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Abstract: In this paper we investigate the performance of a Fourier based
algorithm for fast subpixel shift determination of two mutually shifted
images subjected to noise. The algorithm will be used for Shack-Hartmann
based adaptive optics correction of images of an extended object subjected
to dynamical atmospheric fluctuations. The performance of the algorithm
is investigated both analytically and by Monte Carlo simulations. Good
agreement is achieved in relation to how the precision of the shift estimate
depends on image parameters such as contrast, photon counts and readout
noise, as well as the dependence on sampling format, zero-padding and
field of view. Compared to the conventional method for extended object
wavefront sensing, a reduction of the computational cost is gained at a
marginal expense of precision.
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1. Introduction

Within the last ten years adaptive optics (AO) correction of astronomical images has become
a standard technique on many observatories. For stellar observations the standard wavefront
sensing method uses the Shack-Hartmann sensor. The pupil is reimaged onto a lenslet array,
thereby splitting the pupil into subpupils. For each lenslet, a subimage of the reference object is
produced. If the reference object is a point source, the position of the center of intensity in the
subimage defines a vectorial shift that is proportional to the average wavefront gradient over the
corresponding lenslet. These vectorial shifts serve as sensor signals for controlling the actuators
on a deformable mirror counteracting the wavefront error.

In case the reference object of interest is extended (e.g. the Sun or the Moon), the procedure
of measuring the center of intensity must be substituted by cross correlation analysis [1, 2].
The shift of each subimage is estimated relative to a reference subimage for which the shift is
estimated relative to the temporally previous subimage. Related to astronomical observations,
the main problem is photon starvation resulting in noisy subimage shifts. The effects of noise
is well understood for stellar AO [3, 4], and it has also been studied for correlation based
wavefront sensing, e.g., in [5, 6].

In this paper we take starting point in a least squares estimate of the shift, expressed in spa-
tial frequency space. The estimate is based on the phase of the cross correlation spectrum. An
analytical model for the photon and readout noise induced RMS error to the shift estimate is
then derived. In the next section, analytical predictions of how the RMS error depends on object
contrast, photon counts and readout noise are verified by simulations, as are the dependencies
on sampling format, zero-padding and field of view (FoV). In the last section, the reduction of
computational cost for this method compared to the conventional method, based on the local-
ization of the cross correlation peak [6], is discussed.

2. Analytical model

2.1. Shift estimate and noise performance

Given the two images f (r) and g(r), where r = (x,y), and assuming g(r) = f (r− r 0), a least
squares estimate of the shift r0 can be obtained by a minimization with respect to r0 of the
squared error ε 2 given by

ε2 =
∫ ∫ ∞

−∞
| f (r)−g(r+ r0)|2dr =

∫ ∫ ∞

−∞
|F(f)−G(f)exp(i2πf · r0)|2df, (1)

where F(f) and G(f) are the Fourier transforms of f (r) and g(r) respectively. The squared error
ε2 can be minimized setting the derivatives with respect to x0 and y0 to zero. This leads to

∂ε2

∂x0
= ℜ

[
4π i

∫ ∫ ∞

−∞
fxF(f)G∗(f)exp(−i2πf · r0)df

]
= 0

∂ε2

∂y0
= ℜ

[
4π i

∫ ∫ ∞

−∞
fyF(f)G∗(f)exp(−i2πf · r0)df

]
= 0, (2)

where ℜ extracts the real part and ∗ denotes the complex conjugate. Given that ϕC(f)−2πf ·r0
is small, where ϕC(f) is the phase of the cross correlation spectrum C(f) ≡ |C(f)|exp[iϕC(f)] =
F(f)G∗(f), leads to the following estimate of the shifts x̂0 and ŷ0, for details see [7],
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x̂0 =
1

