimensional data with
minimal human intervention and reduced processing time,
compared to parametric classifiers such as Maximum
Likelihood (Hansen et al., 2000), suggesting their potential
suitability in regional-scale forest monitoring. MLA operat-
ing characteristics however, are poorly understood by both
the remote sensing and ecology communities, thus limiting
their potential application in forestry. MLA application is
becoming more common, but there is a deficiency of
knowledge on their capabilities, limitations, and operation
for remote sensing applications in ecology (Kavzoglu and
Mather, 2003).

Previous studies have demonstrated MLA effectiveness
in generic land-cover change mapping (Lees and Ritman, 1991;
Gopal and Woodcock, 1996; Liu and Lathrop, 2002; Chan and
Chan, 2002). A recent investigation into the capability of
MLAs to accurately characterize land-cover/land-use change
(Rogan et al., 2008) identified them as appropriate algorithms
when faced with complex measurement space, noise, and
heterogeneous remote sensing scenes (Rogan et al., 2003). The
literature has not however fully addressed the fundamental
problem noted by Gahegan (2003, p. 87): “Difficulty of use
is still a real issue with many forms of machine learning.”
Inadequate understanding of MLA operation, capability, and
interpretation has, therefore, resulted in slowed operational
acceptance. This paper investigates the capability of three
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artificial neural networks: Multi-layer Perceptron (MLP), Self-
Organizing Map (SOM), and Fuzzy ARTMAP, and two decision
trees (Entropy (ENT) and Gini (GIN) splitting rules), to cope
with degraded reference datasets for mapping the location of
selective timber harvest sites in Massachusetts mixed decidu-
ous forest using multitemporal Landsat Enhanced Thematic
Mapper-plus (ETM�) imagery.

Mapping Selective Logging
Regional analysis of the rate and pattern of timber harvest-
ing is critical for estimating carbon budgets, forest produc-
tivity, and changes in wildlife habitat (Goulden et al.,
1996, Foster and Motzkin, 1998). The prevalent form of
logging across the eastern United States is selective rather
than clear-cut, which is dominant in the western United
States. Kittredge et al. (2003, p. 437) describe the logging
regime in Massachusetts as having “chronic, moderate
intensity.” Detection of selective logging at regional scales
is one of the most challenging applications of remotely
sensed data. Selective logging and thinning results in
highly variable levels of canopy damage (spatially and
spectrally), that is often confused with undamaged canopy,
canopy shading and exposed understory (Rogan and Miller,
2006). Compared to clear-cut logging, remote sensing
studies examining selective/partial logging are rare (Gerard
and North, 1997).

The detection of canopy gaps using moderate resolu-
tion (i.e., 30 m) remote sensing imagery presents several
challenges: (a) canopy gaps due to natural disturbance
(e.g., windfall, ice damage) present spectral confusion with
canopy gaps caused by selective harvesting (Asner et al.,
2002), (b) selective harvest gaps are often sub-pixel in
scale (Souza et al., 2005), (c) understory exposure and
post-disturbance regeneration limit detection by reducing
the already subtle change in spectral response between
image capture dates (Franklin et al., 2000; Franklin, 2001,
and (d) there is no direct relationship between amount of
timber extraction and multispectral response (Souza et al.,
2005).

Selective logging detection using moderate resolution
imagery has focused primarily on tropical rainforest environ-
ments (e.g., Periera et al., 2002; Asner et al., 2004; Souza
et al., 2005). Asner et al. (2004) reported that selective
logging increased canopy gap fractions significantly in
tropical forest, but anthropogenically induced canopy gap
fractions cannot be detected using moderate resolution (30
m) remotely sensed data unless natural canopy gap fractions
are less than 50 percent (Asner et al., 2002). Canopy regen-
eration further complicates the detection of fine scale
canopy disturbance; canopy regeneration has been found to
reduce canopy gap fraction by 50 percent in as little as one
year in tropical forests (Asner et al., 2004). Pereira et al.
(2002) found a strong relationship between canopy distur-
bance and the quantity of timber removed in Amazonian
rainforests using aerial photographs, but this relationship
may not apply when using moderate resolution remote
sensing data in temperate, chronically disturbed environ-
ments.

Most canopy gaps exhibit lower near-infrared
reflectance, and higher visible reflectance when compared to
closed canopy (Olsson, 1994). Franklin et al. (2000), how-
ever, note that canopy gaps can produce an inverse spectral
response in areas with significant understory due to
increased light availability and subsequent photosynthetic
vegetation. This suggests the possibility of a bi-modal
change class where both increased and decreased photosyn-
thetic vegetation indicate disturbance in landscapes exhibit-
ing varying understory densities. The detection of selective
harvest in Massachusetts forests, using moderate resolution
imagery, has not been explored to date.

