
Maximizing Throughput in Minimum Rounds in an

Application-Level Relay Service∗

Fred Annexstein Kenneth A. Berman Svetlana Strunjaš Chad Yoshikawa

Abstract

Application-level network relays possess many desirable

properties, including support for communication between

disconnected clients, increasing bandwidth between distant

clients, and enabling routing around Internet failures. One

problem not considered by existing systems is how to assign

client load to relay servers in order to maximize throughput

of the relay-system. In this paper, we are interested in the

particular case where network conditions change frequently

so that the ability of clients to adapt flow is restricted and

each round of activity is critical. To this end, we present an

algorithm, called Aggressive Increase, AAI which improves

its competitive ratio in each time round that the network

conditions persists. Given a relay network where a client

connects to at most N servers, if network conditions persist

for log(N) rounds then the algorithm’s throughput becomes

constant competitive. Our results improve upon the com-

petitive ratio of previous work (of Awerbuch, Hajiaghayi,

Kleinberg, and Leighton [2]). In addition we show that the

AAI algorithm performs well in simulation studies as com-

pared with the algorithm of [2] and an adaptation of the mul-

tiplicative increase algorithm of [8]. On a variety of input

graphs, we show that the AAI algorithm typically reaches

close to peak bandwidth levels within only a small constant

(< 10) number of rounds.

1 Introduction

We consider the problem of maximizing throughput in
a network relay service where each sender must tun-
nel data to its receiver via a set of permissible servers.
For example, the set of permissible servers for a send-
ing client could be its k-closest servers where ‘closest’
is determined by network latency measurements. When
a sender communicates it must fractionally assign each
successive block of data in its data stream to its set
of permissible servers. These servers then forward the
data on to the receiver. This problem has practical
implications in today’s Internet since there are many
devices, e.g. computers behind firewalls or network-
address-translation (NAT) boxes, which cannot com-

∗Department of Computer Science, University of Cincinnati,

Cincinnati, OH, 45221-0030. Supported in part by NSF Grant

0521189 and an Ohio Board of Recents Ph.D. Fellowship

municate with one another directly without the use of
public third parties or waypoints [7]. In addition, it has
been shown that application-level relays can even ben-
efit connected clients by increasing bandwidth [11] and
routing around Internet failures [1].

In this paper we focus on the the problem of
deriving a method of optimizing throughput in the case
of limited periods of activity. The goal is to determine
how each sending client can aggressively assign data to
its set of permissible servers (in each round) in order
to maximize total system throughput. This problem is
related to purely oblivious (one-shot) routing; however,
we consider the case where sending clients can adjust
their flow based on local load information from their
waypoint servers in the previous round. While we
assume that network streams have some measure of
persistence, we do not assume a priori the duration of
each stream. Therefore, any solution to this problem
should attempt to maximize throughput during each
additional round of persistence but cannot make any
assumption about the length of persistence of client
demands. Furthermore, given the nature of the streams,
e.g., video or voice-over-IP, extensive buffering of the
data is not considered.

In this paper we present a simple algorithm, called
Aggressive Increase, AAI which adjusts and improves
its throughput in each time round that the set of sending
clients persists. In each round the competitive ratio,
that is the ratio with regard to the optimal throughput,
is improved. We show that if the set of senders persist
for a run of ρ ∈ Ω(log(∆)) consecutive time rounds
then the algorithm becomes constant competitive with
the optimal, where ∆ is the maximum out degree of
the set of active senders. Our results compare favorably
to previous works. We show that the AAI algorithm
has slightly improved competitive ratio, compared to
previously known results, for all runs of length at least
2 dlog ∆e+4 rounds. In addition we show that the AAI

algorithm tends to perform better in simulation studies
as compared with the previously studied algorithms
in [2, 8].

2 Comparisons with Related Work

Previous work on algorithms maximizing throughput in
few rounds have tended to have one or more of the
following problems: (1) slow convergence to the final
solution after polylog (or more) rounds, (2) failure to
reach constant-competitiveness, or (3) dependence on
a priori knowledge of the length of persistence. Of
course this throughput problem can be modeled as a
flow problem, and several researchers have considered
distributed primal-dual approaches to approximating
flow solutions; see for example, [12, 4, 8] which yield (1+
ε) approximations within polylog distributed rounds.
However, as noted in [2], these algorithms converge to
a final solution which is to say that the performance
of the algorithms before convergence is not necessarily
known. Furthermore, the convergence rates of these
algorithms typically have large constants (on the order
of 1

ε3). If some clients stop sending and/or new clients
start sending before convergence is reached then it is
not known how much throughput has been achieved.

Chattopadhyay, Higham, and Seyffarth [5] have
described a distributed maximum matching algorithm
which operates by repeatedly finding and removing
augmenting paths. However, this algorithm converges
to an optimal solution in O(Nn) rounds where n is the
actual number of processors in the system and N is an
upperbound on n. The algorithm’s performance before
convergence is not known.

