
Parallel Copying Garbage Collectionusing Delayed AllocationElliot K. Kolodner� Erez PetrankyIBM Haifa Resrach LabAbstractWe present a new approach to parallel copying garbage collectionon symmetric multiprocessor (SMP) machines appropriate for Java andother object-oriented languages. Parallel, in this setting, means thatthe collector runs in several parallel threads.Our collector is based on a new idea called delayed allocation, whichcompletely eliminates the fragmentation problem of previous parallelcopying collectors while still keeping low synchronization, high e�-ciency, and simplicity of collection. In addition to this main idea, wealso discuss several other ideas such as improving termination detec-tion, balancing the distribution of work, and dealing with contentionduring work distribution. Finally, we explain how the ideas presentedhere can be extended to deal with generational copying garbage col-lection and replication-based garbage collection. We believe that ourideas can be generalized in a similar manner for other copying-basedgarbage collection algorithms.Keywords: Language design and implementation, Parallel systems, Paral-lel garbage collection, garbage collection, Symmetric multiprocessor, Mem-ory management.�E-mail: kolodner@haifa.vnet.ibm.com.yContact author. E-mail: erezp@haifa.vnet.ibm.com.1



1 IntroductionJava is an important new technology, especially as the language of internetprogramming. This popularity is attributed to Java being a simple, objectoriented, secure, portable, and platform independent language. High perfor-mance is a crucial property of any Java Virtual Machine (JVM), and sinceJava provides automatic memory management and garbage collection, oneof the �rst candidates for performance improvements is to incorporate ane�cient allocator and garbage collector into the runtime.Initially, Java was introduced as a technology for client machines onthe desktop. Recently, it has also gained popularity for server machines,mainly because of its platform independence. Today's characteristic serverplatforms employ symmetric multiprocessors in order to increase their com-puting power. The use of multiprocessors is also increasing for desktopmachines. Thus, taking full advantage of the multiprocessor is essential forgood Java performance on these platforms.Many garbage collection algorithms, including advanced algorithms �rstdesigned for uniprocessors, such as generational scavenging [22] and thetrain algorithm [18], do not take advantage of a multiprocessor. In thesealgorithms, all application threads are stopped while a single thread executesthe collector on a single processor and all other processors are idle. Thus,these collectors are not appropriate for use on a multiprocessor. A parallelgarbage collector keeps all processors busy doing useful work even duringcollection.In this paper we present a design for a parallel collector. Our parallelcollector is appropriate both for Java and for other object oriented program-ming languages on a multiprocessor.Another way to use multiprocessors e�ciently is to employ a concurrentgarbage collector. In such a collector, a single garbage collection threadruns concurrently with the program threads (see for example [4, 1, 27, 9, 19,10, 12, 11]). Potentially, all processors can be kept busy during collection.However, as the number of processors and program threads increase, a singlegarbage collector thread may not keep up with the allocation demands ofthe many program threads (see for example [1, 12]), and the system mayend up being single threaded as it waits for the garbage collector to freespace. The scalability of the system depends on the collector being able tocollect as fast as the application allocates. Thus, a concurrent collector canalso bene�t from the parallelization of the collector thread.2



1.1 Contribution of this workBefore going on, let us de�ne terminology for the rest of this paper. Wedenote by parallel collection a collection which is run while the applicationprogram is stopped and several parallel collectors perform the collection. Wedenote by concurrent collection a collection performed by one or more col-lector threads that run concurrently together with the application threads.The main contribution of this work is the design of a parallel garbagecollector appropriate for Java and other object oriented languages on SMPserver machines. We present a parallel version (for SMP machines) of thewell known copying garbage collector introduced in [25, 14, 6]. The ad-vantages of the copying garbage collection are the fact that the heap iscompacted in each collection, the low complexity of the algorithm whichtouches only the live objects (rather than touching all heap as a mark &sweep algorithm does), and the simplicity of allocation (controlled increaseof a pointer).Our main new idea is delayed allocation during the parallel collection(presented in Section 4.1). Using delayed allocation, a collector thread doesnot copy an object immediately; rather, it waits until it has a group of ob-jects, and then allocates memory for all objects in the group at once andcopies those objects. Delayed allocation completely eliminates the fragmen-tation problem of previous parallel collectors [15, 8, 24, 16, 20]. This methodincurs low synchronization (as low as in previous work), it is simple (evensimpler than some of the previous solutions), and it is as e�cient as previoussolutions.Next, we extend the design to parallelize generational garbage collec-tion [22]. A similar approach works for the train algorithm [18] as well.Also, we discuss the extension needed to incorporate our algorithm into thereplication-based garbage collection of [27, 26]. We believe that our ba-sic ideas can also be generalized to parallelize other copying-based garbagecollection algorithms.In addition to this main contribution, we o�er several new ideas fordesigning a parallel copying garbage collector. First, we consider termina-tion detection. An e�cient termination detection is tricky and a previousattempt to describe a termination detection protocol [13] was faulty. Weprovide a correct and e�cient termination detector for a parallel collector.We also discuss work distribution: �rst, how to break the work into smallpieces to be jointly performed by the parallel collector threads, and second,what machinery should be used to incur low contention on distributing the3



