
Math. Struct. in Comp. Science (1992), vol. 2, pp. 361{391. PREPRINTRepresenting control:a study of the CPS transformationOLIVIER DANVY1y and ANDRZEJ F IL INSK I21 Department of Computing and Information Sciences, Kansas State University, Manhattan,Kansas 66506, USA. (danvy@cis.ksu.edu)2 School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.(Andrzej.Filinski@cs.cmu.edu)Received February 1991; Revised June 1992This paper investigates the transformation of �v -terms into continuation-passing style(CPS). We show that by appropriate �-expansion of Fischer and Plotkin's two-passequational speci�cation of the CPS transform, we can obtain a static and context-freeseparation of the result terms into \essential" and \administrative" constructs.Interpreting the former as syntax builders and the latter as directly executable code, weobtain a simple and e�cient one-pass transformation algorithm, easily extended toconditional expressions, recursive de�nitions, and similar constructs. This newtransformation algorithm leads to a simpler proof of Plotkin's simulation andindi�erence results.We go on to show how CPS-based control operators similar to, but more general than,Scheme's call/cc can be naturally accommodated by the new transformation algorithm.To demonstrate the expressive power of these operators, we use them to present anequivalent but even more concise formulation of the e�cient CPS transformationalgorithm.Finally, we relate the fundamental ideas underlying this derivation to similar conceptsfrom other works on program manipulation; we derive a one-pass CPS transformation of�n -terms; and we outline some promising areas for future research.1. Introduction and MotivationThe usual presentation of the continuation-passing style (CPS) transformation (Plotkin,1975) is concise and simple, but tends to yield unreasonably large residual terms contain-ing a lot of \administrative redexes." While these redexes turn out to be relatively harm-less from a theoretical perspective, they do require a special twist (the so-called \colon-translation") for proving certain important properties of the transformation (Plotkin,1975; Riecke, 1989; Murthy, 1990).In practice, eliminating the administrative redexes is absolutely essential to obtaintransformed terms of a manageable size. However, such a \post-reduction" pass is ofteny This work was partly supported by NSF under grant CCR-9102625.

O. Danvy and A. Filinski 2integrated with other, independent simpli�cations and optimization steps, and leads torelatively complex CPS transformers (Steele, 1978).In the following, we will consider a systematization of the two-pass CPS transformationby focusing the attention on redexes that are introduced by the transformation itself,and by explicitly not reducing what would correspond to redexes in the source �-term.Exploiting this distinction, we show that it is possible to perform all the administrativereductions \on the
y" in a single pass, without ever constructing the unreduced termsexplicitly.The CPS transformation permits a simple de�nition of generalized escape constructslike Scheme's call/cc. Such operators are often perceived to eliminate the need for explicitCPS programs. However, sometimes the greater generality of \genuine" CPS is actuallyneeded to express an algorithm (e.g., to implement backtracking (Mellish and Hardy,1984).) Our investigation of the CPS transform leads naturally to the introduction oftwo new control operators, shift and reset, which allow the additional power of generalCPS to be exploited in direct style programs. As an example, we will show how theseoperators permit us to express the e�cient CPS transformation algorithm derived in thispaper even more concisely.PrerequisitesIn the following, we will assume a basic familiarity with CPS and the �v -calculus, i.e.,the applicative order �-calculus that forms the core of languages such as Scheme (Clingerand Rees, 1991) and Standard ML (Milner et al., 1990).For convenience in referring to individual applications, we will generally express themwith an explicit operator @, writing @MN instead of the traditional simple juxtapositionM N . This is a purely syntactical variation: no change or re�nement of semantics isimplied by the @-notation.As in Standard ML, but in contrast to Scheme, we will also assume a strict left-to-right evaluation order, i.e., that in an application @MN , M is evaluated before N .Where this distinction matters (i.e., when bothM and N are potentially nonterminatingor \escaping" terms), the evaluation order of Scheme programs will be considered �xedthrough a let or a similar construct. Note, however, that we adopt this convention only tosimplify the presentation, not to advocate a general style of programming which dependsimplicitly on argument evaluation order.Occasionally, we will use Reynolds's notion of \serious" and \trivial" �v -terms(Reynolds, 1972). Evaluating a serious term might loop so this term must be trans-formed into CPS, whereas evaluating a trivial one cannot loop so this term does notneed to be transformed.Finally, let us recall the main property of a CPS �-term: the independence of itsreduction order. Reducing a CPS term with the call-by-name (CBN) or with the call-by-value (CBV) strategies yields the same evaluation steps (Reynolds, 1972; Plotkin,1975).

Representing Control 3[[x]] = ��:@�x[[�x:M]] = ��:@�(�x:[[M]])[[@MN]] = ��:@[[M]] (�m:@[[N]](�n:@(@mn)�))Fig. 1. Fischer & Plotkin's CPS transformation of �v -termsOverviewThe rest of this paper is organized as follows. Section 2 describes the stepwise deriva-tion of a one-pass CPS transformer from Plotkin's two-pass equational speci�cation.Theorem 1 states that the one-pass transformer computes a result ��-equivalent to theoriginal Fischer/Plotkin transformation. Section 3 investigates the reduction properties ofthe one-pass transformer. Theorem 2 captures Plotkin's \Indi�erence" and \Simulation"theorems for the original CPS translation. Section 4 extends the one-pass transformerto handle conditional expressions, recursive de�nitions, etc. Section 5 introduces controloperators and their CPS transformation. Using these control operators, it presents a one-pass CPS transformer in direct style. Section 6 reviews related work on continuations andpartial evaluation, and Section 7 concludes. An appendix reproduces the development ofSection 2 on Plotkin's CPS transformer for �n -terms.2. Classical CPS transformationLet us consider Fischer and Plotkin's equational speci�cation for transforming a �v -term into CPS (Fischer, 1972; Plotkin, 1975), as displayed in Figure 1. Source terms arerepresented between double brackets and � is a fresh variable.Taken literally, this translation yields many arti�cial \administrative" redexes thatmust be post-reduced in a second pass; only then do we obtain a result in what is com-monly recognized as \continuation-passing style" (Steele, 1978). For example, translating�f:�x:�y:@(@f y)xresults in�k:@k (�f:�k:@k (�x:�k:@k (�y:�k: @(�k:@(�k:@kf) (�m:@(�k:@ky) (�n:@(@mn)k)))(�m:@(�k:@kx) (�n:@(@mn)k)))))whose post-reduction yields�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@(@f y) (�m:@(@mx)k))))Conversely, an overly enthusiastic post-reducer is likely to perform too many reduc-tions, i.e., ones that would correspond to actual reductions in the source term. Whilethis may be useful in its own right, it should not automatically be considered a part ofthe CPS transformation proper. In particular, excessive post-reduction can lead to un-controlled \code duplication" in the result or, in the untyped case, even nonterminationof the simpli�cation.

O. Danvy and A. Filinski 4In the following, we will, therefore, concentrate on integrating the �rst and the secondpasses subject to the two constraints: (1) a one-pass translation should not introduce anyadministrative redex; and (2) a one-pass translation should not perform any reductionthat would correspond to reducing a source term.Our derivation is simple. We analyze the original equational speci�cation, identifyingwhere redexes get built, independently of any actual source �-term. When these redexesare \context-independent", we reduce them at translation time. When they are \context-dependent", we alter the translation with meaning-preserving transformations to makethe construction of redexes context-independent. The goal of the game is to stage theCPS transformation into a \translation-time" part and a \run-time" part.For precision and conciseness in the text, let us label the six lambdas and the sixapplications of this speci�cation:[[x]] = �1�:@1�x[[�x:M]] = �2�:@2� (�3x:[[M]])[[@MN]] = �4�:@3[[M]](�5m:@4[[N]](�6n:@5(@6mn)�))Our development is structured in three steps.2.1. First stepAs can be observed, the result of each elementary transformation (of a variable; of anabstraction; of an application) is an abstraction.Question 1. Where can the abstractions �1, �2, and �4 occur in the residual CPS termbefore post-reduction?Answer { by cases: (a) as the body of �3; (b) as the �rst argument of @3; (c) as the�rst argument of @4. In cases (b) and (c) the translation is building a redex that can besimpli�ed by �-reduction. In case (a) no simpli�cation can take place immediately.As a consequence, whether the abstractions �1, �2, and �4 are post-reducible is context-dependent.Question 2. Can we get rid of this dependence?Answer { yes, by introducing one �-redex in the de�nitional translation of abstractions.This new redex will exhibit the continuation of the body:[[�x:M]] = �2�:@2� (�3x:�7k:@7[[M]]k)The new redex is safe (in the sense of preserving operational behavior under both CBNand CBV) because [[M]] is itself a �-abstraction. (Expanding \@f a" to \�x:@(@f a)x"is not in general meaning-preserving, even if \@f a" has a functional type. Expanding\f" to \�x:@f x" or \�y:E" to \�x:@(�y:E)x" is safe.)Remark: Such an �-expansion may be felt as a step backwards in optimizing the translation,since �-reduction is usually perceived as an actual optimization step. In fact, and as illustratedby this development, the premature optimization in the translation of �-abstractions contributesto muddying the water in the translated terms.