Oblivious routing schemes are also well-suited to
distributed load balancing since local knowledge alone
is used to route network traffic. A polynomial time algo-
rithm for constructing a polylog-competitive (w.r.t edge
congestion) oblivious routing scheme is given by Azar,
Cohen, Fiat, Kaplan and Räcke in [3]. However, this
algorithm is designed for one-shot oblivious routing and
does not make use of demand persistence to improve its
performance. A recent semi-oblivious routing algorithm
of Awerbuch, Hajiaghayi, Kleinberg, and Leighton [2] is
closely related to our work. Their algorithm is shown
to be constant competitive as long as one can guar-
antee a priori that clients’ demands always persist for
R ∈ Ω(log(∆)) rounds where ∆ is an upperbound on
the maximum client out degree. Throughout the rest
of the paper, we refer to this algorithm as the ARA or
‘restricted adversary’ algorithm. In general, for a given

value of R, the algorithm is shown to be 18 dR/2e
R (2∆)6/R

competitive. This algorithm operates under a restricted
adversary model where the adversary may specify when
each client becomes active but, once active, a client
must always send for R consecutive rounds where R is a
system-wide, well-known constant. In practice, it may
be difficult to know how long client demands will persist,
i.e., a particular network stream could begin or termi-

nate at any time. If a too small value of R is used then
the throughput may suffer since the competitive ratio of
the algorithm is inversely related to R. (See Section 6
which discusses the ARA algorithm dependence on R.)

In this paper we show that if the set of network
streams and ∆ have persisted for the last i > 1 rounds
then the algorithm has been 4/(1 − g)-competitive
during that i-round period where g = l

l+ 1−l
∆

, and l =

1
2bi/2c . Note the use of the past tense, meaning that the
algorithm’s competitiveness depends on how persistent
demands have been versus how persistent the demands
will be and thus it does not require a priori knowledge
of client demands or client demand distribution. We
call an i-round period where the state of the system has
been persistent a ‘run’ of length i. Specifically, for any
run of length i = 2 ∗ (dlog(∆)e+ dlog(1/ε)e) rounds, we
show that the AAI algorithm is 4/(1 − ε) competitive
with the optimal algorithm over the length of the run
for any desired ε, 0 < ε < 1. For example, for any run
of length i = 2(dlog(∆)e+1) rounds the AAI algorithm
is 8-competitive. Furthermore, we show that given the
same restricted adversary model of the ARA algorithm,
the AAI algorithm’s competitive ratio is always smaller
than ARA given that R ≥ 4(dlog(∆)e+2) where ∆ is the
max client out degree. Our main result is the following:

Theorem 2.1. Over i > 1 rounds of persistent de-

mands, the AAI algorithm throughput is 4/(1−g(bi/2c+
1))-competitive with the optimal algorithm where g(i) =

l(i)∆
l(i)∆+(1−l(i)) and l(i) = 1

2i−1 . In particular, for a run

of length i = 2 ∗ (dlog(∆)e + dlog(1/ε)e) rounds, the

AAI algorithm is 4/(1− ε) competitive with the optimal

algorithm for any desired ε, 0 < ε < 1.

Finally, we present a series of simulation studies
which suggest that the AAI algorithm will perform quite
well in practice. We compare throughput results of the
AAI with the algorithm of [2] and the AMI (1 + ε)-
competitive multiplicative increase algorithm of Garg
and Young [8].

The rest of the paper is organized as follows. The
graph model is given in Section 3, the AAI algorithm is
described in Section 4, performance and convergence of
the algorithm is contained in Section 5, and experimen-
tal results are given in Section 6.

3 Model

Clients and servers operate synchronously in a series
of time rounds, where in each round an active client
can fractionally assign at most one block to its set
of permissible servers and each server can process any
fractional number of blocks up to its specified capacity.
The sum of the blocks processed by all servers per round

is called ‘bandwidth’ and the sum of the processed
blocks over any run is called the run’s ‘throughput’.
We assume that each sender and receiver is a part
of at most one simultaneous communication and that
the receiver’s bandwidth is not the bottleneck. Thus,
we can model the problem as fractional assignment in
a bipartite graph {U, V,E} where each sender-receiver
pair is a node in U , each waypoint is a node in V , and
each edge (u, v) ∈ E indicates that the sender-receiver
pair u can communicate via waypoint v. From this point
forward, we will refer to a client-pair as a single client
which indicates the sender of the pair. During each
round, clients decide how much data to send to each
server based on a server’s feedback from the previous
round. If a client did not send in the previous round,
then the client can choose how much to send arbitrarily.
(The first round flow does not impact the behavior or
analysis of the algorithm.) For ease of exposition, we
declare the client’s first round flow to be zero when
describing the algorithm in Section 4. We make use
of the following definitions and notation in subsequent
sections:

1. The fractional assignment, or flow, on the edge e is
denoted f(e).

2. The load on a server v, Lv, is the sum of the
fractional assignments on its incoming edges, Lv =
∑

e=(u,v) f(e). The offered load of a client u, Ωu,
is the sum of the fractional assignments on its
outgoing edges, Ωu =

∑

e=(u,v) f(e).

3. A server v is saturated if Lv

Cv
≥ 1 and unsaturated

otherwise, where Cv is the capacity of server v.

4. A client u is saturated if Ωu = 1, unsaturated
otherwise.

5. The set of a server v’s clients is denoted Clientsv.
This set is partitioned into saturated clients and
unsaturated clients, Clientssat

v and Clientsunsat
v ,

respectively.