2π
bxayy −byaxy

axxayy −a2
xy

ŷ0 =
1

2π
byaxx −bxaxy

axxayy −a2
xy

, where

axx =
∫ ∫ ∞

−∞
|C(f)| f 2

x df ayy =
∫ ∫ ∞

−∞
|C(f)| f 2

y df axy =
∫ ∫ ∞

−∞
|C(f)| fx fydf

bx =
∫ ∫ ∞

−∞
|C(f)|ϕC(f) fxdf by =

∫ ∫ ∞

−∞
|C(f)|ϕC(f) fydf. (3)

Given a sampled version of f (r) and g(r), for which r = (x,y) = Δ(p,q), and using the discrete
Fourier transform (DFT), for which f = ( f x, fy) = Δ f (u,v), the shift estimate takes the form

x̂0 =
mΔ
2π

bpaqq−bqapq

appaqq−a2
pq

ŷ0 =
mΔ
2π

bqapp−bpapq

appaqq −a2
pq

, where

app =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

|C(u,v)|u2 aqq =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

|C(u,v)|v2 apq =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

|C(u,v)|uv

bp =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

|C(u,v)|ϕC(u,v)u bq =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

|C(u,v)|ϕC(u,v)v. (4)

The sampling format m satisfies ΔΔ f = 1/m, where m×m is the number of pixels (sampling
points) in each image. Assuming the two images f (r) and g(r) to be identical but mutu-
ally shifted and subjected to additive noise we have F(f) = F0(f) + N1(f), G(f) = G0(f) +
N2(f) and |F0(f)| = |G0(f)|. For large signal to noise ratios |F0(f)|/|N(f)|, or equivalently
|N1(f)|/|F0(f)| � 1 and |N2(f)|/|F0(f)| � 1, and a small correlation phase ϕC(f) this leads
to

ϕC(f) = ϕC0(f)+ ϕN(f), where

ϕN(f) ≈ |N1(f)|sin
(
ϕN1(f)−ϕG0(f)

)
+ |N2(f)|sin

(
ϕF0(f)−ϕN2(f)

)
|F0(f)| . (5)

Here ϕC0(f) is the ideal correlation phase and ϕN(f) is the noise contribution. ϕN1(f) and ϕN2(f)
are the random noise phases and ϕF0(f) and ϕG0(f) are the phases of the noise-free spectra. Eq.
(5) shows that, as expected, a large signal to noise ratio leads to a small noise contribution to
the correlation phase and hence also to the shift estimate in Eq. (4). It is therefore important
that contributions from spectral components where the signal to noise ratio is small are rejected
completely from the shift estimate, as pointed out in references [8, 9].

Assuming 〈|N1(f)|2〉 = 〈|N2(f)|2〉 = 〈|N(f)|2〉, where 〈〉 stands for ensemble average, and
using Eq. (5), it is seen that the sampled version of ϕN(f) satisfies

〈ϕ2
N(u,v)〉 =

〈|N(u,v)|2〉
|F0(u,v)|2 and 〈ϕN(u,v)〉 = 0. (6)

Replacing ϕC(u,v) in the b-coefficients, last line in Eq. (4), by ϕN(u,v), the noise contributions
δx and δy to the shift estimates can be calculated. Assuming no correlation of ϕ N(u,v) for
different (u,v), we get after some calculations

〈δ 2
x 〉 =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

w2
x(u,v)〈ϕ2

N(u,v)〉 〈δ 2
y 〉 =

m
2 −1

∑
u=−m

2

m
2 −1

∑
v=−m

2

w2
y(u,v)〈ϕ2

N(u,v)〉
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wx(u,v) =
mΔ
2π

|C(u,v)|(uaqq− vapq)
appaqq −a2

pq
wy(u,v) =

mΔ
2π

|C(u,v)|(vapp−uapq)
appaqq−a2

pq
. (7)