Selective timber harvesting has been shown to pro-
duce subtle changes in reflectance (0.0 to 0.2) when
compared to clear-cut harvest (0.2 to 0.14) (Olsson, 1994)
but has been successfully detected (up to �70 percent
overall map accuracy) using Landsat Thematic Mapper
(TM) data in relatively homogenous forest cover (Franklin
et al., 2000; Souza et al., 2005). Selective timber harvest-
ing produces a scene dominated by spatially diffuse felled
trees and small (�300 m2) canopy gaps (Sipe, 1990) in
comparison to clear-cut harvest scenes. The detection of
selective harvest sites can be described as what Song and
Woodcock (2003, p. 2557) refer to as “subtle change
detection” and has been identified as “very difficult”
(Pereira et al., 2002, p. 282) when using Landsat data. The
spatial resolution of data relative to selective harvest sites
creates a scene dominated by mixed (harvest/non-harvest)
pixels and the broad spectral range covered by Landsat
wavelengths can limit the detection of spectrally subtle
changes (Asner et al., 2002). Diverse forest species
composition and generations of succession since harvest
further complicate harvest detection by creating large
amounts of inter and intra-class variability (Figure 1). In
summary, mapping selective timber harvest in Massachu-
setts using Landsat represents a challenging classification
model appropriate for the rigorous assessment of MLA

capabilities.

Machine Learning
Machine learning is a computational approach to data
partitioning and categorization that is based on the idea of
“learning” patterns in datasets. Within remote sensing, MLAs
form a suite of image classification routines ranging from
simple K-means clustering to more complex neural net-
works. The two types of MLA implemented in this work,
decision trees and neural networks, are both abstractions of
the human learning process but differ fundamentally in their
approach: classification trees mimic the human abstraction
process through hierarchical categorization while neural
networks mimic the brain structure of neurons and linkages.

Figure 1. Scene Model: an example scene model of
selective timber harvest detection using Landsat
Thematic Mapper Imagery.
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Neural Networks
Neural Networks are a subclass of MLA that learn patterns
through a computational abstraction of the human brain’s
structure, where neuron activation indicates similarity. All
networks are based on the concept of the neuron, but differ
widely in their structure and, therefore, utility and operation.

Multi-layer Perceptron (MLP)
Multi-layer Perceptrons (MLPs) are a feed-forward artificial
neural network calibrated using a back-propagation algo-
rithm. Based on a recursive learning procedure, the MLP

algorithm uses a gradient decent search to minimize network
training error (Kanellopoulos and Wilkinson, 1997). MLPs are
a widely-used and subsequently, extensively researched type
of neural network algorithm for remote sensing applications
(e.g., Foody, 1995; Foody and Aurora, 1997). MLPs have been
employed successfully in change detection and mapping
studies (Gopal and Woodcock, 1996; Erbek et al., 2004).

MLPs have three primary components, an input layer, an
output layer, and one or more hidden layers; each composed
of a user-defined number of neurons. Input layer neurons
represent the input variables while output layer neurons
represent the classes specified by input training data. There
is, therefore, one input layer neuron for each input variable
and one output layer neuron for each class specified by the
input training data. Input layer neurons and hidden layer
neurons are randomly weighted and each training pixel is
assigned membership to an output neuron based on maxi-
mum activation. This process is repeated iteratively where,
at each iteration, the solution is compared to the previous
solution, and the weight structure resulting in the lowest
testing error is retained. Iteration continues until weights
reach a solution producing acceptable testing error for the
partition of input variables into the specified output classes,
or until the user stops the process. This “trained” network is
then used to classify the remainder of the scene based on
the level of output neuron activation produced by a given
pixel (Foody, 1995).

MLPs regularly produce higher map accuracies than
parametric classifiers (e.g., Foody, 2003), but results from
studies that compare MLP to other MLAs vary in regard to
MLP robustness in different applications (Tso and Mather,
2001). While capable of producing high map accuracies,
MLPs have been found overly-sensitive to training parameters
and training set size (Gopal and Fischer, 1996; Gopal et al.,
1999), prone to overfitting (Spina et al., 1998) (i.e., the
network produced is idiosyncratic to the training samples,
degrading the ability of the algorithm to generalize training
information to the entire image), and to require substantial
user intervention during the training phase (Gopal and
Fischer, 1996; Gopal et al., 1999) (i.e., input parameters are
idiosyncratic to a given dataset, which means the user must
monitor convergence and modify parameters empirically).

Attempts to identify input parameter heuristics capable
of minimizing the deficiencies presented above have been
inconclusive, making “trial and error” necessary for parame-
ter selection until the analyst gains a familiarity with the
algorithm’s operation (Kavzoglu and Mather, 2003).