Representing Control 5Now let us repeat Question 1:Question 3. Where can the abstractions resulting from each elementary transformationoccur in the residual term?Answer { by cases: (a) as the �rst argument of @7; (b) as the �rst argument of @3; (c)as the �rst argument of @4.Therefore, the translation is building a �-redex. This redex can be simpli�ed uncondi-tionally.2.2. Second stepSince the three �-abstractions �1, �2, and �4 will be reduced at translation time, let usenumerate their possible arguments.Question 4. Which syntactic constructs can be denoted by � in �1, �2, and �4?Answer { by cases: (a) the second argument of @7 is an identi�er k; (b) the secondargument of @3 is �5; (c) the second argument of @4 is �6.Again, the situation is irregular: if the argument of these applications (i.e., the valuedenoted by �) later gets applied, this application will be reducible in cases (b) and (c)only, i.e., in a context-dependent fashion.Question 5. Can we get rid of this dependence?Answer { yes, by introducing another �-redex in the translation of abstractions. Thisredex will exhibit the application of the continuation.[[�x:M]] = �2�:@2�(�3x:�7k:@7[[M]](�8m:@8km))Now let us repeat Question 4:Question 6. Which syntactic constructs can be denoted by �?Answer { by cases (a) the second argument of @7 is �8; (b) the second argument of @3is �5; (c) the second argument of @4 is �6.Now the di�erent occurrences of � are ensured to denote �-abstractions only.2.3. Third stepQuestion 7. Where do these � occur?Answer { by cases: (a) as the �rst argument of @1; (b) as the �rst argument of @2;(c) as the second argument of @5. In cases (a) and (b), the translation is building aredex that can be simpli�ed by �-reduction. In case (c) no simpli�cation can take placeimmediately.As a consequence, whether the application of a � is post-reducible is context-dependent,since in case (c) � does not occur in function position in an application.Question 8. Can we get rid of this dependence?Answer { yes, by introducing a last �-redex in the de�nitional translation of applications.The redex will exhibit sending the result of an application to the continuation.[[@MN]] = �4�:@3[[M]](�5m:@4[[N]](�6n:@5(@6mn) (�9a:@9�a)))

O. Danvy and A. Filinski 6Now let us repeat Question 7:Question 9. Where do the � occur?Answer { by cases: (a) as the �rst argument of @1; (b) as the �rst argument of @2; (c)as the �rst argument of @9.As a consequence, because by construction the translation is building a �-abstractionwhich is ensured to occur in function position in an application, we can classify these�-abstractions and applications to be simpli�able unconditionally.To summarize, let us overline the �-abstractions and the applications that will bereduced unconditionally as a part of the translation. Since they exist only at translationtime we refer to them as \static."[[x]] = �1�:@1�x[[�x:M]] = �2�:@2� (�3x:�7k:@7[[M]](�8m:@8km))[[@MN]] = �4�:@3[[M]](�5m:@4[[N]](�6n:@5(@6mn) (�9a:@9�a)))2.4. Completing the transformation: the other syntactic constructionsWe can also list the possible arguments of the �: they are the second arguments of @1,@2, and @9, i.e., (a) an identi�er x; (b) �3; (c) an identi�er a. These may be bound tom in �5, n in �6, and m in �8.| In �5, m occurs as the �rst argument of @6.{ If m is bound to x or a no simpli�cation is possible.{ If m is bound to �3 then a �-reduction is possible but it would correspond to areduction in the original term; therefore we do not want to perform it. Thus @6must be classi�ed as irreducible and so is �3 and thus �7.| In �6, n occurs as the second argument of @6 which is irreducible.| In �8, m occurs as the second argument of @8 that cannot be reduced since the �rstargument is the identi�er k.As a consequence, the �rst argument of @5 is irreducible and thus @5 is irreducible. Asanother consequence, the second argument of @5 must be irreducible.To summarize, let us underline the abstractions and the applications that will be builtunconditionally as a part of the translation. Since they are part of the transformed term,we refer to them as \dynamic."[[x]] = �1�:@1�x[[�x:M]] = �2�:@2� (�3x:�7k:@7[[M]](�8m:@8km))[[@MN]] = �4�:@3[[M]](�5m:@4[[N]](�6n:@5(@6mn) (�9a:@9�a)))As a simple inspection of this two-level speci�cation shows, the only application thatcould possibly be a dynamic �-redex (i.e., a redex in the resulting CPS term) is @6. Thishappens if and only if m is bound to a dynamic �, which again happens if and only if Mis a �-abstraction, so the source term contains a �-redex at this point. We do not wantto reduce a dynamic �-redex because it would correspond to reducing a �-redex in thesource term, which is not the job of the CPS transformation.

Representing Control 7[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M]] = ��:@�(�x:�k:@[[M]] (�m:@km))[[@MN]] = ��:@[[M]] (�m:@[[N]] (�n:@(@mn)(�a:@�a)))Fig. 2. One-pass CPS transformation of �v -terms2.5. The complete transformationTo conclude, Figure 2 shows the �nal version of the transformer, without labels sincethey were only used for expository purposes. With its static/dynamic annotations, itcan be read as a two-level speci�cation �a la Nielson and Nielson (Nielson and Nielson,1988). Operationally, the overlined �'s and @'s correspond to functional abstractions andapplications in the translation program, while only the underlined occurrences representabstract-syntax constructors.Transforming a �-term into CPS amounts to representing contexts (i.e., �-terms with ahole) as �-abstractions. An empty context (e.g., top-level) is represented with the identityfunction. An arbitrary (\dynamic") context is represented with some continuation k.The result of transforming a term M into CPS in an empty context is given by@[[M]](�m:m)whereas the result of transforming a term M into CPS in a dynamic context is given by�k:@[[M]] (�m:@km)As can be noticed, both initial contexts are represented with translation-time �-abstractions, as dictated by the answer to Question 6. In the rest of this section, werefer to such translation-time �-abstractions as static continuations.This instrumented new translation yields terms without extraneous redexes, in onepass. The static/dynamic distinction aimed at de�ning all the administrative �-redexes.These administrative �-redexes are bound at translation time and therefore they do notoccur in residual terms.The above development is summarized in the following theorem.Theorem 1. This equational speci�cation, i.e., �k:@[[M]](�m:@km), computes a result��-equivalent to the original Fischer/Plotkin transformation.Proof. We started from Fischer & Plotkin's speci�cation and altered it in a meaning-preserving way, by introducing three �-redexes. We obtained a staged speci�cation wherestatic and dynamic constructs are not only distinct but context-independent. (UsingNielson and Nielson's terminology (Nielson and Nielson, 1988; Nielson, 1989), our two-level speci�cation is \well-typed.") We can now reduce away all the static �-redexes.Moreover, since the speci�cation is compositional, a simple typing argument su�ces toshow that it is well-de�ned for all source terms, i.e., that the static reductions do in factterminate. Only the static lambdas and applications matter; for the purpose of termi-nation, the dynamic lambdas/applications are just uninterpreted constructors. And the

O. Danvy and A. Filinski 8static part of the transformation is simply typed, with a single base type \syntax"; the �'sall have type \syntax ! syntax" and the other static variables just have type \syntax".In particular, given an initial continuation �, @[[M]]� is a strongly normalizable termof type \syntax". Thus, when interpreted as a functional program, the transformationalways terminates (and in essentially linear time, since none of the static data is everduplicated).Finally, no redexes of the original term are reduced: the \�x" of an abstraction in thesource term is always translated into a dynamic \�x", (i.e., a syntax constructor) in thecorresponding CPS term, and hence is never reduced away.Observation 1. A �v -term and its CPS counterpart are related as follows:| A variable is translated into itself.| A �-abstraction is translated into two �-abstractions and one application.| An application is translated into two applications and one �-abstraction.This observation provides a simple correspondence between the size of a term and itsCPS counterpart. Moreover, since for all of the new �-abstractions introduced by thetranslation, the abstracted variable occurs exactly once in the body, this relationshipextends directly to the number of reduction steps performed during evaluation of thetwo terms (more about this in Section 3).2.6. Tail-calls and �-redexesWhile introducing �-redexes is crucial to avoid building �-redexes in residual terms, inone simple case it yields extra �-redexes in the transformed program. Not surprisinglythis arises for tail-calls, as illustrated here:@[[�f:@f x]](�m:m) = �f:�k:@(@f x) (�a:@ka)instead of �f:�k:@(@f x)kFour straightforward possibilities come to the mind.We can leave these �-redexes wherethey are (which might be actually useful if the term is subjected to further transformationor if Observation 1 is used since tail-call optimizations change the number of reductionsteps.) We can detect when a newly constructed �-abstraction is actually an �-redex andsimplify it at this time. We can instrument the translation with an inherited attributeidentifying tail-call contexts, eliminating the dynamic tests on term structure entirely.Or equivalently we can duplicate the rules to account for tail-call contexts, as in Figure3, and in a way reminiscent of Clinger's double induction proof in his Scheme compiler(Clinger, 1984).Rationale: The auxiliary translation [[:::]]0 is used when the static continuation would have theform �m:@km; this avoids building an �-redex in the transformation of applications (hence theterm \properly tail-recursive" (Steele, 1978)).The result of transforming a term M into CPS in an empty context is still given by@[[M]](�m:m)whereas the result of transforming a term M into CPS in a dynamic context is nowsimply