It should be mentioned that since the images are real, the cross correlation spectrum is Her-
mitian, i.e., C(u,v) = C∗(−u,−v), and only half of the points in the spectrum need to be in-
cluded in Eq. (4). In relation to astronomical AO, where the speed of the calculations is of
crucial importance (∼ 1 kHz sampling rate), the simplest possible estimate based on only two
frequency values (u,v) = (u1,0) and (u,v) = (0,v1) simplifies the shift estimate in Eq. (4) to

x̂0 =
mΔ

2πu1
ϕC(u1,0) ŷ0 =

mΔ
2πv1

ϕC(0,v1). (8)

This estimate is independent of the amplitude of the correlation spectrum |C(u,v)|, cf. Eq. (4).
It is straightforward to show that this will be the case for all estimates based on only two lin-
early independent frequency components of the correlation spectrum. As pointed out by [8, 9]
the estimate based on u1 = v1 = 1 has the advantage of being the least sensitive to aliasing.
Furthermore, it is an inherent feature of the optical transfer function, that it acts as a spatial
low-pass filter leaving the low frequency components in the image with the highest contrast
and hence most reliable. Taking u1 = v1 = 1 it is seen that the condition for avoiding unwrap-
ping the phase ϕC leads to |x0| ≤ mΔ/2 and |y0| ≤ mΔ/2, or in other words, the shift should
be less than half of the field of view. Invoking more than two frequency components as given
in Eq. (4) yields the possibility of suppressing contributions from unreliable frequency compo-
nents having a low |C(u,v)| but still a satisfactory signal to noise ratio. Use of Eqs. (6) and (7)
gives the error contributions 〈δx〉1/2 and 〈δy〉1/2 to the two point estimate in Eq. (8):

〈δ 2
x 〉 =

(
mΔ

2πu1

)2 〈|N(u1,0)|2〉
|F0(u1,0)|2 〈δ 2

y 〉 =
(

mΔ
2πv1

)2 〈|N(0,v1)|2〉
|F0(0,v1)|2 . (9)

2.2. Performance in the presence of photon and readout noise

Letting f (r) and g(r) be measured in units of photon-counts/arcsec 2 on the sky, we have

|F0(u,v)|2 = |V (u,v)|2N2
tot, (10)

where Ntot = Δ2 ∑∑ f0(p,q) is the total photon counts in the noise free image f 0(p,q) and
|V (u,v)| = |F(u,v)|/|F(0,0)| is the visibility, or contrast, of the frequency component (u,v).
Assuming the noise contribution to fluctuate independently in different pixels we get

〈|Ni(u,v)|2〉 = Δ4

m
2 −1

∑
p=−m

2

m
2 −1

∑
q=−m

2

〈n2
i (p,q)〉, (11)

where the index i stands for either 1 or 2. Δ4〈n2
i (p,q)〉= Δ2 f0(p,q) is valid for photon (Poisson)

noise and Δ4〈n2
i (p,q)〉= 〈n2

R(p,q)〉 is valid for readout noise, where 〈n2
R(p,q)〉1/2 is the readout

noise in e-. Introducing these relations in Eq. (11), and assuming uncorrelated noise sources,
leads to

〈|Ni(u,v)|2〉 =

m
2 −1

∑
p=−m

2

m
2 −1

∑
q=−m

2

(
Δ2 f0(p,q)+ 〈n2

R(p,q)〉) = Ntot +m2〈n2
R〉. (12)

Use of Eqs. (9), (10) and (12) gives the result below for the simple two point estimate in Eq. (8):

〈δ 2
x 〉 =

(
mΔ

2πu1

)2 Ntot +m2〈n2
R〉

|V (u1,0)|2N2
tot

〈δ 2
y 〉 =

(
mΔ

2πv1

)2 Ntot +m2〈n2
R〉

|V (0,v1)|2N2
tot

. (13)
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This is in correspondence with the estimated error given in [3, 4] for a quadrant detector, m =
2, and assuming Nyquist sampling. Several useful conclusions can be drawn from the above
expression; (i) the standard error is inversely proportional to the contrast, (ii) neglecting the
readout noise, the standard error is proportional to the inverse of the square root of the total
photon counts in the subimage, (iii) increasing u 1 and v1 will only lead to improved performance
if |V (u1,0)|u1 and |V (0,v1)|v1 are also increased. A few interesting cases can also be considered
(neglecting the readout noise).