ARTMAP

Adaptive Resonance Theory (ART) networks have been shown
to minimize sensitivity to training parameters and training set
size, overfitting, and the amount of user intervention neces-
sary (Carpenter et al., 1992; Mannan et al., 1998; Liu et al.,
2001), indicating their potential promise for the classification
of the highly variable measurement spaces indicative to the
detection of subtle multitemporal forest change. ANNs utiliz-
ing ART (e.g., ARTMAP) have been applied in only a handful of
change detection studies (Abuelgasim et al., 1999; Pax-Lenney
et al., 2001). ART networks use match-based learning, allowing

the retention of significant past learning while still incorpo-
rating new information into the network structure (Liu et al.,
2001). Unlike MLP, ARTMAP network complexity (i.e., number
of neurons) is defined empirically, eliminating the need for a
priori understanding of data structures. Each input layer
(F1) observation (i.e., pixel) is assigned to a category layer
(F2) neuron based on its spectral and, if included, ancillary
data characteristics. If no F2 neuron meets the similarity
threshold of a given F1 observation, a new F2 Neuron is
created in order to partition subsets of a degree of homogene-
ity defined by the user through a “vigilance” parameter (Tso
and Mather, 2001). Several researchers have found ARTMAP

to outperform MLP (e.g., Carpenter et al., 1998; Mannan et al.,
1998; Liu and Wu, 2005).

Self Organizing Maps (SOM)
Kohonen’s Self Organizing Map is a neural network proce-
dure in which a single two-dimensional layer of neurons is
initialized with random weights and subsequently organized
by systematic sampling of the input data. The organization
procedure uses progressive adjustment of weights based
on data characteristics (similar in concept to a K-means
means migration) and lateral interaction such that neurons
with similar weights spatially cluster in the neuron layer
(Kohonen, 1990; Li and Eastman, 2006). SOMs for supervised
classification have two training phases: an unsupervised
classification phase in which competitive learning and
lateral interaction lead to a fundamental regional organiza-
tion (topology) of neuron weights (Kohonen, 1990) and a
refinement of the decision boundaries between classes based
on the training data using a learning vector quantization
(LVQ) algorithm (Nasrabadi and Feng, 1988; Li and Eastman,
2006; Li, In Press). Each pixel is then assigned a class of the
neuron or neurons most similar in weight structure (mini-
mum Euclidian distance) to the pixel vector of reflectance
(Tso and Mather, 2001). Unlike MLP or ARTMAP, Kohonen’s
(1989 and 1990) SOM acknowledges relationships between
classes (i.e., feature map neurons), which allows for the
discrimination of multimodal classes, making it a promising
method for image classification (Villiman and Merenyi,
2001). Few remote sensing change detection studies have
explored SOMs, likely because of their recent introduction to
the field. Hadjimitsis et al. (2003) used SOM to detect
changes in land-cover in the Lower Thames Valley (UK) and
found the algorithm capable of accurate image classification
and subsequent change detection, but did not quantify the
level of accuracy achieved.

Classification Trees (CT)
Classification Trees are a non-parametric technique for
data partitioning (i.e., classification) by that recursively
split data to form homogenous subsets resulting in a hierar-
chical tree of decision rules. CTs initially analyze all input
variables and determine which binary division of a single
variable will most reduce the dependent variable (i.e.,
classes) deviance of the newly created nodes (Venables and
Ripley, 1999), ignorant to future partitions and all previ-
ously partitioned training data (Rogan et al., 2003). So while
the initial split (i.e., root) is made with all training data,
each subsequent split is performed with an always decreas-
ing subset of training data, and is therefore ignorant to
samples outside its parent node.

Like ANNs, CTs do not assume a given data distribution
and can readily characterize nonlinear relationships, but CTs
offer the added advantage of producing interpretable decision
rules (Friedl and Brodley, 1997). Several splitting rules have
been developed to optimize the efficiency of data partitions
and minimize overtraining: (See Zambon et al., 2006 for a
complete discussion). Two of the most commonly imple-
mented decision (i.e., splitting) rules are gini and entropy.
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Gini
The gini splitting rule is a measure of impurity at a given
node. The rule attempts to isolate the largest homogeneous
subset of data at each node. The gini rule is defined as:

(1)

where pi is the relative frequency of class i at node t, and
node t represents any node at which a given partition of 
the data is performed (Apte and Weiss, 1997). Relative
frequency is defined as:

(2)

where ni represents the number samples for class i, and n
represents the number of samples.

Entropy
Entropy (i.e., the “information rule”) is a measure of homo-
geneity of a given node and is calculated as:

(3)

where p is the relative frequency of class i at node t (Apte
and Weiss, 1997). The entropy rule can be interpreted as the
expected value of the minimized negative log-likelihood of a
given split result and has been identified as a more accurate
discriminator of rare classes than gini (Zambon et al., 2006).