6. The remaining capacity of a server v, Ψv, is defined
to be the capacity of a server minus its load, i.e.,
Ψv = Cv − Lv.

7. Client demands for round t are defined by the bit-
vector Dt of size N . If Dt(u) = 1, this means
that client u is sending (active) during round t, not
sending (inactive) otherwise.

4 Algorithm

The AAI algorithm closely models max-min fair algo-
rithms used to compute flow rates for available-bit rate

traffic in ATM networks (see, for example, [13, 10]).
These algorithms compute max-min fair rate allocations
in O(N) distributed rounds where N is the number of
unique rates. We show that, by computing the max-
min fair rate allocation at each server, the algorithm
reaches constant-competitive throughput in a logarith-
mic number of rounds. (Note that AAI algorithm, like
the other algorithms benchmarked in this paper, are not
TCP friendly. However, the AAI algorithm is intended
for use in an environment where the relay nodes are the
bottleneck and would typically be implemented on top
of TCP or a TCP-friendly algorithm.)

4.1 Client Algorithm Initially, upon becoming ac-
tive after a period of inactivity, each client’s flow as-
signment is set to zero for each permissible server. The
client-side algorithm is described in terms of one client;
the algorithm is identical on each client. In the begin-
ning of each round, the client sends flow to each of its
permissible servers based on its current flow assignment.
(This means that the client will send zero units of flow
in the first round it becomes active.) At the conclusion
of the round, the client receives a message from its per-
missible servers indicating a request for flow increase.
The client handles these flow increase requests in any
particular order and increases its flow assignments ac-
cordingly. The client stops handling requests if it runs
out of its one unit of flow to assign. If Ω = 1 (the client
has assigned 1 unit of its flow), the client declares it-
self ‘saturated’ to all of its permissible servers and will
maintain its current flow assignment to each outgoing
edge while it remains active. Otherwise, the client de-
clares itself ‘unsaturated’ to all of its servers, meaning
that it can increase its flow to some server(s) in the
next round. Notice that for every active client u, f(e)
is monotonically increasing for all edges out of u, and
so Ω is also monotonically increasing.

4.2 Server Algorithm The server-side algorithm is
described in terms of a single server; the algorithm is the
same on each server. Each server needs to keep a count
of its unsaturated clients and its current load. During
each round, the server processes flow from its clients
(the server is never overloaded) and updates its count
of unsaturated clients and its current load value. At the
end of each round, the server v asks each unsaturated
client to increase its flow value by the following amount:

finc(v) =
Ψv

|Clientsunsat
v |

Intuitively, the server is asking the unsaturated clients
to fill it to capacity in the very next round by having
each unsaturated client increase its flow by an equal

�������

�	���
����

�	��	���������

�	���
����

�	��	�����������

�	���
����

�	��	�����������

�������

�	��������
���������	�

�	���
����
���������	�

�	����������

�	��	���������������	

�������

�	��������
���������	�

�	���
����
���������	�

�	��������
���������	�

Figure 1: An example run of the AAI algorithm for a simple bipartite graph over three rounds. At the start of
the second round, the top-most client has chosen to satisfy the request for one unit of flow increase instead of
splitting its flow among its two servers.

amount. (The saturated clients maintain flow by defi-
nition, so the message is not sent to them.)

An instance of the algorithm is shown in Figure 1
for a simple graph and three rounds.

5 Analysis

We prove two general lemmas regarding flow induced
generalized vertex covers of bipartite graphs.

Suppose we are given a bipartite graph G of clients
U and servers V , where each client can send at most one
unit of flow and each server v ∈ V has capacity Cv. For
a given feasible flow assignment f , let Xf ⊆ U be a set
of saturated clients and let Yf ⊆ V be a set of saturated
servers induced by f . We say the the pair (Xf , Yf) is
a saturated cover if all the edges of G have at least one
endpoint in X ∪ Y .

Lemma 5.1. If (Xf , Yf) is a saturated cover then the

value of the flow f is 2-competitive with the optimal

flow.

Proof. Since (Xf , Yf) covers every edge in G we have
that the value of any feasible flow is no larger than
|X|+

∑

∀v∈Y Cv. The Lemma follow, since the the flow
f is at least max(|X|,

∑

∀v∈Y Cv).

We extend the notion of a saturated cover as follows.
For a given feasible flow assignment f , pair (Xf , Yf) is
an (r, s)-cover (where 0 < r, s ≤ 1) if (i) Xf ∪ Yf is a
vertex cover (covering all edges of G), (ii) Xf is a set
of clients for which at least the fraction r are saturated
by f , and (iii) Yf is a set of servers so that each v ∈ Y
is loaded to at least an s fraction of its capacity. Note
that a saturated cover is equivalent to a (1,1)-cover. We
have the following lemma.

Lemma 5.2. If f is a feasible flow for which (Xf , Yf)
is a (r, s)-cover, then the value of the flow f is

2/min{r, s}-competitive with the optimal flow.