Case 1: Sampling format. The sampling interval Δ is changed but the field of view (FoV)
is fixed. The format m → km, where k < 1 corresponds to less dense sampling and k > 1 cor-
responds to more dense sampling. The signal N tot is unchanged, Δ → Δ/k and the constant
FoV implies that Δ f is unchanged. The continuous image is unchanged and so is the visibility
|V (u,v)|. According to Eq. (13) this leads to 〈δ 2〉 = 〈δ 2

x 〉+ 〈δ 2
y 〉 unchanged as long as alias-

ing can be neglected. If the contribution from the readout noise is included it is seen that the
performance degrades with increased sampling.

Case 2: Zero-padding. The FoV, or image, is zero-padded but Δ is fixed. The format m→ km,
where k ≥ 1. Ntot and Δ are unchanged and Δ f → Δ f /k. In case the same physical frequency
components are used, that is u → ku and v → kv, this leads to unchanged visibility |V (ku,kv)|.
Eq. (13) gives that the noise contribution 〈δ 2〉 is unchanged. However, zero-padding leads to
the lowest frequency values being diminished, probably leading to higher contrast and a better
performance for u1 = v1 = 1 for the zero-padded image.

Case 3: Field of view. The effective FoV is enlarged by increasing the number of pixels which
implies that the format m → km. The signal Ntot → k2Ntot, Δ is unchanged and Δ f → Δ f /k.
The following controlled case may be considered here: The field is enlarged by enlarging the
image feature, f (r) → f (r/k), which means that the Fourier transform F(f) → kF(kf). This
means that the visibility |V (u,v)| is unchanged and that 〈δ 2〉 is unchanged. However, enlarging
the FoV and leaving the overall spectrum unchanged will lead to improved performance for
the frequency components showing unchanged visibility. Furthermore the lowest frequency
component u1 = v1 = 1 may show higher contrast further improving the performance.

3. Simulations of the noise performance

3.1. Procedure

The performance of the algorithm was evaluated using two identical, but mutually shifted,
images. To estimate a realistic shift between the images, the RMS jitter (in radians) caused by
the tip and tilt of the wavefront over a lenslet, given in [10], was used

αjit � 0.6
λ

D1/6r5/6
0

, (14)

where the diameter D of the aperture is approximated to the side of a lenslet in the Shack-
Hartmann sensor and r0 is the Fried parameter (projected onto the lenslet array). We assume
that the side of the lenslet is matched to the Fried parameter, D = r0. Given that the lenslet
image is properly sampled in the focal plane, i.e. Nyquist sampling, the angular image extent
of a pixel is

αpix = Δ � λ
2D

. (15)

These relationships give that the image RMS jitter is ≈ 1.2 pixels in image space. The refer-
ence image, f0(p,q), and test image, g0(p,q), both scaled to an average intensity level, were
shifted such a distance with respect to each other. The fractional pixel shift was obtained by
downsampling images from a larger format. Photon and readout noise were then added to the
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images according to
f (p,q) = f0(p,q)+ εP + εR, (16)

where εP and εR are integer random variables described by a zero mean normal probability den-
sity function with σ 2

εP
= f0(p,q) and σ 2

εR
= 〈n2

R〉 respectively. The signal f0(p,q) was assumed
to be large, such that the Poisson probability distribution could be approximated with a discrete
normal probability distribution. The signal g(p,q) was obtained in the same way.