Representing Control 9[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M]] = ��:@� (�x:�k:@[[M]]0k)[[@MN]] = ��:@[[M]] (�m:@[[N]] (�n:@(@mn)(�a:@�a)))[[:::]]0 : syntax! syntax[[x]]0 = �k:@kx[[�x:M]]0 = �k:@k (�x:�k:@[[M]]0k)[[@MN]]0 = �k:@[[M]] (�m:@[[N]] (�n:@(@mn)k))Fig. 3. One-pass, \properly tail-recursive" CPS transformation of �v -terms�k:@[[M]]0kBy construction, this instrumented new translation yields terms without extraneous�-redexes, and of course with no �-redexes, in one completely syntax-directed pass. Andsince the only di�erence with the transformation in Figure 2 is the elimination of trivial�-redexes, the new translation preserves the statement of Theorem 1.3. Reduction propertiesWe can now formulate results about the new CPS translation analogous to the ones forthe original speci�cation. Moreover, since we have eliminated all administrative redexes\once and for all", the proofs become considerably simpler than for the unoptimizedtranslation.It may be worth quickly going over why administrative redexes raise problems in theoriginal translation (Plotkin, 1975; Riecke, 1989). Ideally, the following implicationwouldhold: M !v N) @[[M]](�x:x)!�v @[[N]](�x:x)Unfortunately, the administrative redexes get in the way of such a result. What really hap-pens is the following: �rst, by a sequence of administrative reductions, @[[M]](�x:x)!�vM 0. Then M 0 !v N 0, corresponding to the original redex. However, there is no reasonto expect than N 0 now reduces to @[[N]](�x:x); in fact, it would have to expand back torecreate the administrative redexes of the latter.One therefore has to prove instead that the implication above holds \modulo adminis-trative reductions". This is formalized by the so-called \colon-translation" developed byPlotkin (Plotkin, 1975). For any term M and value K, one de�nes syntactically a termM : K and proves it equal to @[[M]]K with the �rst series of administrative reductionsperformed (i.e., corresponding to the term M 0 above). One then proves that if M !v Nthen M : K !�v N : K. Finally, for every reduction sequenceM0 !v M1 !v :::!v V

O. Danvy and A. Filinski 10where V is a non-functional value, one can take K = �x:x and get@[[M0]] (�x:x)!�v M0 : (�x:x)!�v M1 : (�x:x)!�v :::!�v V : (�x:x) = @(�x:x)V !v VIt is crucial to note that the colon-translation only removes enough redexes to \expose"the �rst real reduction. In particular, it never removes redexes within �-abstractions. Nordoes it have to, since it only acts as a proof technique, not a \code optimization" pass. Inthe new translation, on the other hand, we get a direct correspondence between reductionsteps in the original and the translated term.Remark: It does seem possible to modify the colon-translation to perform more administrativereductions at translation time (Gri�n, 1990). Nevertheless, a practical translation (i.e., for a fulllanguage like Scheme) based on such an approach could be awkward because of the combinatorialexplosion arising from translation-time distinctions between values and non-values in sourceterms.Let us �rst observe a few elementary properties of the two-level translation. To simplifythe presentation, we will generally treat �-equivalent dynamic terms as equal.De�nition 1. If V is a value (i.e., either a variable or an abstraction), we de�ne	(V) = @[[V]](�x:x)(This di�ers from Plotkin's 	 in that the latter does not eliminate administrative redexesinside transformed �-abstractions). It is immediate that 	(V) is itself a value.Lemma 1. If V is a value and P is not a value (i.e., an application), the followingsimple properties hold (where K is any term, that is, a term of type syntax and � astatic continuation, that is, a term of type syntax ! syntax):@[[V]]� = @�((V))@[[V]]0K = @K ((V))@[[P]]� = @[[P]]0 (�a:@�a)Proof. Immediate in all cases.Let us write substitution of N for x in M as M [x N]. Now, we need to show thatthe static parts of the translation do not interfere with substitution.De�nition 2. We say that a variable x occurs free in a static continuation � if for someM it occurs free in @�M but not in M . � is called schematic if for any terms M and N ,and variable x not occurring free in �,(@�M)[x N] = @�(M [x N])(informally, this ensures that � preserves the syntactic structure of its argument, anddoes not capture any free variables occurring in it).One easily sees that any � de�ned using only static abstraction, static application,and the syntax constructors (with any dynamic abstractions introducing only \new"variables) is schematic.We can now formalize how substitution of arbitrary values for identi�ers commuteswith CPS-translation:

Representing Control 11Lemma 2. Let M be a term, V a value, x a variable, and let � be a schematic continu-ation and K any term. Then@[[M [x V]]]� = (@[[M [x x0]]]�)[x0 	(V)]@[[M [x V]]]0K = (@[[M [x x0]]]0K)[x0 	(V)]where x0 is a new variable (the renaming is necessary to take care of the case when xoccurs free in � or K).Proof. By induction on M . All cases are straightforward (let y 6= x):@[[x[x V]]]� = @[[V]]� = @�((V)) = @� (x0[x0 	(V)])= (@�x0)[x0 	(V)] = (@[[x[x x0]]]�)[x0 	(V)]@[[y[x V]]]� = @[[y]]� = (@[[y[x x0]]]�)[x0 	(V)]@[[(�x:M)[x V]]]� = (same as y[x V])@[[(�y:M)[x V]]]� = @[[�y:M [x V]]]� = @�(�y:�k:@[[M [x V]]]0k)= @�(�y:�k:(@[[M [x x0]]]0k)[x0 	(V)])= (@� (�y:�k:@[[M [x x0]]]0k))[x0 	(V)]= (@[[�y:M [x x0]]]�)[x0 	(V)]= (@[[(�y:M)[x x0]]]�)[x0 	(V)]@[[(@MN)[x V]]]� = @[[@(M [x V]) (N [x V])]]�= @[[M [x V]]](�m:@[[N [x V]]](�n:@(@mn) (�a:@�a)))= (@[[M [x x0]]](�m:(@[[N [x x0]]] (�n:@(@mn) (�a:@�a)))[x0 	(V)]))[x0 	(V)]= (@[[M [x x0]]](�m:@[[N [x x0]]](�n:@(@mn) (�a:@�a))))[x0 	(V)]= (@[[@(M [x x0])(N [x x0])]]�)[x0 	(V)]= (@[[(@MN)[x x0]]]�)[x0 	(V)]The cases for the second equation are analogous.Let us now recall the formal de�nition of the reduction strategies (Plotkin, 1975):De�nition 3. One-step by-value reduction is de�ned as follows:@(�x:M)V !v M [x V] M !v M 0@MN !v @M 0N N !v N 0@V N !v @V N 0(where V is a value), and similarly one-step by-name reduction:

O. Danvy and A. Filinski 12@(�x:M)N !n M [x N] M !n M 0@MN !n @M 0N N !n N 0@xN !n @xN 0We write M !a N if both M !v N and M !n N . For any of the three reductionrelations!, we use !+ and !� to refer to its transitive and re
exive-transitive closure,respectively.Lemma 3. Let M and N be terms such that M !v N , and let � be a schematiccontinuation. Then @[[M]]�!+a @[[N]]�(in fact, in either two or three reductions).Proof. By induction on the derivation of !v :| Base case: @(�x:M)V !v M [x V].@[[@(�x:M)V]]� = @[[�x:M]](�m:@[[V]](�n:@(@mn) (�a:@�a)))= @[[V]](�n:@(@(�x:�k:@[[M]]0k)n) (�a:@�a))= @(@(�x:�k:@[[M]]0k) ((V))) (�a:@�a)!a @(�k:(@[[M]]0k)[x 	(V)])(�a:@�a)= @(�k:(@[[M [x x0]]]0k)[x0 	(V)]) (�a:@�a)= @(�k:@[[M [x V]]]0k)(�a:@�a)!a @[[M [x V]]]0 (�a:@�a)Now the following two cases arise:{ M [x V] is not a value. Then by Lemma1, the last term is equal to @[[M [x V]]]�,as required. The two reductions correspond to transferring the argument value andreturn continuation (if we use uncurried CPS translation, as in Section 4.3, onlyone reduction is needed).{ M [x V] is a value. Then again Lemma 1 gives@[[M [x V]]]0 (�a:@�a) = @(�a:@�a)((M [x V]))!a @� ((M [x V]))= @[[M [x V]]]�The additional reduction in this case corresponds to an application of the returncontinuation to the value just computed.| Inductive case 1: @MN !v @M 0N because M !v M 0.@[[@MN]]� = @[[M]](�m:@[[N]](�n:@(@mn) (�a:@�a)))!+a @[[M 0]] (�m:@[[N]](�n:@(@mn)(�a:@�a)))= @[[@M 0N]]�| Inductive case 2: @V N !v @V N 0 because N !v N 0.@[[@V N]]� = @[[V]] (�m:@[[N]](�n:@(@mn)(�a:@�a)))