CTs have been widely used for both change detection
(Lawrence and Labus, 2003; Rogan et al., 2008) and land-
cover classification (e.g., Hansen et al., 1996; Friedl and
Brodley, 1997; Lawrence and Wright, 2001). CTs have been
found to produce land change map accuracies significantly
higher than parametric classifiers (Friedl and Brodley, 1997;
Rogan et al., 2002; Rogan et al., 2003).

Study Area
This research focuses on the North Quabbin region in central
Massachusetts, USA (Figure 2). The 168,312 ha study site
is delineated by township lines to the south and east, the
New Hampshire border to the North and the Connecticut
River valley to the west. Elevations range from 75 to 487
meters above sea level (Foster and Golodetz, 1997). Soils are
predominately sandy loam derived from glacial till (Mott and
Fuller, 1967). The average temperature for January and July is

Entropy (t) � ��
i
pi log pi

pi �
ni

� n
i�j

Gini (t ) � �
i
pi(1 � pi )

�7.33 and 20.72 degrees (C), respectively. The average annual
precipitation is 109.47 cm (Massachusetts DHCD, 2001). The
region is dominated by non-industrial private forestland,
making up approximately 60 percent of the 81 percent total
forest. Kitteridge et al. (2003) found that North Quabbin
Massachusetts forests are disturbed at a rate of 1.5 percent per
year due to selective harvesting, but natural disturbance such
as ice damage and wind throw also create canopy gaps
resulting in a mosaic of natural canopy disturbance (Foster
and Boose, 1992). Prevalent tree species include Quercus
rubra (Red Oak), Acer rubrum (Red Maple), Betula lenta
(Black Birch), and Pinus strobus (White Pine). Logging is
selective of larger, commercially valuable species such as Q.
rubra and A. rubrum that dominate the canopy overstory.

Methods
Data
Two Landsat ETM� images, acquired 31 August 1999 and
08 August 2001 (path/row 13/30) were corrected for atmos-
pheric and solar illumination effects using the Chavez
(1996) COS(T) method and converted to reflectance values.
Georeferencing of both scenes to 1999 true-color aerial
photographs (0.5 m) resulted in a root mean square error
below 14 m using 90 ground control points. The images
were converted to brightness, greenness, and wetness
features using the Kauth Thomas transformation (Kauth and
Thomas, 1976). The first Kauth Thomas feature (brightness)
has positive loadings in all ETM� reflectance bands and
corresponds to overall scene brightness, or albedo. Green-
ness, like many other correlates of vegetation amount
contrasts visible bands (especially ETM� band 3) and the
near-infrared (ETM� band 4). Wetness presents a contrast of
the visible and near-infrared bands (weak positive loadings)
with the mid-infrared bands (strong negative loadings).
Spectral features representing multitemporal differences
were calculated by subtracting the two sets of Kauth
Thomas features to produce change (�) in brightness,
greenness and wetness. 1999 brightness, 1999 greenness,
and 1999 wetness features were input to classification
models to provide spectral information representing pre-
logging conditions along with � brightness, � greenness,
and � wetness.

The dependent variable, locations of selective logging,
was derived from a twenty-year (1984 to 2003) record of
regulatory timber harvest data, compiled from Massachusetts
Forest Cut Plans (FCPs) by researchers at the Harvard Forest
Long Term Ecological Research Site (Kitteridge et al., 2002).
These data provided ground reference information for MLA

training and map validation. The dataset consisted of
polygons delineating harvest locations with attributes
representing the quantity of timber removed (thousands of
board feet), date of harvest, and land ownership category
(e.g., private, state, industry, conservation organization)
(Kitteridge et al., 2002). FCP polygons have a 70 percent
accuracy based on preliminary field verification (Motzkin,
personal communication). Further, FCP perimeters are
typically within 5 m from the true boundaries (McDonald
et al., 2006). FCPs must be reported to state authorities and
approved prior to harvesting. Because FCPs are reported for
the entire area available for logging prior to harvest, FCP

polygon extent often exceeds the extent of actual harvest.
To minimize training/validation data error, only FCPs with a
removal of over fifty thousand board feet were included as
“harvest” in training/validation datasets. The inclusion of
only high density removals has been shown to increase
detection of harvest when used as ground reference data for
remote sensing based change detection (Pereira et al. 2002).