Proof. Again, the optimal flow is upper-bounded by
the expression |X| +

∑

∀v∈Y Cv. The flow f associated
of the (r, s)-cover is at least max(r|X|, s

∑

∀v∈Y Cv) ≥
min{r, s}max{|X|,

∑

∀v∈Y Cv}. The Lemma follows.

See Figure 2 which illustrates a saturated cover and
(r, s)-cover for r = 2/3 and s = 1/2.

These two lemmas will be used in the following
analysis of the AAI algorithm. Specifically, we will show
that if ∆ is the maximum degree of any client, then after
Ω(log(∆)) rounds the AAI algorithm produces a flow f
that has an associated (r, s)-cover (Xf , Yf) where r and
s are constants bounded away from 0, and thus f is
constant competitive with the optimal flow.

Now, we formalize the definition of a run:

Definition 5.1. A run is a sequence of consecutive

time rounds in which the system state has persisted,

where system state consists of: the set of active clients

U , set of servers V , maximum degree ∆, server capaci-

ties C, and the bipartite-connectivity E.

In this section, for a particular run of length ρ > 1,
we will determine the competitive ratio of the AAI

algorithm’s throughput w.r.t the optimal algorithm’s
throughput over the same run. The rounds of a run
are numbered 1, . . . , ρ where ρ is the last round before
the state of the system changes. We are given a
bipartite graph {U, V,E} of the clients, servers, and
edges respectively. Initially, we will focus our analysis
on a single server (right-hand vertex) v and its client
neighborhood, Clients = {u ∈ U |(u, v) ∈ E}. Then,
we will extend our result to include the entire bipartite
graph.

5.1 One Server First, we define a ‘local-
approximation’ fraction l(i) for round i > 1 as:

l(i) ≤
1

2i−1
(5.1)

Now we give the following lemma:

(a) (b)

Figure 2: (a) An example saturated cover and (b) (2/3,1/2)-cover.

Lemma 5.3. After i rounds, either a server v will be

loaded to at least 1 − l(i) fraction of its capacity or at

least 1 − l(i) fraction of v’s clients will be saturated.

Proof. Let Pv(i) denote the fraction of v’s clients that
are unsaturated at the end of round i, i.e., Pv(i) =
|Clientsunsat

v |

|Clientsv|
. Let PΨv

(i) denote v’s fraction of remain-

ing capacity at the end of round i, 1 − Lv

Cv
.

We define a potential function Φv(i) equal to the
product of these values, Φv(i) = Pv(i) ∗ PΨv

(i). We
have that Φv(1) ≤ 1, since Pv(1) ≤ 1 and PΨv

(1) ≤ 1.
We indicate less than or equal to, rather than equal to,
since at the first round there may be active clients which
were also active during the last run. By definition of the
algorithm, the flow of these clients in the first round
of the current run would be greater than or equal to
their flow in the last round of the last run. In other
words, not all clients start out with zero flow in the first
round of run. Only those clients who were inactive in
the previous run will start out with zero flow in the first
round of the current run. Now, we will show that Φv

decreases by at least a factor of 4 after every subsequent

round, i.e., Φv(i + 1) ≤ Φv(i)
4 ,∀i ∈ 1, . . . , ρ − 1 . First,

we note that PΨv
and Pv are monotonically decreasing

functions. PΨv
can never increase since each client

maintains or increases flow to its servers and clients
cannot be removed during a run. Neither can Pv

increase, since the algorithm states that once a client
declares itself saturated it remains saturated and clients
cannot be added nor removed during a run. There are
three cases to consider, based on the change to Pv from
round i to round i+1, for ρ > i ≥ 1. The first two cases
are special cases of the third, but we include them for
clarity.

1. Pv does not change. This indicates that all unsat-
urated clients from the previous round remained
unsaturated, which implies that the server v’s en-
tire flow request is satisfied in the current round

and thus PΨv
, and consequently Φv(i + 1), go to

zero.

2. Pv becomes zero. This means that all clients have
become saturated in the current round and are
sending their entire unit of flow. In this case, clearly
Φv(i + 1) becomes zero by definition.

3. Pv decreases by the fraction ε, 0 < ε < 1, i.e.,
Pv(i + 1) = (1 − ε) ∗ Pv(i). In this case, PΨv

decreases by (1− ε), i.e., PΨv
(i + 1) = (ε) ∗ PΨv

(i).
To see this, consider that in the AAI algorithm
the server asks each of its unsaturated clients for
a flow increase equal to Ψv/|Clientsunsat

v |. The
clients that remain unsaturated increase their flow
to match the server’s request. So, if Pv goes down
by ε fraction then there will be 1 − ε fraction of
the unsaturated clients from the previous round
remaining unsaturated. This 1 − ε fraction of the
clients will send additional flow equal to Ψv ∗ (1 −
ε). Thus, PΨv

goes down by at least (1 − ε)
fraction when Pv decreases by ε fraction. We
say ‘at least’, because it’s possible that the newly
saturated clients send some nonzero flow less than
what the server asked for. Thus, Φv(i + 1) ≤
Φv(i)ε(1− ε). This factor, ε ∗ (ε− 1), is maximized
when ε = 1/2 so Φv goes down by at least a factor
of 4 at every round.