The DFT’s of f (p,q) and g(p,q) were then calculated and the correlation spectrum is given
by C(u,v) = F(u,v)G∗(u,v). From the correlation spectrum phase, the shift could then be esti-
mated, either by the simple expression given by Eq. (8) or by the amplitude-weighted estimate
given by Eq. (4). Also, the conventional method of localization of the cross correlation peak by
parabolic interpolation in c(p,q) = F −1{C(u,v)}, see [6], was used as reference.

As reference image, an ideal negative Gaussian function on a bias level was used to produce
a crater-like image, f (r) = b1−b2 ·exp[−r2/2σ 2]. The parameters b1 and b2 could be tuned to
set the signal and contrast level of the image. The width of the function was set to σ = Δm/6,
a sixth of the field of view, in these simulations. Examples of a single noise realisation of the
images and the correlation spectrum of this feature are given in Fig. 1. In the same way a more
irregular object, cut out from a real image, was used in Fig. 2. In both cases, the average signal
per pixel was set to 600 e- and the readout noise was 8 e- per pixel. It is seen in the figures that
only the low frequency components exhibit a gradient in the correlation spectrum phase.
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Fig. 1. Example of images and correlation spectrum for the case of m = 8 and a nega-
tive Gaussian function. (a) Reference image f (p,q) with noise (original noise-free high
resolution image below). (b) Shifted image g(p,q) with noise (original noise-free high
resolution image below). (c) Logarithm of normalized amplitude of correlation spectrum
log(|C(u,v)|/|C(0,0)|). (d) Phase of correlation spectrum φC(u,v) in radians.
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Fig. 2. Example of images and correlation spectrum for the case of m = 8 and a more
irregular image. See previous figure for explanations.

A number of noise realisations could then be used to obtain a measure of the standard error
caused by noise. The simulations were also used to investigate bias errors in the estimates, by
changing the angle of the separation between the images.
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For the case of the ideal Gaussian function, see Fig. 1, the estimates obtained for eight dif-
ferent shift directions, 500 runs for each direction, are given in Fig. 3(a)-(c). In Fig. 3(a), the
shift was estimated with Eq. (8), using only the frequency components φ C(1,0) and φC(0,1).
The shift in Fig. 3(b) was estimated with Eq. (4), setting all C(u,v) to zero except for the lowest
frequency components C(1,−1), C(1,0), C(1,1) and C(0,1). In in Fig. 3(c) the shift was esti-
mated using the conventional method of localization of the cross correlation peak by parabolic
interpolation, see [6] for details.

In the same way, this was reproduced for the irregular image in Fig. 2. The estimates based
on Eq. (8) and φC(1,0) and φC(0,1), are shown in Fig. 3(d). The estimates were improved if
Eq. (4) was applied, using only the four low frequency components C(1,−1), C(1,0), C(1,1)
and C(0,1). This is seen in Fig. 3(e). Again the shifts given by the the conventional method of
localization of the cross correlation peak by parabolic interpolation, are shown in Fig. 3(f).

It is seen that by including more frequency components in the estimate, the precision was
improved. Related to Fig. 3(a), the noise contribution 〈δ 2

x 〉1/2/Δ in the simulation was 0.13
pixels. The parameters used in this simulation were m = 8, N tot = 38400 e-, |V (1,0)| = 0.053
and 〈n2

R〉1/2 = 8 e- and the analytical prediction in Eq. (13) leads to the same result. The noise
contribution in Fig. 3(b) was 0.10 pixels. Using the conventional shift algorithm, relying on
subpixel localization of the cross correlation peak by fitting a quadratic function to the peak
and neighbour values, the noise contribution in Fig. 3(c) turned out to be 0.09 pixels.
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Fig. 3. Estimated shifts from simulations. Each point represents a noise realisation for a
separation given by the colors in the legend. Upper row, (a)-(c), represent estimates for
the Gaussian function in Fig. 1 and lower row, (d)-(f), represent estimates for the irregular
image used in Fig. 2. Leftmost estimates, (a) and (d), are based on Eq. (8) with u1 = v1 = 1.
Middle estimates, (b) and (e), are based on Eq. (4) when setting all C(u,v) to zero but
C(1,−1), C(1,0), C(1,1) and C(0,1). Rightmost plots, (c) and (f), give the estimates that
are based on parabolic interpolation of the cross correlation peak.
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3.2. Dependence on contrast, signal level and readout noise