Figure 2. Study Area: The North Quabbin Region,
Massachusetts.
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TABLE 1. TRAINING SET STATISTICS

Non-Harvest Total Sample
Variable Harvest Pixels Pixels Pixels

Size 10% 64 1018 1082
Size 20% 696 1993 2689
Size 30% 1317 2965 4282
Size 40% 1456 4000 5456
Size 50% 1905 4993 6898
Size 60% 2276 5945 8221
Size 70% 2491 6849 9340
Size 80% 3305 7760 11065
Size 90% 3693 8756 12449
Size 100% 4144 9720 13864
Stability A 64 1018 1082
Stability B 632 975 1607
Stability C 621 972 1593
Stability D 139 1035 1174
Stability E 449 994 1443
Stability F 371 955 1326
Stability G 215 904 1119
Stability H 814 913 1727
Stability I 388 998 1386
Stability J 451 965 1416
Noise 5% 4384 9480 13864
Noise 10% 4461 9403 13864
Noise 15% 4534 9330 13864
Noise 20% 4754 9110 13864
Noise 25% 4899 8965 13864
Noise 30% 5022 8842 13864
Noise 35% 5180 8684 13864
Noise 40% 5211 8653 13864
Noise 45% 5350 8514 13864
Noise 50% 5466 8398 13864

FCPs from the year 2000 (January to December) were
extracted to limit reference data to pre- and post-logging
dates of ETM� image acquisition. No attempt was made to
mask or remove the footprint of selective logging locations
for previous dates, i.e., pre-2000. Training data were then
further refined to include only pixels that experienced a loss
in total greenness between time 1 and time 2 (i.e., negative
� greenness). Non-harvest training data representing forest
and low density residential land-use areas were randomly
selected from a fine spatial resolution 1999 land-use map
(Massachusetts Department of Housing and Community
Development (DHCD), 2001), that were considered stable
between 1999 and 2001 (i.e., experienced less than 0.001
change in normalized difference vegetation index (NDVI)).
Ten percent of Harvest/Non-Harvest samples were randomly
selected and reserved for map validation. The MLA valida-
tion dataset consisted of 73 harvest and 1,127 non-harvest
sample pixels and a total calibration dataset of 4,144 harvest
and 9,720 non-harvest sample pixels.

Algorithm Selection Criteria
MLA evaluation criteria for remote sensing applications have
been recently developed (see Defries and Chan, 2000; Pal
and Mather, 2003; Rogan et al., 2008). Rogan et al. (2008)
identifies several evaluation criteria: impact of training set
size, effect of variations in training set, effect of noise in the
training set, and interpretability of results (i.e., algorithm
decision transparency). The criteria identified by Rogan
et al. (2008) have particular relevance to the detection of
selective logging locations because they produce subtle
spectral changes, though Rogan et al. (2008) investigation
focused on more traditional land-cover classification. Large
variation in the training dataset and a heterogeneous
landscape require an algorithm capable of a range of
generalization. Timber harvest records are often scarce and
imprecise (Spies and Turner, 1999), making algorithm
training set efficiency and resilience to noise especially
important. All selection criteria, with the exception of
operability/transparency of results, were assessed using the
kappa index of agreement (Cohen, 1960) and omission and
commission errors. All algorithm tests were conducted
using identical training sets. Table 1 presents a summary of
all training data configurations.

Training Set Size
Collection of ground reference information on which training
sets are based is often time consuming and expensive. The
cost of reference data collection and paucity of historical
reference information present a challenge to regional forest
change assessment. Therefore, it is desirable to use an algo-
rithm capable of producing accurate classifications from
minimal training data (Rogan et al., 2008). MLAs have been
identified as requiring large volumes of training data when
performing classifications (Foody and Aurora, 1997; Pal and
Mather, 2003). However, MLAs have also been deemed capable
of producing more accurate classifications using small training
sets when compared to traditional parametric classifiers
(Foody et al., 1995; Gahegan, 2003). Sensitivity to training
set size was assessed through incremental training set size
reductions (10 percent of total available).

Algorithm Stability
MLAs, particularly ANNs, are often sensitive to subtle changes in
training set composition (Defries and Chan, 2000; Simard et al.,
2000; Hastie et al., 2001). Small variations in the network
calibration sample can result in substantial variation in the
network formed caused by differences in the variance captured
by the training set. Therefore, it is desirable to identify algo-
rithms that minimize sensitivity to variations in training

set composition. Stability was assessed by training each MLA

using ten independent sets in order to determine variability
in results due to variations in training set composition.

Training Set Noise
Ground reference data are often assumed to represent the
truth on the ground, despite the likely existence of instru-
ment and human interpretation errors. Therefore, it is
desirable for an algorithm to produce accurate classifications
in the presence of noise (e.g., intact forest within harvest
class training areas) in training data (Defries and Chan,
2000). MLAs are often adversely affected by noise in training
sets (Simard et al., 2000). Rogan et al. (2008) found that an
increase in noise of as little as 10 percent can reduce
accuracy by as much as 27 percent overall map accuracy in
some MLAs. An algorithm’s ability to produce accurate
classifications in the presence of training set noise is vital
for the selection of an algorithm that could be used opera-
tionally. The assessment of noise resilience was conducted
through the introduction of randomly mislabeled pixels into
training sets in increments of 5 percent, ranging from 
5 percent to 50 percent of the total training set.

