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1Abstract—In this paper, a novel nature inspired algorithm
for continuous optimization of numerical functions has been
proposed. The algorithm is inspired from the circular wave
created from a water drop when it falls to a still water.
Algorithm itself has been developed with the purpose of
distributed working thus kept as embarrassingly parallel as
possible. Proposed algorithm is tested with eight different
benchmark functions and up to thirty dimensions. The
experimental results are promising and encouraging for
further research studies.

Index Terms—Optimization, nature-inspired computing,
iterative methods, performance.

I. INTRODUCTION

In today’s scientific world; nature based algorithms have
many benefits in optimization and demanding more
research. Some of these algorithms are Particle Swarm
Optimization (PSO) [1], Artificial Bee Colony (ABC) [2],
Genetic Algorithms [3], Firefly Algorithm [4], Bat
Algorithm [5], and Artificial Chemical Reaction
Optimization Algorithm [6]. These algorithms are being
improved by scientists and still open to more improvements.
Some of the new research studies in this area are; Enhanced
leader PSO [7], Enhanced Compact Artificial Bee Colony
[8], the Intelligent Water Drops [9], and Modified Bat
Algorithm [10].

By inspiring from nature, we may solve our problems. In
this paper, a novel nature inspired algorithm for continuous
optimization of numerical functions has been proposed.

In nature, when we observe a water drop to fall into still
water, we will see circular waves forming around it. These
waves will move until they collide with an object and this
will create new waves. As waves travel through water by
colliding with objects and creating new waves, we will see
that waves are starting to gather near objects. As wave loses
their velocity, they will vanish and leave water as still as
ever.

We may assume that we have still water which can be
interpreted as search domain and we have a mountain in it.
We let water drop fall into it. This causes circular waves in
the water. When a wave collides with a foothill, it will
create new waves. These waves will cause new waves to
form as it is colliding different parts of the foothill. As

Manuscript received March 26, 2015; accepted August 2, 2015.

waves are moving in harmony, we should realize that
forming waves are starting to gather near foothill. Now we
have to make some assumptions for our algorithm sake.
 When wave collide with foothill, the water level will
increase but formed waves will not be affected by it.
 When a new wave formed, it will not be a reflecting
wave but a circular wave like its predecessors.
 Each wave has enough energy to travel as much as we
want so they will not lose their energy as they move or
reflect.
When the water level rises a newly formed wave will

have chance to reflect from a higher place of the mountain.
As this reflecting and level-rising continue; waves will make
their way to the top of the mountain and will gather there.
Our algorithm inspires from this water phenomenon.

This work has been organized as follows; at Section II the
steps to optimize a given function with Circular Water Wave
(CWW) algorithm are explained, at Section III benchmark
functions, search domain of each function and best values of
these function are provided, at Section IV experimental
result of WCC, PSO and ABC are given and discussed,
finally at Section V conclusion of the experimental result of
Circular Water Wave algorithm and possible future research
topics are given.

II.CIRCULAR WATER WAVE ALGORITHM

In this section, the steps to optimize a given function with
Circular Water Wave algorithm (CWW) are explained.
Constraints and parameters of the algorithm are given and
discussed.

When we consider a function f with n variables and take
the variables of function f as xi (0 ≤ i < n), we will search
maximum or minimum values of y, where

 0 1 2 1, ,...... , ,n nf x x x x y   (1)

We will start with one point. Choose a random starting
point S in search domain.

Since we cannot calculate every point in the search
domain like circular water waves do pass, we have to make
some sacrifices. Instead of calculating every point, we will
calculate circular points in radius of ri and we will do so in
number of waves cj (1 ≤ j ≤. m, m = maximum number of
wave circle).
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Calculate

,i i jd r w c   (2)

where di is the difference from previous value of xi, ri is the
radius of ith domain, w is a random value generator which is
the type of double and has a value between 0 to 1, and cj is
the jth circle. By using the difference d value, we shall create
our circular search.

In order to make a smart search we shall calculate new
function values of each dimension. For example; if we have
three dimensional problem then we shall calculate and check
fitness of:
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We create a new point with the points which has better
fitness than starting point S. Let us assume Point 2 and Point
4 has better fitness than starting point S then we create new
point as follows

 0 1 1 2 7 ,: , .ox dPoint x d x  (4)

Then we create additional points by randomizing this
Point 7

 0 0 1 1 2 8 : , , .x w dPo x w di xnt     (5)

In our experiments, the number of this randomized
possible best point is equal to the dimension of the problem.

ri has an important factor in the results we obtained. We
recommend the initial value of ri to be equal of half of the
range of the ith dimension. When the fitness is not improving
we update ri values as follows

/ .i ir r m (6)

The number of the wave circles is yet another important
factor of the algorithm. The wave number and radius update
function determine how fast algorithm approaches to
solution. Increased wave numbers will minimize stacking at
local minima. In our tests we have used value of wave circle
as three, five and ten.