By altering the contrast |V (u,v)|, or the signal level Ntot, or the readout noise 〈n2
R〉1/2, in the

input images, the effect of this on the estimated standard error was compared with the analytical
prediction given by Eq. (13). The results are shown in Fig. 4. The values of the parameters used
in the simulations were |V (1,0)|= 0.053, Ntot/m2 = 600 e- and 〈n2

R〉1/2 = 0 e-, unless variable,
and the image format was m = 8. No shift between the images, with the ideal negative Gaussian
object, was introduced in this simulation and 1000 noise realisations were used to estimate each
data point in the plots.
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Fig. 4. Effects of varying parameters on the standard error. Lines - analytical predictions
from Eq. (13) using the parameters specified in Section 3.2. Stars - simulated estimation
using Eq. (8) with u1 = 1. (a) Standard error as function of contrast. (b) Standard error as
function of signal. (c) Standard error as function of readout noise.

3.3. Dependence on sampling format, zero-padding and field of view

The three cases described in the discussion following Eq. (13) were evaluated by simulations
as well. The same images were used for these simulations, the ideal Gaussian image, starting
with a sampling format of m = 8. No shift was introduced between the images, and the shift
estimate was obtained using Eq. (8). The parameters used were |V (1,0)|= 0.053, N tot = 38400
e- (unless variable) and 〈n2

R〉1/2 = 0 e-. 1000 noise realisations were used to estimate each data
point.
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Fig. 5. Lines - analytical predictions from Eq. (13) using the parameters specified in Sec-
tion 3.3. Stars - simulated estimation using Eq. (8). (a) Standard error, in fraction of the
field of view, as a function of sampling points. (b) Standard error, in pixels, as function of
zero-padded format. (c) Standard error, in pixels, as function of size of the field of view
(stretched object).
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For case one, i.e. increased sampling within a constant field of view, N tot was kept constant,
whereas the sampling format m was altered to km (the downsampling from the higher format
was changed). The estimated shifts were obtained using Eq. (8) with u 1 = v1 = 1. The estimated
standard error 〈δ 2

x 〉1/2/Δm, given as a fraction of the field of view, is shown in Fig. 5(a).
For case two, the images were zero-padded before doing the DFT’s, hence extending the

format by a factor of k. The estimated shifts were obtained using Eq. (8) with u 1 = v1 = k. The
estimated standard error 〈δ 2

x 〉1/2/Δ, in pixels, is shown in Fig. 5(b).
For case three the same procedure as for case one was used, with the only difference being

that the signal was scaled to k2Ntot. The estimated standard error 〈δ 2
x 〉1/2/Δ, in pixels, is given

in Fig. 5(c). The simulated cases are in agreement with the discussion following Eq. (13). There
are no tendencies of variations in 〈δ 2

x 〉1/2.

4. Gain in computational time

The main reason for investigating this algorithm is the desire for a fast algorithm in order to
reduce the servo-lag of the closed loop AO system. Compared to the conventional method
of localizing the cross correlation peak by parabolic interpolation, there is a reduction of the
computational time when using the method described by Eq. (8).