Operability/Transparency of Results
Many ANNs have been described as “black box” in their
operation, providing little to no insight into the relationship
between input variables and classification results (Kasischke
et al., 2004). Some ANNs have, however, incorporated
methods to provide user insight into the decision process
(Kohonen, 1990). The ability to interpret results and under-
stand the decision process of an algorithm is an important
consideration during algorithm selection because many
remote sensing practitioners have been hesitant to imple-
ment MLAs due to unfamiliarity with their operation and
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limited access to specialized software (Chan et al., 2001;
Gahegan, 2003; Kasischke et al., 2004). Assessment of
operability was based on the intuitiveness of an algorithm’s
operation and the difficulty of gaining proficiency in
algorithm parameter selection. All analyses presented here
were conducted using IDRISI Andes; a self-contained GIS and
image processing package developed at Clark Labs, Clark
University. The amount of explanatory output provided by
the algorithm and the usefulness of that output in providing
insight into the decision (i.e., classification) process were
used as indicators of algorithm transparency.

Results and Discussion
Algorithm Performance
A summary of MLA classification results is shown in Table 2.
CTs produced the most consistently accurate overall kappa
values (entropy � 0.601, gini � 0.599). SOM yielded a
comparable (p � 0.5) result (0.597), but ARTMAP and MLP

had significantly (p � 0.0001) lower accuracies (average
overall kappa � 0.487 and 0.408, respectively). CTs consis-
tently underestimated the harvest class (omission errors
for entropy and gini � �14 percent) compared to SOM,
ARTMAP, and MLP (omission errors � �10 to 11 percent), but
yielded the lowest commission errors (CT commission
error � 5.5 percent). SOM produced commission errors
comparable to the CTs, but MLP and ARTMAP substantially
overestimated the presence of logging (commission
errors � 13.0 percent and 10.3 percent, respectively).

Figure 3 presents the impact of training set size in terms
of kappa, omission, and commission errors. CTs were least
affected by training set size, as the overall kappa for both
entropy and gini splitting rules fluctuated by only 0.064
when trained on ten incrementally smaller training sets. Of
the ANNs, SOM proved the most resilient to fluctuations in
training set size (overall kappa range 0.092) followed by MLP

and ARTMAP (overall kappa range 0.111 and 0.203, respec-
tively). While CTs show little variation when trained on

different sample sizes, SOM, ARTMAP, and MLP results
indicate clear dependencies on training set size, i.e., SOM

and MLP are most accurate when trained on larger sample
sizes (i.e., greater than �5,500 pixels and �4,500 pixels,
respectively).

Results suggest that training set size does not influence
CT classification accuracy, provided that samples character-
ize the feature space exhibited by the classes. ANNs show a
clear dependence on training set size, but optimal training
set sizes are likely germane to individual classification
models. Given limited reference samples, CTs are the MLA

of choice. Given availability of large numbers of reference
samples SOM may produce more accurate results. CTs were
the most stable MLA when compared to SOM, ARTMAP, and
MLP. Ten randomly selected independent training sets
resulted in a 0.064 fluctuation in overall kappa for both
entropy and gini rule CTs. ANNs were less stable; MLP was
the least stable (overall kappa range � 0.2567) followed by
ARTMAP and SOM (overall kappa range � 0.2137 and 0.1806,
respectively). Results indicate CTs to be a more stable MLA

for this application and dataset, when compared to ANNs.
Despite instability relative to CTs, SOM produced consistently
high accuracies and relative stability when compared to the
other ANNs.

Figure 4 presents the impact of training set noise in
terms of overall kappa, omission, and commission errors.
SOM shows more resilience to noise relative to ARTMAP and
MLP (p � 0.0001), with both exhibiting an increase in error
rates as noise is introduced into the training set. CTs were
most resilient to noise in the training set. The inclusion of
up to 40 percent mislabeled training data in the training set
yielded no change in result for entropy and gini splitting
rules. The resilience of CTs and SOM’s to training set noise
can be explained by their initial unsupervised training phase.
In order for nodes or feature map neurons to be mislabeled,
the majority of training data would have been mislabeled.
Since there are only two classes, even when 50 percent of
the training set is randomly mislabeled, only 25 percent of