Recall that Φv(1) ≤ 1. With every additional round, Φv

reduces by at least a factor of 4 so Φv(i+1) ≤ 1
4i which

implies that at round i one of either PΨv
or Pv is smaller

than or equal to l(i) given by Equation 5.1. So either
the server will be loaded to at least 1 − l(i) fraction of
its capacity or at least 1− l(i) fraction of its clients will
be saturated. The proof of the Lemma follows.

5.2 All Servers The problem we now have to solve
is that Lemma 5.3 does not hold globally for multiple
servers. For example, given a situation where two

out of every four clients connected to any server are
saturated (so that Pv = 0.5), there may be only two
saturated clients in the entire bipartite graph, i.e., we
could be counting the same saturated clients multiple
times. Fortunately, we can use ∆ as a bound on how
many times we can multiply-count the same saturated
client. Since each client has maximum degree of ∆, this
means that the same saturated client can be multiply
counted at most ∆ times. We will use this ∆ bound to
show how many additional rounds are needed to achieve
the conditions in Lemma 5.3 globally. Note that we
use knowledge of ∆ in the analysis of the algorithm’s
competitive ratio, but ∆ is not used by the algorithm
itself. After round i > 1, we will call a server with a
load-to-capacity ratio less than (1− l(i)) ‘underloaded’,
otherwise we call it a ‘loaded’ server. At the conclusion
of round i, let Xi be the set of all clients connected
to underloaded servers and Yi be the set of all loaded
servers. Clearly Xi ∪ Yi forms a vertex cover for the
bipartite graph.

Using Equation 5.1, we first define a ‘global’ fraction
g(i) for round i > 1 which will be used in the Lemma
below.

g(i) ≤
l(i)

l(i) + 1−l(i)
∆

(5.2)

Lemma 5.4. Let Xi be the set of all clients connected to

underloaded servers after round i. After i > 1 rounds,

at least 1 − g(i) fraction of the clients in Xi will be

saturated.

Proof. Given an unsaturated client connected to an un-
derloaded server, let us call both the unsaturated client
and the edge connecting it to the underloaded server
‘uncovered’. At round i > 1, we know from Lemma 5.3
that l(i) is the maximum fraction of uncovered clients
incident to any single underloaded server relative to the
server’s in-degree. Since there is a one-to-one corre-
spondence between in-edges and clients, i.e., we do not
consider multiedges in the graph, this means that there
is no more than l(i) fraction of edges uncovered relative
to any single underloaded server.

Let E′
i denote the set of all edges incident to the set

of underloaded servers at round i. Clearly no more than
l(i) fraction of these edges are uncovered since l(i) is
the maximum fraction of uncovered edges for any single
server. We now can find an upper bound g(i) on the
fraction of clients in Xi which are unsaturated, using
the value l(i) and the maximum client out-degree ∆.

At round i there is at most l(i)E ′
i uncovered edges

and at least (1 − l(i))E′
i covered edges. These l(i)E′

i

uncovered edges could be originating from at most
l(i)E′

i clients, since there is at least one edge per client.
However, the (1− l(i))E′

i covered edges could be, in the

worst case, originating from only (1 − l(i))E ′
i/∆ clients

(since each saturated client may have up to ∆ edges).
Thus, the global fraction of uncovered clients is bounded
by g(i) given by the following:

g(i) ≤
l(i)

l(i) + 1−l(i)
∆

The proof of Lemma 5.4 follows.

Now we present the main theorem of the paper:

Theorem 5.1. After i > 1 rounds of any run, the AAI

algorithm produces a flow f which is 4/(1−g(bi/2c+1))-
competitive with the optimal algorithm.

Proof. Let Yi denote the set of loaded servers, and let
Xi denote the set of clients connected to underloaded
servers after round i > 1. Combining Lemmas 5.3 and
Lemma 5.4, we have that Yi are each (1−l(i)) loaded and
(1−g(i)) fraction of the clients Xi are saturated. Thus,
at round i > 1 we have arrived at a ((1−g(i)), (1−l(i)))-
saturated cover as defined in Lemma 5.2. Given that
g(i) ≥ l(i) for any ∆ ≥ 1, then by Lemma 5.2 the AAI

algorithm’s bandwidth is 2/(1 − g(i))-competitive with
the optimal algorithm.

Now we will use this bandwidth bound to prove the
competitiveness of the throughput. Recall that band-
width is measured in units per round while throughput
is measured in total units over a time period. Since
the bandwidth is monotonically increasing in the AAI

algorithm, we know that after i rounds we have been
sending at a rate of at least the sending rate at round
bi/2c + 1, and this rate has persisted for di/2e rounds.
Thus, after i rounds, the AAI algorithm’s throughput
is 4/(1− g(bi/2c+ 1))-competitive with the optimal al-
gorithm.

Lemma 5.5. After i = 2 ∗ (dlog(∆)e + dlog(1/ε)e)
rounds, the AAI algorithm is 4/(1− ε) competitive with

the optimal algorithm for any ε, 0 < ε < 1.

Proof. This lemma follows immediately by setting i and
using Theorem 5.1.