Representing Control 13= @[[N]](�n:@(@((V))n) (�a:@�a))!+a @[[N 0]] (�n:@(@((V))n) (�a:@�a))= @[[V]] (�m:@[[N 0]] (�n:@(@mn) (�a:@�a)))= @[[@V N 0]]�If we restrict evaluation to closed terms, any term is either already a value or containsa redex. However, the results extend easily to open terms, with free variables treated asuninterpreted constants (i.e., with no associated �-rules). In this case, there is a thirdpossibility: evaluation may halt at a non-value term like @xy from which no furtherprogress is possible.Following Plotkin, we de�ne:De�nition 4. A (necessarily open) term S is said to be stuck under a given strategy ifit is neither a value nor reducible by any of the reduction rules for that strategy. A quickinspection of De�nition 3 shows that such terms must be of the following form (where Vis a value and N is any term):Sv ::= @xV j @SvN j @V Sv (for call-by-value)Sn ::= @xV j @SnN j @xSn (for call-by-name)We note that every term stuck under CBN is also stuck under CBV.Lemma 4. Let M be any term and � a static continuation. If M is stuck under CBVthen @[[M]]� is stuck under any strategy.Proof. By structural induction on the stuck term M .Base case, M = @xV :@[[@xV]]� = @[[x]](�m:@[[V]](�n:@(@mn)(�a:@�a)))= @(@x((V))) (�a:@�a)where the inner application, and hence the entire term, is stuck.Inductive case 1, M = @SN :@[[@SN]]� = @[[S]](�m:@[[N]](�n:@(@mn) (�a:@�a)))which is stuck, by the induction hypothesis.Inductive case 2, M = @V S:@[[@V S]]� = @[[V]](�m:@[[S]](�n:@(@mn) (�a:@�a)))= @[[S]](�n:@(@((V))n)(�a:@�a))which again is stuck by induction hypothesis.Remark: In a statically-typed setting, the above problem does not occur: the typing rulesensure that a non-functional constant will never be applied to an argument. However, the argu-ment extends easily to languages with the possibility of runtime errors (e.g., division by zero).A simple re�nement of the proof shows that the CPS translation can even distinguish properlybetween di�erent error conditions, i.e., if evaluation of the original program causes a speci�cerror, so does evaluation of the CPS-transformed program.

O. Danvy and A. Filinski 14We can now state the main result, analogous to Plotkin's \Indi�erence" and \Simula-tion" theorems for the original CPS translation:Theorem 2. Let M be any �-term (not necessarily closed) and V a value. If M !�v Vthen @[[M]](�x:x)!�a @[[V]](�x:x) = 	(V) (and in at most three times as many steps).In particular, if V is simply a free variable ofM , the CPS translation ofM also evaluatesto 	(V) = V . Conversely, if M does not evaluate to a value under the call-by-valuestrategy, then for no strategy will @[[M]](�x:x) evaluate to one.Proof. The �rst part follows immediately from Lemma 3 applied to every step ofthe reduction. Conversely, any in�nite value-reduction sequence starting from M givesrise to an in�nite, strategy-independent reduction sequence starting from @[[M]] (�x:x).Finally, if the original reduction sequence stops at a CBV-stuck term S, the correspondingCPS reduction sequence ends in the term @[[S]](�x:x) which is stuck under any strategy(Lemma 4).4. Enriching the CPS transformationThis section investigates the translation of �-terms as found in usual applicative-orderfunctional languages and the problem of currying functions vs. tupling arguments.4.1. CPS translation of extended and applied �v -termsWe now turn to translating �v -terms applied over constants and (pure) primitive opera-tions and extended with conditional expressions, let and letrec expressions (restrictingthe values that are bound recursively to be functions). Such applied and extended �-termscome straight from Scheme and Standard ML.Following the line of Section 2, Figure 4 displays a one-pass equational speci�cationof the CPS transformation. Primitive operations are treated di�erently from ordinaryapplications to simplify the equations. If a primitive operator q is to be passed as afunctional value, it must be written with an explicit abstraction �x:q(x) | which can bedone at syntax-analysis time.Again, the result of transforming a term M into CPS in an empty context is given by@[[M]](�m:m)and the result of transforming M in a dynamic context is given by�k:@[[M]] (�m:@km)This instrumented new translation yields terms without extraneous redexes (if tail-callsare handled as in Section 2.6), in one pass. We obtained these equations by analyzing thebinding times of the valuation functions of a continuation semantics of the �v -calculus,along the line of Section 2. The simulation and indi�erence properties of CPS-transformedterms generalize to the above translation, but with one exception: unless the primitiveoperations are also transformed into continuation-passing versions, there is no longera direct correspondence between �-reductions in the original and the CPS-transformedterm. Thus, the optimized translation for primitives should only be used for \completelypure" operations (see also Section 6.2).

Representing Control 15[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@�x[[�x:M]] = ��:@� (�x:�k:@[[M]] (�m:@km))[[@MN]] = ��:@[[M]] (�m:@[[N]] (�n:@(@mn)(�a:@�a)))[[P!M; N]] = ��:@[[P]] (�p:p!@[[M]]�;@[[N]]�)[[q]] = ��:@�q[[q(M)]] = ��:@[[M]] (�m:@� (q(m)))[[q(M;N)]] = ��:@[[M]] (�m:@[[N]] (�n:@� (q(m;n))))[[let x = N inM]] = ��:@[[N]] (�n:let x0 = n in@[[M [x x0]]]�)[[letrec f = �x:N inM]] = ��: letrec f 0 = �x:�k:@[[N[f f 0]]] (�n:@kn))in @[[M [f f 0]]]�Fig. 4. One-pass CPS transformation of extended and applied �v -termsAs always with non-trivial symbolic reductions in �-calculus, we face the problem ofname clashes. These can occur when a context is moved inside the scope of a bindingconstruct, as illustrated in the following example:@([[�x:x+ (let x = 3 in x)]])(�v:v) = �x:�k:let x0 = 3 in@k (x+ x0)Had we not renamed the x introduced by the let, we would have inadvertently captureda free variable of the static continuation �. However, variables declared in �-abstractionsdo not need to be renamed because contexts are never moved inside the scope of a�-abstraction.Let us also note that if the subterm N in the translation of a let-expression is a value(notably, an abstraction), the corresponding variable in the transformed term will alsobe let-bound (as opposed to �-bound) to 	(N). Thus, the translation seems compatiblewith a restricted variant of ML-style polymorphism in which generalization can only beapplied to values (Harper and Lillibridge, 1992).4.2. On duplicating contextsThe CPS translation above duplicates contexts for each conditional expression:[[P!M; N]] = ��:@[[P]](�p:p!@[[M]]�;@[[N]]�)which increases the size of residual terms, as pointed out by Steele (Steele, 1978). Forexample, translating the direct style expression@f ((x!y; z)!4; 5)yields the more voluminous��:x! (y!@(@f 4)(�v:@kv) ; @(@f 5)(�v:@kv)) ;(z!@(@f 4)(�v:@kv) ; @(@f 5)(�v:@kv))

O. Danvy and A. Filinski 16and thus a bigger term to compile and correspondingly more object code to produce. Forthis reason, compiler writers usually refrain from duplicating contexts by introducing adynamic let-expression to share the static continuation between the two branches of theconditional:[[P!M; N]] = ��: let k = �a:@�ain @[[P]](�p:p!@[[M]](�m:@km);@[[N]](�n:@kn))where we have inserted the appropriate �-redexes, in the line of Section 2. This modi�ca-tion restores the linearity property of the static part of the translation, i.e., that boundvariables of static �-abstractions are used only once in their bodies, and thus maintainsa linear relationship between the sizes of the original and transformed terms.Because the let-expression introduces an explicit name for the context, each condi-tional branch de facto occurs in a dynamic context, just like the body of translated�-abstractions. As in Section 2.6, we can use the special \tail-call" translation for thesecontexts:[[P!M; N]] = ��:let k = �a:@�a in@[[P]] (�p:p!@[[M]]0k;@[[N]]0k)For example, the expression above is translated into�k0: let k1 = �v0: let k2 = �v1:@(@f v1)k0in v0!@k24; @k25in x!@k1y; @k1 zStill there is room left for further simpli�cation, e.g., in the case of let-expressions. Asrevealed by a simple inspection of the equations, translating let-expressions whose head-ers are an application or a conditional expression will produce identity let expressions.These redundant let-expressions can be prevented at translation time:[[let x = @N0N1 inM]] = ��:@[[N0]](�n0:@[[N1]](�n1:@(@n0n1)(�x0:@[[M [x x0]]]�)))4.3. Currying vs. tuplingFor practical applications of the CPS transformation algorithm described above, we needthe slight re�nement considered in this section.In a call-by-name language, there is a one-to-one correspondence between curried andnon-curried forms of multi-argument functions, but for call-by-value this property is lost:there may be several, non-equivalent ways of \currying" a function. For example, thecurried form of the two-argument functiong = �(a; b):(@f a) + bcan be written as either of the two terms:~g1 = �a:�b:(@f a) + b or ~g2 = �a:let x = @f a in �b:x+ bBoth of these qualify as curried forms of g, in the sense that for any pair of values aand b, @(@~g1a)b = @(@~g2 a)b = @g (a; b)