For the conventional method of fitting a parabolic function to the cross correlation peak there
are a number of computations to be carried out. For each shift estimate, or for each subaperture,
there is an FFT of the test image, for which the computational time scales as tFm2 log2 m2. This
is then followed by a multiplication F(u,v)G∗(u,v) that scales as tMm2. The inverse FFT of the
complex cross correlation spectrum is then calculated to obtain the cross correlation function,
and the computational time for this scales as 2tFm2 log2 m2, where the factor 2 comes from
the fact that the correlation spectrum is complex. tM should be smaller than 2tF since it only
includes a complex multiplication whereas 2tF also includes a complex addition. The peak
value is then to be found and this process scales as tSm2. The overhead time, tOH1, consumed
by the parabolic interpolation is constant. The total time for the method is given by

tcc = t1m2 log2 m2 + t2m2 + tOH1. (17)

As m → ∞ it is seen that this method scales as O(m2 log2 m2).
If Eq. (8) is used instead, only the two frequency components G(u 1,0) and G(0,v1) have to

be calculated. The computational time for this scales as 2tMm2. The overhead computational
time for the correlation phase and shift estimate is independent of m and is given by t OH2. The
total computational time for the algorithm using Eq. (8) is

tϕ = t3m2 + tOH2 (18)

and thus scales as O(m2).
Comparing the computational time of the two algorithms one can see that there is a gain if

there is a possibility to use Eq. (8) instead of the conventional method. The gain t cc/tϕ scales
as O(log2 m2). As m grows large, it is arguable whether Eq. (8) will give a reasonable estimate.
More frequency components could be included to improve the precision, if they show reliable
noise performance.

The computational times of the two different algorithms were estimated using a MATLAB

function written for each routine. The computational speed was optimized as far as possible
for both routines. The format m was varied and 10000 runs were carried out for each format
to estimate tcc and tϕ . MATLAB 7.0 ran with real time priority under Windows XP on a 1.4
GHz Intel Pentium M processor. Given this non real time operating system, 10 repetitions were
carried out to estimate the variation in computational speed.
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Fig. 6. (a) Time divided by m2 log2 m2 for conventional method as a function of format. (b)
Time divided by m2 for correlation phase method as a function of format. (c) Fraction of
the times for the two methods as a function of format.

The FFT library, FFTW [11], used in MATLAB implies that the computational time for an
FFT is not strictly proportional to m2 log2 m2. The efficiency of the FFTW-library varies with
frame format as well as with the processor that the system is running on, see benchmarking in
[11].

The measured computational time for a single shift estimate using the traditional cross corre-
lation procedure, tcc, is normalized with m2 log2 m2 and plotted in Fig. 6(a) versus frame format.
As expected from Eq. (17), the normalized t cc tends to be constant for large m.

The measured computational time for a single shift estimate using Eq. (8), t ϕ , is normalized
with m2 and plotted in Fig. 6(b) versus frame format. As expected from Eq. (18), the normalized
tϕ tends to be constant for large m. The absolute time for the two methods can be extracted from
Fig. 6(a) and Fig. 6(b) respectively, but it is of course computer dependent.

Finally, the fraction between the times of the two methods as a function of frame format is
given in Fig. 6(c). The predicted O(log2 m2) is not clearly seen due to the fact that for these
small formats there is a considerable overhead time for the methods as seen in Fig. 6(a) and
Fig. 6(b). For the format of m = 8 the gain corresponded to approximately seven.

5. Conclusion

A fast algorithm for subpixel shift determination of two images was presented in this paper.
Based on only two frequency components in the cross correlation spectrum, the precision of
the shift estimate was comparable to the conventional method of localization of the cross cor-
relation peak by parabolic interpolation, for guide objects with a low frequency content. The
analytical expression of the precision of the method, depending on noise and image contrast,
agreed well with the simulations. This was also valid for the dependence on sampling format,
zero-padding and field of view. A reduction of the computational cost was demonstrated when
using only two frequency components. This is at the expense of a marginal decrease of perfor-
mance which could be overcome invoking more frequency components.

The accuracy and precision of this method, similar to all cross correlation methods, will be
dependent on the guide object. The remedy to the bias errors in the estimates is to use the
algorithm in closed loop AO systems. Furthermore, noncyclic boundaries of the images might
necessitate windowing of the images, e.g. with a Hann window, prior to calculation of the cross
correlation spectrum.
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