Beyond the competitive ratio bound above, we also
note also that the AAI algorithm reaches a steady state
that is 2-competitive with the optimal flow, after at
most ∆in steps, where ∆in is the maximum in-degree
of a server. This can be seen from the fact that in each
round a given server v becomes (or is) fully loaded, or
otherwise at least one client of v must become saturated.
Since, if no client becomes saturated then the server
must have received its entire (flow increase) request and
therefore becomes saturated. In the following result,

we have a more precise calculation of the cumulative
throughput achieved by the AAI algorithm before this
steady state is achieved.

Lemma 5.6. For I < ∆in, an I-round run, the AAI

algorithm has throughput at least:

Opt

2

(

I −
∆

(∆ − 1)

1

ln(2)
ln

(

2I ∗ (∆ − 1/2)

2I−1 + ∆ − 1

))

if ∆ > 1,

Opt

2

(

I −
2

ln(2)

(

1 −
1

2I

))

if ∆ = 1.

where Opt is the optimal throughput over the same I-
round run.

Proof. First, note that the optimal throughput after I
rounds is I ∗ Opt where Opt is the optimal throughput
for one round. We will now calculate the throughput
of the AAI algorithm after I rounds. Since we can
lower-bound the bandwidth of the AAI algorithm for
every round i, and since clients’ demands do not change
over the course of a run, we can simply sum up the
bandwidths for each round. Recall that during round i
the AI algorithm’s bandwidth is 2/(1−g(i))-competitive

with the optimal algorithm where g(i) = l(i)

l(i)+
1−l(i)

∆

and

l(i) = 1
2(i−1) . Summing over all i in a run of I rounds,

we have that the bandwidth of the AAI algorithm is at
least:

I
∑

i=1

(1 − g(i))/2 ∗ Opt =
Opt

2
∗

I
∑

i=1

(1 − g(i))

Since the bandwidth function is increasing, it is well-
known that we can bound this summation with an
integral over the bounds [0, I]:

Opt

2
∗

I
∑

i=1

(1 − g(i)) ≥
Opt

2
∗

∫ I

0

(1 − g(i))di

Evaluating this integral we get that after I rounds of a
run the throughput of the AAI algorithm is at least:

Opt

2

(

I −
∆

(∆ − 1)

1

ln(2)
ln

(

2I ∗ (∆ − 1/2)

2I−1 + ∆ − 1

))

if ∆ > 1,

Opt

2

(

I −
2

ln(2)

(

1 −
1

2I

))

if ∆ = 1.

5.3 Competitive Ratio Comparisons We con-
clude this section with a comparison of the competitive
ratios of the AAI algorithm with the ARA algorithm. To
do this we will use the same restricted adversary model
described in [2]. We briefly describe the model here. In

this model, an adversary can specify when each client
starts sending, but once a client starts sending it must
send for R consecutive rounds. Time is divided into a
series of equal sized windows w defined as w =

⌈

R
2

⌉

.
Clients are called eligible if they are scheduled to send
during every round of a window, ineligible otherwise.
Instead of operating on the original demands D, the
ARA algorithm operates on a ‘modified sequence of de-
mands’ D′ which is defined as follows: D′

t(i) = 1 iff
client i is eligible during the window containing round
‘t’. Lemma 4 of [2] shows that the optimal throughput
on the modified demands is no more than a factor of
three worse than the optimal throughput on the origi-
nal sequence of demands. Thus, we will focus on a single
window of size w where client demands are guaranteed
to persist but we will lose a factor of 3 in the competitive
ratios of both algorithms.

Theorem 5.2. If R ≥ 4(dlog(∆)e + 2), the AAI algo-

rithm is 16-competitive with the optimal algorithm un-

der the restricted adversary model.

Proof. The proof follows directly by applying
Lemma 5.5 with ε = 1/4 and i = R/2 and using
the fact that we lose a factor of three by modifying the
original demands.

By analyzing the ARA algorithm, we have determined
that this algorithm has a competitive ratio of at least 18
under the restricted adversary model regardless of the
value of R and ∆. So, from Theorem 5.2 and the fact
that the AAI algorithm’s bandwidth is monotonically
increasing, we see that as long as R ≥ 4(dlog(∆)e + 2)
the competitive ratio of the AAI algorithm is strictly
less than the competitive ratio of the ARA algorithm.

As compared to the AMI algorithm, we note that
the AMI algorithm becomes (1 + ε)-competitive when
run per connection, while we are running the algorithm
per client and arbitrating between a client’s multiple
connections by sorting the flows and satisfying them in
order. While this performs well in practice, there is
no formal proof of the competitiveness of the algorithm
when used in this manner. It remains future work to
compare these algorithms against (1 + ε)-competitive
algorithms such as that presented in [4].