TABLE 2. SUMMARY OF RESULTS FOR VARIATIONS IN TRAINING SET

SOM MLP ARTMAP CT-Entropy CT-Gini

Overall Statistics
Mean Omission (samples) 7.366 8.3 7.566 10.166 10.142
Mean Omission Percentage 10.091 11.369 10.365 13.926 13.894
Mean Commission (samples) 71 147.533 116.3 63.133 63.857
Mean Commission Percentage 6.299 13.090 10.319 5.601 5.666
Mean Kappa 0.597 0.408 0.487 0.601 0.599
Mean Map Accuracy (Producer) 93.47% 87.01% 89.68% 93.89% 94.24%

Size Statistics
Mean Kappa 0.604 0.445 0.540 0.604 0.595
Kappa Standard Deviation 0.030 0.032 0.053 0.027 0.020
Mean Omission Percentage 8.082 11.369 11.780 14.109 13.972
Mean Commission Percentage 6.326 11.073 7.701 5.510 5.758
Kappa Range 0.092 0.111 0.203 0.064 0.064

Stability Statistics
Mean Kappa 0.596 0.427 0.543 0.608 0.611
Kappa Standard Deviation 0.064 0.080 0.074 0.027 0.027
Mean Omission Percentage 12.191 12.465 10.273 13.972 13.972
Mean Commission Percentage 6.211 11.987 7.976 5.430 5.350
Kappa Range 0.180 0.256 0.213 0.067 0.067

Noise Statistics
Mean Kappa 0.593 0.352 0.378 0.591 0.588
Kappa Standard Deviation 0.030 0.052 0.072 0.010 7.97E-09
Mean Omission Percentage 10 10.273 9.041 13.698 10.958
Mean Commission Percentage 6.362 16.211 15.279 5.865 4.755
Kappa Range 0.096 0.177 0.219 0.032 0
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Figure 3. Effect of Variations in Training Set Size:
(a) Kappa index of agreement, (b) percentage of
harvests sites detected, and (c) percentage of 
non-harvest sites falsely identified as harvest.

Figure 4. Effect of Noise in the Training Set: (a) Kappa
index of agreement, (b) percentage of harvests sites
detected, and (c) percentage of non-harvest sites
falsely identified as harvest.

the training set is likely to be mislabeled. Therefore, the
correct signal still dominates the sample. ARTMAP and MLP

are less resilient to training set noise, but for slightly differ-
ent reasons. ARTMAP also has unsupervised components to its
initial network organization (i.e., F2 neurons are created
based on image samples, not training data), but it labels
F2 neurons as they are created. This can result in F2 neurons
being mislabeled based on only a single pixel. The learning
retention that is ARTMAP’s strength can also explain its
susceptibility to training set noise. MLP’s susceptibility to
training set noise can be explained by its supervised training
procedure. The function (i.e., network) fit by MLP is formed
based on training data and therefore, attempts to fit the
function to the entire training set.

Algorithm Transparency and Interpretability
CTs are the most transparent classification algorithm because
their hierarchical decision rules are explicit and interpretable.
CT decision rules revealed a heavy reliance on � greenness by

both splitting algorithms. � greenness was selected as the lead
split in all instances and the only split in some iterations.
Most trees proceeded to split on � brightness, 1999 greenness,
and � wetness, respectively. This variable selection pattern
aligns with previously reported CT variable selections in
vegetation change detection studies (Rogan et al. 2008).

ANNs provide significantly less insight into the algorithm
decision process, but each type has features that provide
some insight into the network structure. SOM provides insight
into the distribution of classes in feature space and potential
sources of interclass confusion through the use of a feature
map, which displays the multidimensional network-class
structure in two dimensional space (Mather, 1999). Inspec-
tion of SOM feature maps revealed both the harvest and non-
harvest classes as multimodal. MLP can provide insight into
its operation through the use of training and testing accuracy
information and the output of activation layers. Activation
layers can provide per-pixel information about the decision
process of the algorithm. Understanding activation layer
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Figure 5. Example Map of Harvest Pattern.

calculation, however, is difficult, as weight structures are
complex and two different weight structures can yield the
same result. While training and test accuracy were consis-
tently related to output map accuracy and activation layers
did reveal a logical pattern of uncertainly (e.g., edge effects,
harvest class uncertainty), hidden layers and weight struc-
tures were not found to be interpretable. ARTMAP provides no
output to aid in deciphering its decision process other than
the number of F2 neurons produced. A high number of 
F2 neurons relative to the specified vigilance parameter
indicate a large amount of intra-class variability in the
training samples. For example, introduction of 50 percent
noise into the training set consistently increased F2 neurons
from �200 to �10,000 when using an identical vigilance
parameter (vigilance � 0.98).