pieces of work among the collector threads.In addition to the aforementioned ideas, we also make several observa-tions important for implementors of a parallel copying collectors. Theseinclude items such as dealing with modern SMP memory coherence models,and our list of design goals (in Section 2 below) that should be addressedwhen designing such a collector.1.2 OrganizationWe start in Section 2 with the design goals. In Section 3 we review thesequential copying garbage collection. We start describing this work in Sec-tion 4 with our main idea: the delayed allocation method. We go on withdiscussing the work distribution. The machinery is described in Section 5.1,and in Section 5.2, we discuss how the work should be partitioned to smallchunks. We continue with termination detection in Section 6. In Section 7we extend the discussion to generational collection and �nally, in Section 8we talk about combining our algorithm with the replication-based garbagecollection.2 Design goalsWe present the design goals for our parallel collector. The three majorgoals are e�ciency, scalablity and the preservation of the advantages ofsequential copying garbage collection. There are two aspects to e�ciency:latency and throughput. Low latency means that the application programwill be stopped for short pauses for garbage collection. However, we do notwant to reduce the pauses by paying an unbearable overhead cost for theapplication program (for example, by making it perform a costly procedurefor each update). Thus, an algorithm is also judged by how much it reducesthe throughput of work in the system. We aim for high throughput. Manytimes there is a tradeo� which we must settle between these two goals. Letus go on with the more speci�c design goals.1. Load balancing: Load balancing is always a crucial point in thee�ciency of a parallel algorithm. E�ciency su�ers if some of theprocessors are idle while the other processors perform the work.2. Scalability: We would like the algorithm to achieve large speedupon today's SMP machine, and also to allow scalability to a bigger4



number of processors in future SMP's. One major consideration hereis to avoid contention when accessing shared resources.3. Compaction: We would like to preserve the major advantage ofthe sequential copying collector: the collection produces a compactedheap.4. Locality of reference: An important goal in the design is to try andavoid cache misses as much as possible. A collector that incurs manycache misses cannot be considered e�cient.5. Avoid synchronization: The parallel threads must synchronize whiledistributing the work between them and while accessing mutual re-sources. However, it is desirable to keep the synchronization points asfew as possible since performing any synchronized operation such asa compare and swap instruction (even without incurring any conict)can be expensive.6. Simplicity: Finally, we believe that the design should be simple. Avery complicated collector will probably not be used in practice.Two remarks are in place. First, in many cases, there is a tradeo� betweenthe various goals. For example, for load balancing we will usually prefer tocut the jobs to small pieces, but for small contention we would like to let thethreads work on large jobs before they have to synchronize again. In anydesign, we must settle these tradeo�s, and we believe that a good designleaves as many open parameters as possible so that the algorithm can beadjusted to any speci�c local environment.3 Sequential Copying Garbage CollectionIn order to start discussing our ideas for parallel copying collection, let usreview the steps in the sequential copying collector [25, 14, 6].1. Stop mutator threads;2. Flip the roles of from-space and to-space;3. Scan the roots in each mutator thread and also the global roots. For eachobject referenced by a root (son of a root):(a) If this son is not yet copied theni. Copy son to to-space;ii. Write a forwarding pointer in (the from-space copy of) the son;5