In an ideal state, we should use all new points which have
better fitness than that of starting point to create new wave
circles however, taking the best b value is recommended. In
our tests, b value is selected as 3.

At each iteration, if the number of wave circle is m,
dimension of the problem is n, and new starting point
number is b; then the number of the points that each
iteration need to calculate

 3 1 .m n b    (7)

Pseudo code of CWW algorithm:
Randomly choose starting points.
Do:
For each starting point
for each wave circle
-Calculate di values according to (2)
-Create new wave points in each direction and calculate

fitness.
-Randomize best points
-Calculate fitness of new points.
If fitness is not improved
-Increment fail count and update ri values according to (3)
Use new points which are best b to create new starting

points.
While( fail count < 10 )

III. BENCHMARK FUNCTIONS

Eight different benchmark functions [11] have been used
in our experiments. Each of these functions has been tested
for forty times. Functions are as follows:

F1 Ackley’s Function
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F5 Lévi Function N.13
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F7 Hölder Table Function
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F8 Sphere Function

2
0( ) .n
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TABLE I. FUNCTIONS.
Function Search domain Minimum

F1 (5) -5 ≤ x, y ≤ 5 f(0, 0) = 0
F2 (6) -4.5 ≤ x, y ≤ 4.5 f(3, 0.5) = 0

F3 (7) -3 ≤ x1 ≤ 3
-2 ≤ x2 ≤ 2

f(0,0898, -0,7126) = 1,0316
f(-0,0898, 0,7126) = 1,0316

F4 (8) -2 ≤ x, y ≤ 2 f(0, -1) = 3
F5 (9) -10 ≤ x, y ≤ 10 f(1, 1) = 0

F6 (10) -512 ≤ x, y ≤ 512 f(512, 404.2319) = -959.6407
F7 (11) -10 ≤ x, y ≤ 10 f(±8.05502, ±9.66459) = -19.2085

F8 (12) −5.12 ≤ xi ≤ 5.12,
i = 1, 2, …, n. x* = (0, …, 0), f(x*) = 0.

IV. EXPERIMENTAL RESULTS

In this section, experimental results of WCC, PSO and
ABC are given (in Table II–Table XI) and discussed.

Search domain and minimum value of the each function
have been provided at Table I.

In Table II–Table IX, it is seen that the number of
iteration is getting smaller as number of wave circle grows
and as number of wave circle grows, mean values tend to
get smaller which indicates less possibility of stacking local
minima.

In general, algorithm manages to find absolute optimum
point as seen in Table II–Table IX. In some cases as seen
Table III–Table VII; algorithm may not reach absolute
optimum but get close to it with an acceptable error rate.

TABLE II. EXPERIMENTAL RESULTS OF WCC FOR F1 (5).

n m b Mean Value Best
Value Worst Value Mean

Iteration

2 3 3 2,042810365
31029E-15 0 3,552713678

8005E-15 53,95

2 5 3 9,769962616
70138E-16 0 3,552713678

8005E-15 49,35

2 10 3 1,154631945
61016E-15 0 7,105427357

601E-15 45,67

TABLE III. EXPERIMENTAL RESULTS OF WCC FOR F2 (6).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3 0,03549406
42440729

9,90556027
894557E-15

0,76206965
0892314 64,15

2 5 3 0,07047907
61674664

7,34711674
962036

E-20

1,17763273
524131 64,7

2 10 3 0,03873382
29740361

1,14488582
237879

E-13

1,15802752
960407 66,1

TABLE IV. EXPERIMENTAL RESULTS OF WCC FOR F3 (7).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3 1,03162845
348988

1,03162845
348988

1,03162845
348988 35,37

2 5 3 1,03162845
348988

1,03162845
348988

1,03162845
348988 33,42

2 10 3 1,03162845
348988

1,03162845
348988

1,03162845
348988 31,45

TABLE V. EXPERIMENTAL RESULTS OF WCC FOR F4 (8).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3 47,59269243
35569 3 87,5256658

408539 51,975

2 5 3 44,17081813
70669 3 89,0530442

264534 50,125

2 10 3 39,30261647
97705 3 86,6051568

007117 46,2

TABLE VI. EXPERIMENTAL RESULTS OF WCC FOR F5 (9).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iterat

ion

2 3 3 1,349694649
63992E-31

1,349694649
63992E-31

1,349694649
63992E-31 57,5

2 5 3 1,349694649
63992E-31

1,349694649
63992E-31

1,349694649
63992E-31 52,05

2 1
0 3 1,349694649

63992E-31
1,349694649
63992E-31

1,349694649
63992E-31

46,97
5

TABLE VII. EXPERIMENTAL RESULTS OF WCC FOR F6 (10).

n M b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3
-915,

6928307851
17

-959,
640662720

851

-633,
842302239

904
40,375

2 5 3
-929,

7472555224
51

-959,
640662720

851

-704,
805153877

182
36,52

2 10 3
-947,

6899952745
87

-959,
640662720

851

-888,
949125269

878
30,3

TABLE VIII. EXPERIMENTAL RESULT OF F7 (11).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3 -19,2085
025678867