Representing Control 17but ~g1 and ~g2 behave di�erently if applied to only a single argument a for which f failsto terminate.Since the CPS transform clearly needs to accommodate curried functions like ~g2 above,programs with \simple" curried functions appear unnecessarily complex. For example,curried addition �a:�b:(a+ b)must be translated to the somewhat awkward�a:�k:@k (�b:�k0:@k0 (a+ b))instead of the more natural �a:�b:�k:@k (a+ b)The problem is that a higher-order type like �1 ! [�2 ! �3] does not make it clearwhether the outermost function is \serious" or \trivial", as in these two last examples.This can be solved by extending the source language with either a product type or anew \trivial function space" (restoring the equivalence between \trivially curried" anduncurried forms of functions).Moreover, the result of translating a function of type� ! �into CPS with \answer" type o, can itself be expressed in either \curried CPS":�0 ! [� 0 ! o]! oor \uncurried CPS:" �0 � [� 0 ! o]! oThe functions resulting from the curried CPS transform can be easily checked to bealways trivial (i.e., immediately return a closure), but this is not clear from their type.Thus, if we want to treat the transformation result itself as a call-by-value term, theuncurried form of the translation is more precise.4.4. Multi-argument functionsFor languages like Standard ML, which have an explicit product type for expressingfunctions of several arguments, we can essentially use the equations of Figure 4 directly.Multiple variables in �-abstractions can be treated as syntactic sugar for projectionsfrom a single argument, and tuple construction becomes a new primitive operator. For aScheme-like language, however, the \argument tuple" is not an autonomous entity, butis closely tied in with functional abstraction and application. We thus need to adjust theCPS equations of these two constructs slightly if we want an uncurried source-to-sourcetransformation:[[�(x1; :::;xn):E]] = ��:@�(�(x1; :::; xn; k):@[[E]](�x:@kx))[[@E0 (E1; :::;En)]] = ��:@ [[E0]](�f:@[[E1]] (�a1: :::@[[En]](�an:@f (a1; :::;an; �x:@�x))))

O. Danvy and A. Filinski 18More precisely, an argument list is translated as follows:[[()]]� = ��:@� ()[[E :: E�]]� = ��:@[[E]](�h:@[[E�]]� (�t:@�(h :: t)))and a full application as:[[@E0 (E1; :::;En)]] = ��:@[[E0]](�f:@[[(E1; :::;En)]]� (�l:@f (l � [�x:@�x])))where � represents list concatenation.Remark: To make the Scheme-style connection between lists and argument tuples even closer,we could put the continuation argument �rst in the argument list rather than last. This wouldallow us to translate \variadic procedures" such as(lambda l (cdr l)) or (lambda (a b . l) b)directly into (lambda (k . l) (k (cdr l))) and (lambda (k a b . l) (k b))respectively. However, readability appears to su�er when the continuation argument, which isoften large, must be followed by others in an application. Making continuations occur �rst is usedsometimes to compile functional programs by program transformation (Fradet and Le M�etayer,1991). It is simple to write a one-pass CPS transformer where continuations precede values |just swap values and continuations in any of the speci�cations displayed in the �gures.5. Abstracting ControlSo far we have been investigating how to perform the CPS transformation. This sectionexplores properties and extensions of the transformation function.5.1. Reynolds's escape operatorNot every �-calculus term is obtainable as a result of the CPS transformation. Some of the\unused" terms correspond to control operators in the source language. For example, theoperator escape (interde�nable with Scheme's call/cc) can be de�ned by the equation:[[escape c in M]] = ��:let c0 = �a:��0:@�a in@[[M [c c0]]]�As a control operator, escape captures the current continuation and provides a rep-resentation of this current continuation as if it were a function in the source program.Applying this function to a value amounts to abandoning the current context of compu-tation and passing this value to the captured continuation. For example, transformingthe term �f:escape c in 1 + (@f c)into CPS in an empty context (and unfolding the let) yields�f:�c:@(@f (�x:�k:@cx)) (�v:@c(1 + v))As can be observed in the equation above, escape duplicates the code for the current

Representing Control 19continuation. Along the lines of Section 4.2, this can be prevented by the followingequation:[[escape c in M]] = ��:let k = �a:@�a in let c = �a:�k0:@ka in@[[M]] (�m:@km)In the rest of this section, we shall waive concerns about such duplications of contexts.5.2. Shift and resetLet us note that even with escaping constructs, the result of the translation is in \or-dinary" CPS form, i.e., with no nested function applications. This suggests that thereis still a considerable amount of untapped expressive power in the CPS formalism, re-
ecting control structures whose translations are more general �-terms. In particular, wecan de�ne the two operators shift and reset, conceptually serving as composition andidentity for continuation functions:[[shift c in M]] = ��:let c = �a:��0:@�0 (@�a) in@[[M]](�m:m)[[hMi]] = ��:@�(@[[M]](�m:m))Shift abstracts the current context as an ordinary, composable procedure (in contrast tothe exceptional, non-composable procedures yielded by escape) and reset delimits thescope of such a context. Shift also di�ers from escape by not implicitly duplicating thecurrent continuation (Felleisen's C-operator introduced the behavior of not duplicatingcontinuations (Felleisen et al., 1987b)).For example,1 + h10 + shift c in @c (@c100)i) 1 + (10 + (10 + 100))) 121With the fuller control over contexts a�orded by these two operators, we can express ina functional style many control structures that would otherwise have required us to eitherrewrite the program extensively or introduce side e�ects. For example, let us considera functional representation of \applicative" nondeterministic (in the sense of backtrack-ing) programming, as embodied, e.g., in the programming language Icon (Griswold andGriswold, 1983).Let us de�ne a basic \nondeterministic choice" procedure:
ip = �():shift c in @c tt _@cffWhen invoked,
ip will \return" twice: once with each possible truth value. Here, wehave speci�ed that the �nal answer of the nondeterministic program should be true ifeither of these two return values causes the context to evaluate to true. For a canonicalexample, let ' be a boolean expression with free variables b1; :::; bn. To determine whether' is satis�able (i.e., whether there exists an assignment of truth values to the variablesmaking the whole expression true), we can now simply evaluate the natural direct-styleprogram hlet b1 = @
ip () in . . . let bn = @
ip () in'iThis approach to nondeterministic programming also easily handles irregular search

O. Danvy and A. Filinski 20structures, where further tests may depend on outcome of previous \guesses", e.g., forsimulating a nondeterministic �nite automaton (Danvy and Filinski, 1990).5.3. Control and promptWhile shift and reset are very similar to Felleisen's operators control and prompt(Felleisen, 1988), there is a signi�cant semantical di�erence between shift/reset andcontrol/prompt: the context abstracted by shift is determined statically by the staticprogram text, while control captures the context up to the nearest dynamically enclosingprompt.The di�erence between shift and control is probably best displayed by the followingtwo characteristic equations:h@f (shift c in M)i = hlet c = �x:h@f xi inM ih@f (control c in M)i = hlet c = �x:@f x inMiNow if f is bound to a procedure that itself abstracts control, the context it willcapture with the shift semantics is still determined by the context where c is de�ned.On the other hand, with the control semantics, a control operator occurring in f willcapture the context at the point where c is applied; in particular, it can capture part ofM . (In the case where f is a simple procedure with no control e�ects, the e�ects of thetwo operators coincide.)The shift/reset approach is based on viewing a program as computing a functionexpressed in CPS, i.e., on representing control with a function: the continuation. Incontrast, prompt and control were introduced independently of CPS and thereforethey admit no such simple static interpretation. Their two denotational descriptionsintroduce an algebra of control and lead to a representation of continuations as prompt-delimited sequences of activation frames, and their composition as the concatenationof these sequences (Felleisen et al., 1988). Earlier on, prompts were speci�ed with anoperational description in terms of textual reductions (Felleisen, 1988). In general, thesestatic vs. dynamic interpretations lead to di�erent behaviors (Danvy, 1989).In our framework, reset naturally is the direct style counterpart of initializing thecontinuation of a CPS �-term with the identity function. Reset seems to be equivalentto prompt, but terms using control in general have no CPS counterpart.5.4. CPS translation of terms that use shift and resetLet us note that the de�nitions of shift and reset do not yield CPS terms (because con-tinuations may be applied to non-values). Therefore the de�ning terms lose the importantproperty of enforcing strict call-by-value evaluation ensured by proper CPS. However, wecan restore that property by translating the de�ning (pure �v -calculus) terms once moreinto CPS, yielding a term in \meta-continuation passing style." Here, the � is treated asan ordinary functional parameter, while the proper evaluation order is ensured by a newcontinuation.