6 Simulation Results

In this section, we report on results of simulations which
test maximum throughput algorithms against different
bipartite graphs. We compare the AAI algorithm
given in this paper to the optimal algorithm, the ARA

(restricted adversary) algorithm, and to the AMI (1+ε)
multiplicative increase algorithm. Empirical results
which are important since comparing competitive ratios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Focal - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Focal - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 3: (a) Per-round Bandwidth and (b) Cumulative Throughput on a graph with a single 128-Focal matching.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

HiLo - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

HiLo - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 4: (a) Per-round Bandwidth and (b) Cumulative Throughput on graph HiLo.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Rope - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Rope - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 5: (a) Per-round Bandwidth and (b) Cumulative Throughput on graph Rope.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Zipf - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Zipf - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 6: (a) Per-round Bandwidth and (b)Cumulative Throughput on graph Zipf.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Grid - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Grid - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 7: (a)Per-round Bandwidth and (b) Cumulative Throughput on graph Grid.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Hexa - Bandwidth

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
er

ce
nt

 o
f O

pt
im

al

Round

Hexa - Throughput

AI
RA 8

RA 64
MIMD 0.10
MIMD 0.01

(a) (b)

Figure 8: (a) Per-round Bandwidth and (b)Cumulative Throughput on graph Hexa.

of two algorithms may say little about their relative
real-world performance. We present results of a series
of experiments over a variety of network structures.
For each we compute the optimal throughput, through
standard transformations of the bipartite graph into a
flow network, from which we compute a maximum flow
using LEDA [14] library.

In these tests, all clients send for ρ = 64 rounds
and servers have unit capacity. For our bipartite graph
workload, we use a total of six different bipartite graphs.
Five of these graphs, HiLo, Hexa, Rope, Zipf, Grid, are
described in [6]. The other graph in our workload, Focal,
is taken from [2]. All graphs have roughly 216 U vertices
and 216 V vertices. The values of ∆ for each graph are:
Hexa (28), Zipf (24576), Rope(7), HiLo(10), Grid (8),
Focal (256).

The algorithms compared are AAI (Aggressive In-
crease), ARA (Restricted Adversary of Awerbuch, et.
al [2]), and AMI a multiplicative-increase multiplicative
decrease algorithm adapted from Narg and Young [8].
For the ARA algorithm, we have used 8 and 64 as values
of R. Although the clients are sending for 64 rounds, we
have observed that in practice the ARA algorithm tends
to perform better with smaller values of R. However,
choosing very small choices of R, e.g. 2 or 4, tend to
result in sub-par performance. In addition, for AMI we
have implemented the ‘low packet loss rate’ version of
the algorithm [8], where the new round’s sending rate
is adjusted based on the previous round’s receiving rate
and a parameter ε, i.e., the algorithm sends 1 + ε pack-
ets for each packet received. In our test we have used ε
values of 0.10 and 0.01. Tests using ε = 1 had sub-par
performance. It is worth noting that our AAI algorithm
is parameterless.

6.1 Heuristics In our implementations of both AAI

and AMI for clients with multiple outgoing edges, we
sort the edges according to the sending rate and satisfy
larger sending rates first. This is similar to the heuristic
used in [9], and satisfies servers which have fewer clients
first. This does not change the analysis in Section 5
since the AAI algorithm permits the server requests to
be satisfied in any particular order. In addition, when
a client has ‘leftover’ flow, it divides this flow equally
among all of its connected servers. This makes for a
fairer comparison, since clients in the ARA algorithm
always send 1 unit of flow per round. We have chosen
to split the extra flow equally since in [2] this is shown
to be the best assignment for one-shot oblivious routing
on general graphs.

6.2 Experimental Results For each graph, we
present per-round bandwidth and cumulative through-

put results. Per-round bandwidth is measured as the
fraction (of optimal) flow units sent per round. Cumu-
lative throughput is measured as the fraction of optimal
flow units sent so far, i.e., throughput at round i is the
sum of the bandwidth for rounds 0..i. Results are pre-
sented only for the first 50 rounds so that the behavior
of the algorithms during the first few rounds is visible.
We are interested mainly in the first few (less than 20)
rounds, since we are assuming that the network condi-
tions are dynamic. We note that, eventually, after > 100
rounds the AMI algorithm with small ε typically out-
performs all of the algorithms which is to be expected.

The qualitative result of our experiments is that the
AAI algorithm throughput outperforms the throughput
of the other algorithms over the first 50 rounds for every
graph. This is despite the fact that the bandwidth
of the other algorithms does occasionally outperform
the AAI algorithm. For example, in Figure 6 we see
that the AMI algorithm with ε = 0.1 has the best
bandwidth after roughly 17 rounds. The reason is that
the AAI algorithm’s bandwidth is close-to-peak after
only a couple of rounds; the lower bandwidth of the
other algorithms during this time is difficult to make
up.

Moreover, it is apparent that one cannot statically
pick a single parameter for AMI or ARAİn Figure 3,
we see that RA8 outperforms RA64. However, picking
a value of R = 8 for the Rope graph in Figure 5
would result in lower performance as compared to
R = 64. Likewise, AMI with an ε = 0.10 typically
outperforms ε = 0.01. However, in Figure 4, AMI

with ε = 0.10 is the worst-performing algorithm. Thus,
choosing parameters for AMI algorithms is difficult.
The advantage of the AAI algorithm is that it is
parameterless and essentially adjusts to the parameters
of the graph and attempts to maximize throughput in
every additional round.