-19,2085
025678868

-19,2085
025678867 38,15

2 5 3 -19,2085
025678867

-19,2085
025678868

-19,2085
025678867 35,525

2 10 3 -19,2085
025678867

-19,2085
025678868

-19,2085
025678868 33,45

TABLE IX. EXPERIMENTAL RESULTS OF WCC FOR F8 (12).

n m b Mean
Value

Best
Value

Worst
Value

Mean
Iteration

2 3 3 0 0 0 470,3
2 5 3 0 0 0 426.875
2 10 3 0 0 0 368,1

10 3 3 0 0 0 548,2
10 5 3 0 0 0 548,2
10 10 3 0 0 0 548,075

30 3 3
1,26446320

988337
E-09

3,575242
2224758

E-129

2,84482586
613925

E-08
121.2

30 5 3 0 0 0 549,975
30 10 3 0 0 0 549,925

As seen in Table IX, as dimension of the problem grows;
keeping wave circle number small may cause growing error
rate. This could be avoided by incrementing wave circle
number.

Since stopping criteria is the number of failed attempts,
algorithm tends to iterating as long as it can find a new best
solution which may cause increasing iteration number as
seen in Table IX. However, this behaviour also gives
algorithm a possibility to find absolute optimum point. In
our experiment for F8 regardless of dimension of the
problem, we found variables with error rate of e-162.

Mean iteration numbers are promising and within
acceptable range though algorithm may not be
recommended as it stands for real time applications.
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The number of the iterations tends not to change as the
dimension of the problem grows but please take notice that
as dimension grows so the number of the point to calculate
in each wave circle as shown in (4).

In our tests, we have used randomized starting points
within range of the search domain. One of the reasons for
these randomized starting points is that some function has
optimum minima at point zero and in order to test our
algorithm in harsh environment, randomize starting points
are chosen. In real world problems, using middle of the
search domain as starting point is recommended. If more
than one starting point are to be used; dividing search
domain and putting starting points in middle of each part is
recommended. Each starting point should move to possible
best regardless of their sub search domain.

CWW algorithm may not be capable of finding the
absolute minimum or maximum of every type of function. It
may become necessary to try different radius values or to
increase the number of the randomized best points. As seen
in Table VI and IX, it may give result with some error or in
worst case it may not be capable of solving it.

As it stands CWW algorithm is an intelligent algorithm
that looks around of the given point and move through the
best point which it can find.

In Table X, ABC algorithm (colony size: 20, max cycle:
200, and limit: 100) source code of which can be found in
authors page [2] and in Table XI, PSO algorithm (particle
number: 40, max cycle: 200, c1: 1, and c2: 1) have been used
for testing some of the benchmark functions. According to
these tables, results obtained from CWW algorithm are
within the acceptable range.

TABLE X. RESULTS OBTAINED FROM ABC ALGORITHM.

Function Dimension Run
Time

Mean
Value Best Value

F1 2 40 3,998445e-
017 0

F2 2 40 5,105395e-
004 2,648943e-006

F6 2 40 -9.365
490e+002 -9,596407e+002

F7 2 40 -3,7000
00e+001 -3,797937e+001

F8 10 40 1,417445e-
014 2,484970e-017

F8 30 40 8,314661e-
004 8,09515e-009

TABLE XI. RESULTS OBTAINED FROM PSO ALGORITHM.

Function Dimension Run
Time

Mean
Value

Best
Value

F1 2 40 0,00081782299
7671236 0

F2 2 40 0,06724851461
95454

3,526201082
88781E-06

F3 2 40 -1,0314
6267393312

-1,0316
2822591744

F5 2 40 0,00373558779
877272

5,851303868
38147E-06

F6 2 40 -826,3630
40008659

-959,640
66258274

F8 2 40 2,81952458792
166E-06 0

Our experiment reveals that CWW algorithm may be
slower or faster than PSO and ABC, however usually has
less error rate.

V.CONCLUSIONS

In this paper, a novel metaheuristic optimization
algorithm entitled as CWW inspired from circular water
waves, have been proposed. An intelligent approach to
minimize points to calculate a circular search within a radius
is used. Using best points founded by algorithm; new search
points have been created and iterated until a better solution
no longer can be found.

We have tested CWW algorithm with eight different
benchmark functions and used some of functions to compare
with ABC and PSO and seen that CWW has less error rate
but also may need to perform more calculation.

CWW algorithm is a new born algorithm with much room
for improvement. Some of the parts that demand
improvement are; better mechanism for randomized best
points, decision mechanism for radius, radius update
mechanism, and decision mechanism for number of wave
circles.

CWW algorithm has great capacity for finding absolute
minimum or maximum values, which can be used to
improve values which are found by other algorithms.

CWW algorithm can be used for hybridization with other
algorithms to refine the search or minimize calculation.

CWW algorithm may be used for problems other than
numerical functions with some modifications.
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