Representing Control 21For example, and leaving the @-notation aside for readability, the following term oc-curring in an empty context let f = �x:shift k in k(k(x))in 1 + h10 + f (100)igets CPS-transformed into let fc = �x:�k:k(k(x))in 1 + (fc 100 (�v:10 + v))As can be noticed, this term is not in CPS because the call to fc is not a tail-call andthere is a nested call to k in the de�nition of fc. But the second CPS transformation nowgives a proper CPS term (with h as the continuation parameter):let fcc = �x:�k:�h:k x (�a:k a h)in fcc 100 (�v:�h:h(10 + v)) (�a:1 + a)Remark: Iterating this construction leads to \extended CPS" and a whole hierarchy of controloperators (Danvy and Filinski, 1990). This is the real forte of a CPS-based approach to advancedcontrol structures: we obtain a natural notion of \levels" of control, allowing us to express, e.g.,collections over all paths of a nondeterministic subcomputation, as de�ned in Section 5.2.5.5. Translating control operations in one passFollowing a binding time analysis of the equations of Section 5.2 (as in Section 2), let usexpress the CPS transformation of control operations using two-level �-terms:[[escape c in M]] = ��:let c0 = �a:��0:@�a in@[[M [c c0]]]�[[shift c in M]] = ��:let c0 = �a:��0:@�0 (@�a) in@[[M [c c0]]](�m:m)[[hM i]] = ��:@� (@[[M]](�m:m))The CPS transformation now introduces let-expressions. These could be unfolded bysubstituting the control abstractions for the identi�ers in the translated terms, as we �rstspeci�ed it (Danvy and Filinski, 1990):[[escape c in M]] = ��:(@[[M [c c0]]]�)[c0 �a:��0:@�a][[shift c in M]] = ��:(@[[M [c c0]]](�m:m))[c0 �a:��0:@�0 (@�a)]However, these substitutions introduce residual �-redexes when control abstractionsare applied within the scope of their declaration. For example,@[[�x:shift c in 1 + (@cx)]] (�m:m) = �x:�c:@(@(�a:�k:1 + (@ka))x)cinstead of the preferable �x:�c:1 + (@cx)To keep this �-reduction at translation time, but again at the risk of duplicating con-texts (as in shift c in (@c1) + (@c2)), we can distinguish between identi�ers that aredeclared within a �-abstraction and identi�ers that are declared within a control abstrac-tion. Unfortunately, this decision clutters the transformation, much in the same way asintroducing \�rst-class" primitive operators (cf. Section 4.1). We adopt the same sim-ple solution: at syntax-analysis time, occurrences of identi�ers declared within a control

O. Danvy and A. Filinski 22abstraction are guaranteed to occur only in application position, which we single out bytagging this application with throw, as in Standard ML of New Jersey (Duba et al.,1991). [[escape c in M]] = ��:(@[[M [c c0]]]�)[c0 �a:��0:@�a][[shift c in M]] = ��:(@[[M [c c0]]](�m:m))[c0 �a:��0:@�0 (@�a)][[throw c M]] = ��:@[[M]](�m:@(@cm)�)To avoid dealing with substitutions over translated terms, we can introduce atranslation-time environment mapping identi�ers to a translation-time �-abstraction ifthey are declared within a control abstraction. The following is the corresponding ver-sion of the CPS transformer, completed with the translation-time environment. Theother equations are unchanged, except for the addition of an environment � passivelytransmitted everywhere.env : var! syntax! [syntax! syntax]! syntax[[[:::]]] : env ! [syntax! syntax]! syntax[[[escape c in M]]] = ��:��:@(@[[[M [c c0]]]] [c0 7!�a:��0:@�a]�)�[[[shift c in M]]] = ��:��:@(@[[[M [c c0]]]] [c0 7!�a:��0:@�0 (@�a)]�) (�m:m)[[[throw c M]]] = ��:��:@(@[[[M]]]�) (�m:@(@(@�c)m)�)Note how all the terms in the translation are static. All administrative reductions areperformed at translation time, and no �-redexes are built for applications of controlabstractions.5.6. The problem of name clashesNow only one problem remain: name clashes. These can occur when a control operatormoves part of the context inside the scope of any binding construct, as illustrated in thefollowing example:@(@[[[�x:@f (escape c in �f:throw c f)]]]�0) (�v:v) = �x:�k:@k (�f 0:�k0:@(@f f 0)k)The simplest solution is thus probably to systematically rename all bound variables.5.7. Direct Transformation into CPSWe can view the CPS transformation of Section 4.1 as an applicative order programexpressing the transformation algorithm. This program is expressed in a CPS-like style.This might lead one to believe that this program could be expressed more concisely usinga \traditional" control operator like call/cc. Unfortunately, this is not quite possiblebecause this program is not in CPS. Notably, in the translation of @MN the continuationapplication @�a is a subterm of the syntax-constructor �a: � � �. Conversely, in [[�x:M]],the continuation � is applied to a potentially non-trivial term. Neither of these situationscan arise from the translation of any conventional direct-style term (i.e., �-calculus +escape). However, with shift/resetwe can express exactly such behavior. Let us rewrite

Representing Control 23[[x]] = x[[�x:M]] = �x:�k:h@k [[M]]i[[@MN]] = shift c in @(@[[M]][[N]])(�a:@ca)[[P!M; N]] = shift c in [[P]]!h@c [[M]]i; h@c [[N]]i[[q]] = q[[q(M)]] = q([[M]])[[q(M;N)]] = q([[M]]; [[N]])[[let x = N inM]] = shift c in let x0 = [[N]] in h@c [[M [x x0]]]i[[letrec f = �x:N inM]] = shift c in letrec f 0 = �x:�k:h@k [[M [f f 0]]]iin h@c [[M [f f 0]]]i[[escape k in M]] = shift c in let k0 = �v:�k00:@cv in h@c [[M [k k0]]]i[[shift k in M]] = shift c in let k0 = �v:�k00:@k00 (@cv) in h[[M [k k0]]]i[[hMi]] = h[[M]]iFig. 5. Direct-style, one-pass CPS transformation of �v -termsthe transformation equations using implicit continuations. The result is displayed inFigure 5.The result of transforming a term M into CPS in an empty context is given byh[[M]]iSimilarly, the result of transforming M in an arbitrary context is given by�k:h@k [[M]]iThe CPS counterpart of the applicative-order program expressing this transformationalgorithm (using the equations of Section 4.1 and the �rst set of equations of Section 5.5)can be veri�ed easily to coincide with the original translator. Thus, the two transformersyield textually the same output for a given input; only their internal organization di�ers.This set of equations can be seen as a meta-circular compiler from a language withthe new control operators into its purely functional subset. Alternatively (by omittingthe equations for shift and reset), it translates terms of a Scheme-like language (i.e., �-calculus + escape) into standard CPS. Such a transformation has a practical interest forcompiling, e.g., Scheme or Standard ML programs (Steele, 1978; Appel, 1992), and thusconstitutes a signi�cant example of using shift/reset: even the pure CPS translation isexpressed naturally using the new control operators.As with all meta-circular de�nitions, we need to bootstrap it. If we have an interpreterfor a language with shift/reset,we can use it to execute the translator on itself, obtaininga CPS transformer written in pure �-calculus. On the other hand, we can get an inter-pretive semantics for the extended language by translating a trivial (i.e., de�ning shiftin terms of shift, etc.) self-interpreter into extended CPS (Danvy and Filinski, 1990).This correspondence helps to ensure consistency between the two methods of languagede�nition.