The Focal graph is a special case and deserves some
explanation. In this graph (Figure 3), all but one of
each client’s edges is focused on an overloaded portion
of the graph and there is only 1 perfect matching in
the graph. The ARA algorithm requires each edge to
carry a trickle bandwidth of 1

2∆ , so roughly half of
each client’s bandwidth is wasted on this overloaded
focal point and the two variants of the ARA algorithms
both achieve less than 50% optimal throughput. (ARA

parameterized with larger values of R will eventually
reach 50% throughput.) In the case of the AMI

algorithm, each client’s single matching edge initially
has only a small amount of flow since the client out-
degree is high. Thus, while the AMI algorithms will
eventually do well, they will take many more rounds to
do so. (In this case, it might be advantageous to run

AMI with a much higher ε value but we did not do so.)

6.3 Discussion The simulations have shown that,
for the algorithms that we have tested, the AAI al-
gorithm reaches close-to-peak bandwidth in very few
rounds, reaching 90% or greater of the peak bandwidth
in only 3 rounds for the graphs we have tested. This
bandwidth-advantage for the initial rounds is difficult
to make up for other algorithms, even over tens of sub-
sequent rounds. However, the advantage of the AAI

algorithm dissipates as the number of rounds increase.
For most of the graphs, we have observed that the AMI

algorithm with ε = 0.10 has the best throughput when
the clients send for > 100 rounds. Thus, for dynamic
networks, where the network state persists for only a
few time rounds, AAI will outperform the other algo-
rithms. If, however, the network is static on the order
of hundreds of rounds, the AMI algorithm (and other
algorithms such as [4]) will eventually prevail.

7 Conclusion

In this paper we have described a simple semi-oblivious
online routing algorithm designed to maximize through-
put in a network of clients and servers. We have shown
that the competitive ratio of this algorithm improves
upon a previous result [2] provided that client demands
persist for at least 2(dlog(∆)e+2) rounds. Most impor-
tantly, the AAI algorithm runs oblivious to the value
of ∆ and to the length of client demand persistence,
ρ. This enables the algorithm to be run on a variety
of demand inputs, deployed more easily, and in general
have better throughput than the previous semi-oblivious
algorithm on a variety of bipartite graphs. An inter-
esting extension of this work would be to determine a
competitive ratio of the algorithm over a sequence of
time rounds which have approximate demand persis-
tence, e.g. client demands which do not change ‘too
much’ from round to round. The intuition is that the
competitive ratio would be inversely proportional to the
similarity of demands from round to round, so that a
run with highly similar demands would result in a low
competitive ratio and vice versa.

References

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Symposium
on Operating Systems Principles, pages 131–145, 2001.

[2] B. Awerbuch, M. T. Hajiaghayi, R. D. Kleinberg, and
T. Leighton. Online Client-Server Load Balancing
without Global Information. In SODA ’05: Proceed-
ings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 197–206, Philadelphia, PA,

USA, 2005. Society for Industrial and Applied Mathe-
matics.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke.
Optimal Oblivious Routing in Polynomial Time. In In
Proc. of ACM Symposium on the Theory of Computa-
tion, 2003.

[4] Y. Bartal, J. W. Byers, and D. Raz. Global Opti-
mization Using Local Information with Applications to
Flow Control. In IEEE Symposium on Foundations of
Computer Science, pages 303–312, 1997.

[5] S. Chattopadhyay, L. Higham, and K. Seyffarth. Dy-
namic and Self-Stabilizing Distributed Matching. In
PODC ’02: Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing,
pages 290–297, New York, NY, USA, 2002. ACM Press.

[6] B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C.
Setubal, and J. Stolfi. Augment or Push: A Computa-
tional Study of Bipartite Matching and Unit-Capacity
Flow Algorithms. J. Exp. Algorithmics, 3:8, 1998.

[7] Y.-H. Chu and A. Ganjam. Early Experience with an
Internet Broadcast System Based on Overlay Multi-
cast. In USENIX Annual Technical Conference, pages
155–170, 2004.

[8] N. Garg and N. E. Young. On-Line End-to-End
Congestion Control. In FOCS ’02: Proceedings of the
43rd Symposium on Foundations of Computer Science,
pages 303–312, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] N. Harvey, R. Ladner, L. Lovász, and T. Tamir. Semi-
matchings for Bipartite Graphs and Load Balancing.
In Proc. 8th WADS, pages 294–306, 2003.

[10] Y. T. Hou, S. S. Panwar, and H. H.-Y. Tzeng.
On Generalized Max-Min Rate Allocation and Dis-
tributed Convergence Algorithm for Packet Networks.
IEEE Transactions on Parallel and Distributed Sys-
tems, 15(5):401–416, 2004.

[11] Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley.
Application Level Relay for High-bandwidth Data
Transport. In The First Workshop on Networks for
Grid Applications (GridNets), San Jose, CA, October
2004.

[12] M. Luby and N. Nisan. A Parallel Approximation
Algorithm for Positive Linear Programming. In STOC
’93: Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, pages 448–457,
New York, NY, USA, 1993. ACM Press.

[13] Q. Ma, P. Steenkiste, and H. Zhang. Routing High-
Bandwidth Traffic in Max-Min Fair Share Networks.
In SIGCOMM, pages 206–217, 1996.

[14] S. Naher. LEDA — A Library of Efficient Data Types
and Algorithms. Lecture Notes in Computer Science,
665, 1993.