CTs have by the far the most intuitive input parame-
ters. Decision rule and minimum leaf proportion (to
prevent overtraining) are the only parameters, and each
has clear repercussions on classification results. ARTMAP

has the most user-intuitive parameters when compared to
the other ANNs examined; parameter adjustments lead to
intuitive changes in classification. The vigilance parameter
is intuitive in its operation and allows the analyst to
specify the precision with which one wants the algorithm
to characterize the training data; essentially allowing
control over the network’s ability to generalize to the
remainder of the scene.

User parameters of MLPs are slightly less intuitive than
those of ARTMAP and require significant user-intervention.
Training an MLP twice using the same input parameters and
variables can produce different results, making parameter
selection difficult at first. After some experience however,
algorithm parameters become intuitive to the user and the
necessity for user intervention ceases. Learning rate is the
key parameter for manipulation of MLP performance. Adjust-
ment of only the learning rate parameter results in settings
approximate to optimal. The version of MLP used for these
analyses (IDRISI 15.0 Andes edition) allows for automated
learning rate estimation, significantly reducing the amount
of user intervention necessary. SOM exhibits the least
intuitive relationship between input parameters and output.
There does not appear to be a simple method to deduce the
optimal settings for a given dataset. However, a wide range
of settings can produce robust networks and high relative
accuracies.

Selective Logging Detection
Selective logging was successfully detected (�93 percent
detection using SOM) using multitemporal Landsat ETM�
data according to Massachusetts FCP records. Figure 5
shows an example of a classification produced by CT (gini).
Commission errors as low as �3 percent and map accura-
cies as high as 96.16 percent indicate that moderate spatial
resolution imagery may offer a cost-effective method of
initial landscape sampling for selective logging. Detection of
selective logging using Landsat resolution remotely sensed
data and minimal human intervention indicates the poten-
tial viability of selective harvest monitoring programs in
chronically disturbed forests. At such a low cost, a wide
area selective harvest monitoring program would have both
regulatory and resource management applications.

Selective logging represents a difficult classification
problem, due to the heterogeneity of both the harvest and
non-harvest classes (e.g., exposed understory and natural
variability) and to the paucity of accurate ground reference
data. CTs and SOM detected the subtle spectral changes
created by the selective removal of individual trees, because
they were able to cope with these challenging data charac-
teristics by grouping multiple spectrally heterogeneous

clusters into the same class; a characteristic that MLP,
ARTMAP, and supervised parametric classifiers do not share.
This indicates CTs and SOM to be uniquely qualified for
application to a selective harvest monitoring program. While
results indicate that harvest location can be successfully
identified according to FCP records, further research is
required to determine if harvest quantity can be determined
from moderate resolution multitemporal remote sensing
data. Another important area of research highlighted by
these findings is determining whether harvested trees can be
distinguished from natural canopy disturbance using
moderate resolution remote sensing data.

Conclusions
The purpose of this paper was to examine the potential of
multitemporal ETM� data to map selective logging sites in
deciduous and mixed-deciduous forest in Massachusetts,
USA. MLAs produced classifications of varying accuracy
and each exhibited desirable and undesirable traits. CTs
and SOM produced the most accurate classifications (mean
kappa over all tests � 0.6) and proved to be the most
robust classification option when faced with sub-optimal
training sets. ARTMAP produced classification accuracies
comparable to CTs and SOM under optimal training condi-
tions, but accuracies degrade as training sets reduce in size
or noise is introduced. MLP produced classifications of
low relative accuracy when compared to the other MLAs
assessed (0.12 to 0.2 lower mean kappa) and does not cope
well with sub-optimal training sets. It should be noted that
these tests were conducted using a scene characterized by
subtle and dynamic change in a heterogeneous landscape
in order to assess the robustness of the tested algorithms in
a “difficult” classification model, and results may vary in a
more simple classification model.
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CTs have the most user-intuitive parameters (i.e., decision
rule and minimum leaf proportion) and the most transparent
decision process. ARTMAP also provides intuitive parameters
(i.e., vigilance) and relative ease of operation, but provides no
insight into the algorithm decision process. SOM user parame-
ters are numerous and not immediately intuitive but it does
provide some insight into class and network structure
through the feature map. MLP also has several parameters, but
many of them can be optimized computationally (i.e., without
user intervention). MLP provides minimal insight into network
structure and decision process. MLAs encompass a wide range
of both capability and usability. In particular, CTs offer a
robust classification method for implementation in forest
monitoring programs. The coarse-scale characterization of
landscape modification presents challenges that some MLAs
(CTs and SOM) are well suited for, while others (e.g., MLP)
produce unrealistic results (i.e., maps) and unacceptable
classification accuracies when presented with sub-optimal
training sets. If, as Loveland et al. (2002, p. 1098) points out,
“The Holy Grail of [digital] change detection is still total
automation and high accuracy,” then some MLAs may be the
metal from which that grail will be cast.
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