O. Danvy and A. Filinski 246. Related Work6.1. CPS transformationTwo other works have independently employed CPS translations similar to the one pre-sented here. The �rst one is Appel's CPS transformer in the Standard ML of New Jerseycompiler (Appel, 1992). The second one is Wand's combinator-based compilation tech-nique (Wand, 1991). But neither motivate their transformer, e.g., as we do in Section 2,nor extend it to control operators or normal order, as we do in Sections 5 and 7.As revealed in the source code of the SML/NJ compiler, the CPS transformer operatesin one pass by keeping a translation time continuation, based on �-redexes identical tothose in Section 2. However, in contrast to our work, the goal is not to aim at the \exact"continuation-passing counterparts of source programs but to simplify them as much aspossible, even if some of the simpli�cations correspond to source reductions. Still noparticular care is taken to avoid building extraneous �-redexes, such as those pointed outin Section 4.2. Instead, the compiler relies on a powerful and blind simpli�er of CPS termsthat processes both these redexes and what corresponds to source reductions. It would beinteresting to measure whether and how much our more precise CPS transformer relievesthe simpli�er.Similarly, devising a particular representation of run time procedures and their applica-tion (instead of our � and @), Wand also compiles programs based on a CPS transformerwith the same �-redexes as in Section 2, but again without motivating them.Today Sabry and Felleisen are also investigating the CPS transformation in one pass,and Lawall and the �rst author are investigating the inverse \Direct Style" transformation(Danvy, 1992; Danvy and Lawall, 1992; Sabry and Felleisen, 1992).6.2. Primitive operatorsMost CPS-based compilers (Steele, 1978; Appel, 1992; Wand, 1991) and program analyz-ers (Shivers, 1991) also use continuation-passing forms of even the primitive operators.However, the practical justi�cation of such a \radical CPS" transform is not completelyclear. In particular, the oft-quoted advantage of having explicit names for all subexpres-sions can be realized equally well with let-expressions. Clearly, side-e�ecting operatorsneed to be tied down by explicit conversion to continuation-passing variants. However,expressing \trivial computations" like tuple construction/destruction or arithmetic inCPS introduces unnecessary sequentialization and obscures the fact that such computa-tions can be rearranged or even eliminated or duplicated without a�ecting the meaningof the program.Remark: A possible problem here concerns primitive operators like division that can sig-nal error conditions, but are otherwise \pure". Clearly, the translation should preserve anyexception-raising behavior of the original program, and not compromise the order-of-evaluationindependence of CPS terms. On the other hand, going to full CPS for such almost-functionaloperators may still be overkill, for the reasons outlined above. However, it often seems possibleto factor the original operator into two aspects: the control behavior (the process of computa-

Representing Control 25tion, possibly error-raising) to be expressed in CPS and the pure (and hence freely rearrangable)function computed, in which case we actually get the best of both worlds.6.3. Control operatorsFrom Reynolds's escape to call/cc in Scheme, control operators are nicely introducedwithin the CPS transformation (Reynolds, 1972; Felleisen et al., 1986). However, be-cause CPS appears to constrain expressive power, Felleisen and others have successivelyproposed new control operators to compose continuations (Felleisen et al., 1987a) and tolimit their extent (Felleisen, 1988). As later shown by Sitaram and Felleisen (Sitaram andFelleisen, 1990), inclusion of control delimiters is also necessary to obtain fully abstractmodels of control for CPS models with escape. The motivation for shift and reset wassomewhat di�erent: rather than devising new theories, new models, and new representa-tions of control, we have set out to explore CPS more thoroughly. In particular, shift andreset are introduced together as representing composition and identity on continuationfunctions respectively; proper CPS form is restored by iterating the CPS transformation(Danvy and Filinski, 1990).6.4. Partial evaluationPartial evaluation (or more accurately: program specialization (Jones et al., 1989)) makesheavy use of binding time information to process the static and the dynamic semanticsof source programs (Consel and Danvy, 1991a), as we do here. Recent works by Bondorfand the �rst author emphasize the issues of code duplication and termination properties(Bondorf and Danvy, 1991), and use the technique of enumerating �nitary constructs(Bondorf, 1991), as we do in Sections 2 and 4.2. The latter is also central to Shivers'swork on higher-order
ow analysis (Shivers, 1991). All these concepts were pervasive inour derivation of a one-pass CPS transformer. In particular, the notion of a two-level �-calculus as advocated in Nielson and Nielson's TML (Nielson and Nielson, 1988) provesuseful to develop and to express new CPS transformations that distinguish properlybetween translation-time and run-time constructs.With respect to partial evaluation, this development illustrates the connection betweena CPS transformer and a �-calculus interpreter expressed in CPS. The former is a two-level version of the latter.Moreover, our derivation illustrates a new trend in partial evaluation: using CPS toimprove binding time properties of source programs, leading to better specialization(Consel and Danvy, 1991b). Work is going on to further automate the process.7. Conclusion and IssuesAs proven constructively in this paper, transforming �-terms into CPS can be expressedin one pass by moving administrative redexes to translation time in a context-free way.While the actual transformation algorithm seems to have been independently discovered

O. Danvy and A. Filinski 26[[x]] = x[[�x:M]] = ��:@� (�x:[[M]])[[@MN]] = ��:@[[M]] (�m:@(@m[[N]])�)Fig. 6. Plotkin's CPS transformation of �n -termsseveral times in slightly di�erent forms, we believe that ours is the �rst systematic deriva-tion and analysis of its correctness and properties. The translation is easily extended tothe usual constructs of applicative order functional languages and also to account forcontrol operators. And using two control operators shift and reset derived naturallyfrom the CPS formalism, the translation can be formulated even more concisely anddirectly.The role of continuations in programming language design and implementation haslong been dominated by pragmatic concerns. In the last few years, however, the subjecthas seen renewed theoretical interest, especially with the introduction of concepts andmethods frommathematical logic and category theory, e.g., (Gri�n, 1990; Murthy, 1990;Filinski, 1992). We believe that any investigation of advanced control structures based onthe CPS transform will be able to pick up and integrate such developments more directlythan a free-standing approach derived from more intuitively \desirable" operational be-havior could. And in fact, recent developments seem to support this conviction (Murthy,1992).Moreover, there is a close relationship between computational monads (Moggi, 1989)and \generalized CPS", as suggested in \Abstracting Control" (Danvy and Filinski,1990) and properly formalized by Wadler (Wadler, 1992). E�ectively, this implies thatCPS-based control operators like shift and reset can by themselves uniformly express arich class of computational behaviors, including partiality, nondeterminism, and state. Itseems natural to take this as another indication that both the theoretical and practicalsigni�cance of functional representations of control will only grow stronger in the yearsto come.Appendix: call by nameLet us consider Plotkin's equational speci�cation for transforming a �n -term into CPS(Plotkin, 1975), as displayed in Figure 6. We want to apply the method of Section 2 tostage the CPSn -transformation.Again, taken literally, this translation yields arti�cial redexes that must be post-reduced in a second pass, although the size explosion is not as drastic as for call-by-value.For example, translating �f:�x:�y:@(@f y)xyields�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@(�k:@f (�m:@(@my)k)) (�m:@(@mx)k))))

Representing Control 27[[:::]] : [syntax ! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M]] = ��:@� (�x:�k:@[[M]] (�m:@km))[[@MN]] = ��:@[[M]](�m:@(@m(�k:@[[N]] (�n:@kn)))(�a:@�a))Fig. 7. One-pass CPS transformation of �n -termswhose post-reduction yields�k:@k (�f:�k:@k (�x:�k:@k (�y:�k:@f (�m:@(@my) (�m:@(@mx)k)))))This CPS counterpart of the �n -term can be equally evaluated using call-by-name orcall-by-value. As a simple consequence, the continuation can be implemented as a strictfunction without altering the meaning of the original �n -term.Can we subject the original speci�cation to the same treatment as in Section 2 and geta one-pass CPS transformer? The answer is yes but the resulting transformation showsless immediate success. The original speci�cation can be transformed into the one inFigure 7 which does not build any �-redex.The result of transforming a term M into CPS in an empty context is then given by@[[M]](�m:m)Again, this speci�cation, viewed as an applicative order program, can be re-expressedusing shift and reset.However this new CPS translation su�ers from a de�ciency, as pinpointed by thefollowing observation.Observation 2. A �n -term and its CPS counterpart are related as follows:| A variable is translated into one application and one �-abstraction.| A �-abstraction is translated into two �-abstractions and one application.| An application is translated into three applications and two �-abstractions.Whereas the two last points also hold for Plotkin's speci�cation, the �rst point revealsthat the new translation actually produces more redexes! However, the new speci�cationonly produces more �-redexes, which are not nearly as hard to get rid of as the �-redexesproduced by the original translation, as outlined now.�-redexes are only constructed in tail-contexts, for identi�ers occurring as �-abstractionbodies, and as arguments of functions (this corresponds to the ALGOL 60 situation of\suspending a suspension"). As in Section 2.6, they can eliminated at translation timeby duplicating the rules (cf. Figure 8).Rationale: The auxiliary translation [[M]]00 is used for the special case �k:@[[M]] (�m:@km),thereby avoiding the construction of extraneous �-redexes.The result of transforming a term M into CPS in an empty context is then given by@[[M]](�m:m)whereas the result of transforming a term M into CPS in a dynamic context is given by

O. Danvy and A. Filinski 28[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M]] = ��:@�(�x:[[M]]00)[[@MN]] = ��:@[[M]] (�m:@(@m [[N]]00)(�a:@�a))[[:::]]00 : syntax[[x]]00 = x[[�x:M]]00 = �k:@k (�x:[[M]]00)[[@MN]]00 = �k:@[[M]] (�m:@(@m [[N]]00)k)Fig. 8. One-pass, \properly tail-recursive" CPS transformation of �n -terms[[M]]00By construction, this instrumented new translation yields terms without �-redexes, inone pass.7.1. Continuations �rstMaking continuations occur �rst introduces a new opportunity for extraneous �-redexes inresidual CPS terms. The result of transforming a term can occur (1) in function positionwhere the argument is a static lambda that will be applied to a static continuation; (2)in function position where the argument is a static lambda that will be applied to adynamic continuation; and (3) not in function position. These cases can be handled bya suitable series of tests on intermediate result or again by duplicating the rules as inFigure 9. Notice how [[:::]] terms correspond to case (1), [[:::]]0 terms correspond to case(2), and [[:::]]00 terms correspond to case (3). This suggests that a Clinger-style compilerfor �n -terms would be proven using a triple induction hypothesis (Clinger, 1984).As usual, the result of transforming a term M into CPS in an empty context is thengiven by @[[M]](�m:m)whereas the result of transforming a term M into CPS in a dynamic context is given by�k:@[[M]]0kor better, by [[M]]00This �nal translation yields terms without �-redexes nor new �-redexes, in one pass.AcknowledgementsWe are grateful to the editor and the three referees. Thanks are also due to KarolineMalmkj�r and Dave Schmidt for their patience and to Chet Murthy for his enthusiasm.

Representing Control 29[[:::]] : [syntax! syntax]! syntax[[x]] = ��:@x(�a:@�a)[[�x:M]] = ��:@�(�k:�x:@[[M]]0k)[[@MN]] = ��:@[[M]] (�m:@(@m(�a:@�a)) [[N]]00)[[:::]]0 : syntax! syntax[[x]]0 = �k:@xk[[�x:M]]0 = �k:@k (�k:�x:@[[M]]0k)[[@MN]]0 = �k:@[[M]] (�m:@(@mk) [[N]]00)[[:::]]00 : syntax[[x]]00 = x[[�x:M]]00 = �k:@k (�k:�x:@[[M]]0k)[[@MN]]00 = �k:@[[M]] (�m:@(@mk) [[N]]00)Fig. 9. One-pass, \properly tail-recursive" CPS transformation of �n -terms withcontinuations �rstReferencesAppel, A. W. (1992). Compiling with Continuations. Cambridge University Press.Bondorf, A. (1991). Automatic autoprojection of higher-order recursive equations. Science ofComputer Programming, 17:3{34.Bondorf, A. and Danvy, O. (1991). Automatic autoprojection of recursive equations with globalvariables and abstract data types. Science of Computer Programming, 16:151{195.Clinger, W. (1984). The Scheme 311 compiler, an exercise in Denotational Semantics. InConference Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages356{364, Austin, Texas.Clinger, W. and Rees, J., editors (1991). Revised4 report on the algorithmic language Scheme.LISP Pointers, IV(3):1{55.Consel, C. and Danvy, O. (1991a). Static and dynamic semantics processing. In (POPL, 1991),pages 14{24.Consel, C. and Danvy, O. (1991b). For a better support of static data
ow. In Proceedings ofthe Fifth ACM Conference on Functional Programming and Computer Architecture, number523 in Lecture Notes in Computer Science, pages 496{519, Cambridge, Massachusetts.Danvy, O. (1989). Programming with tighter control. Special issue of the BIGRE journal:Putting Scheme to Work, (65):10{29.Danvy, O. (1992). Back to direct style. In Krieg-Br�uckner, B., editor, Proceedings of the FourthEuropean Symposium on Programming, number 582 in Lecture Notes in Computer Science,pages 130{150, Rennes, France.Danvy, O. and Filinski, A. (1990). Abstracting control. In (LFP, 1990), pages 151{160.

O. Danvy and A. Filinski 30Danvy, O. and Lawall, J. L. (1992). Back to direct style II: First-class continuations. In Pro-ceedings of the 1992 ACM Conference on Lisp and Functional Programming, San Francisco,California.Danvy, O. and Talcott, C. L., editors (1992). Proceedings of the ACM SIGPLAN Workshop onContinuations, San Francisco, California. Technical report, Stanford University.Duba, B. F., Harper, R., and MacQueen, D. (1991). Typing �rst-class continuations in ML. In(POPL, 1991), pages 163{173.Felleisen, M. (1988). The theory and practice of �rst-class prompts. In Proceedings of theFifteenth Annual ACM Symposium on Principles of Programming Languages, pages 180{190,San Diego, California.Felleisen, M., Friedman, D. P., Duba, B., and Merrill, J. (1987a). Beyond continuations. Tech-nical Report 216, Computer Science Department, Indiana University, Bloomington, Indiana.Felleisen, M., Friedman, D. P., Kohlbecker, E., and Duba, B. (1986). Reasoning with continua-tions. In Proceedings of the First Symposium on Logic in Computer Science, pages 131{141,Cambridge, Massachusetts. IEEE.Felleisen, M., Friedman, D. P., Kohlbecker, E., and Duba, B. (1987b). A syntactic theory ofsequential control. Theoretical Computer Science, 52(3):205{237.Felleisen, M., Wand, M., Friedman, D. P., and Duba, B. F. (1988). Abstract continuations: Amathematical semantics for handling full functional jumps. In Proceedings of the 1988 ACMConference on Lisp and Functional Programming, pages 52{62, Snowbird, Utah.Filinski, A. (1992). Linear continuations. In (POPL, 1992), pages 27{38.Fischer, M. J. (1972). Lambda calculus schemata. In Proceedings of the ACM Conferenceon Proving Assertions about Programs, pages 104{109. SIGPLAN Notices, Vol. 7, No 1 andSIGACT News, No 14.Fradet, P. and Le M�etayer, D. (1991). Compilation of functional languages by program trans-formation. ACM Transactions on Programming Languages and Systems, 13:21{51.Gri�n, T. G. (1990). A formulae-as-types notion of control. In Proceedings of the SeventeenthAnnual ACM Symposium on Principles of Programming Languages, pages 47{58, San Fran-cisco, California. ACM Press.Griswold, R. E. and Griswold, M. T. (1983). The Icon Programming Language. Prentice-Hall.Harper, B. and Lillibridge, M. (1992). Polymorphic type assignment and CPS conversion. In(Danvy and Talcott, 1992).Jones, N. D., Sestoft, P., and S�ndergaard, H. (1989). MIX: A self-applicable partial evaluatorfor experiments in compiler generation. LISP and Symbolic Computation, 2(1):9{50.LFP (1990). Proceedings of the 1990 ACM Conference on Lisp and Functional Programming,Nice, France.LFP (1992). Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,San Francisco, California.Mellish, C. and Hardy, S. (1984). Integrating Prolog in the POPLOG environment. In Campbell,J. A., editor, Implementations of PROLOG, pages 147{162. Ellis Horwood.Milner, R., Tofte, M., and Harper, R. (1990). The De�nition of Standard ML. The MIT Press.Moggi, E. (1989). Computational lambda-calculus and monads. In Proceedings of the FourthAnnual Symposium on Logic in Computer Science, pages 14{23, Paci�c Grove, California.IEEE.Murthy, C. R. (1990). Extracting Constructive Content from Classical Proofs. PhD thesis,Department of Computer Science, Cornell University.Murthy, C. R. (1992). Control operators, hierarchies, and pseudo-classical type systems: A-translation at work. In (Danvy and Talcott, 1992).

Representing Control 31Nielson, F. (1989). Two-level semantics and abstract interpretation. Theoretical ComputerScience, 69(2):117{242.Nielson, F. and Nielson, H. R. (1988). Two-level semantics and code generation. TheoreticalComputer Science, 56(1):59{133.Plotkin, G. D. (1975). Call-by-name, call-by-value and the �-calculus. Theoretical ComputerScience, 1:125{159.POPL (1991). Proceedings of the Eighteenth Annual ACM Symposium on Principles of Pro-gramming Languages, Orlando, Florida. ACM Press.POPL (1992). Proceedings of the Nineteenth Annual ACM Symposium on Principles of Pro-gramming Languages, Albuquerque, New Mexico. ACM Press.Reynolds, J. C. (1972). De�nitional interpreters for higher-order programming languages. InProceedings of 25th ACM National Conference, pages 717{740, Boston.Riecke, J. G. (1989). Should a function continue? Master's thesis, Department of ElectricalEngineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-sachusetts.Sabry, A. and Felleisen, M. (1992). Reasoning about programs in continuation-passing style. In(LFP, 1992).Shivers, O. (1991). The semantics of Scheme control-
ow analysis. In Hudak, P. and Jones,N. D., editors, Symposium on Partial Evaluation and Semantics-Based Program Manipulation,SIGPLAN Notices, Vol. 26, No 9, pages 190{198, New Haven, Connecticut. ACM, ACM Press.Sitaram, D. and Felleisen, M. (1990). Reasoning with continuations II: Full abstraction formodels of control. In (LFP, 1990), pages 161{175.Steele Jr., G. L. (1978). Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Arti�cialIntelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts.Wadler, P. (1992). The essence of functional programming. In (POPL, 1992), pages 1{14.Wand, M. (1991). Correctness of procedure representations in higher-order assembly language.In Brookes, S., Main, M., Melton, A., Mislove, M., and Schmidt, D., editors, MathematicalFoundations of Programming Semantics, volume 598 of Lecture Notes in Computer Science,pages 294{311, Pittsburgh, Pennsylvania. 7th International Conference.