(b) Update the root pointer to point to the new copy of the son in to-space;4. Scan to-space: For each son of an object in to-space:(a) If this son is not yet copied theni. Copy son to to-space;ii. Write a forwarding pointer in the son;(b) Update the pointer in the father object to point to the new replicaof the son in to-space;5. Reclaim from-space area; 6. Release mutator threads;4 Delayed allocationThe basic idea of the sequential algorithm is still used and we concentrateon extending this algorithm to parallel collection. A naive parallelizationof the sequential algorithm would have each collector thread do part ofthe scan. However, this leads to a bottleneck on the to-space allocationpointer. Working with a single pointer is simple and elegant, but whenseveral collector threads perform the copies, they will heavily compete ona single resource causing unacceptable contention. Other problems alsoarise. For example, we don't want several collector threads to copy thesame (popular) object several times, we have to distribute the parallel workcarefully, etc. We start with the allocation problem and go on to the otherproblems in the following sections.The goal is to prevent contention on the to-space allocation pointer foreach copy of an object. The �rst solution, used by Halstead [15] and Cram-mond [8] was to partition to-space into n equal spaces, where n is the numberof processors, and let each processor allocate in its own private space. Thiscompletely solves the contention on allocation but has a major drawback(reported by Halstead): the allocation requests by the di�erent processorsare not even and thus one processor gets stuck on failing allocation whenother processors have big empty spaces. Halstead suggested to amelioratethe behavior of the system by letting each collector allocate a \chunk" ofmemory and perform allocations inside the chunk privately. Namely, whena collector needs to copy an object to to-space, then it actually allocates abig area (a chunk), copies the object in hand, and keeps copying subsequentobjects to this private area until there is no more room and a new areashould be allocated.This method, adopted by Miller and Epstein [24] following [23, 7] solves6



the contention conict problem for to-space allocations since these alloca-tions become much less frequent. However, a new problem arises: the frag-mentation of to-space. Recall that one of the major bene�ts of a copyinggarbage collection is compaction of the heap. With this solution, we do notcompact the heap through the collection.To solve the fragmentation problem, Imai and Tick [20] suggested let-ting each processor manage several chunks, each used for a speci�c size ofallocation. Typical sizes are powers of two, and objects that fall in betweenthese sizes (such as an object of size 5) are allocated on the chunk that usesthe smallest power of 2 big enough to hold them (e.g., allocate 8 bytes tokeep an object of 5 bytes). The waste of space in their scheme is at mosthalf, and in practice much less. However, this scheme needs managementof the chunks and it complicates the solution. Also, it does not completelyovercome the fragmentation problem.Another reasonable enhancement, which we would like to point out, isto treat big objects separately. For example, if an object is bigger than an1=8 of the size of an area, then allocation is performed especially for thisobject, and it is not copied into the current area used by the collector. Asa result of this treatment, the \holes" in to-space cannot be bigger than 1=8the size of an area, since all objects copied into the area are smaller thanthat. This parameter (the 1=8) can be optimized to trade between conictsfrequency on allocation and the amount of fragmentation we expect.However, we present a method in which the garbage collection outputsa heap with no fragmentation at all. Our solution, the delayed allocationmethod, is simpler than the Imai and Tick solution, and does not increasethe contention on allocation.4.1 Our solutionThe idea is to di�erentiate between regular allocation performed by the mu-tators and the special allocation that the collector needs. When a mutatorallocates, the space must be assigned immediately to avoid delaying the mu-tator. However, the collector's allocations may be delayed. In our scheme,a collector thread does not perform each allocation immediately when theoriginal algorithm dictates a copy. Instead, the collector thread keeps anallocation log in which it records which copies should be performed. When-ever a copy of an object from from-space to to-space is needed, the collectorthread adds a record to the allocation log in which it puts the from-spaceaddress of the object and the to-space (or root) address of the cell pointing7



to the object. Also, it updates the accumulated size of all objects mentionedin the allocation log. This single number is kept at the beginning of the log.1This accumulated size, i.e., the sum of all objects to be copied, is thespace needed to apply the allocation log. When the accumulated size isbig enough, e.g., a page, the collector actually applies the allocation log: itallocates the exact space needed for all the objects, and then it copies theobjects.Note that there is no fragmentation at all since the allocated space into-space exactly matches the space needed to copy the objects mentioned inthe log. Also, the frequency of conicts and synchronized operations doesnot increase. Finally , big objects do not require special care, and they fallnaturally into the framework set by delayed allocation.One may think that delayed allocation has a disadvantage in foilinglocality of reference. For each object we start by looking at its header andonly (somewhat) later we copy it as a whole. So if the header is evacuatedfrom the cache, we get an additional cache miss. However, �xing reasonableparameters (similar to previous work), eliminates this problem. If the cacheis big enough to hold all copied objects in a chunk twice (once for from-space and once for to-space) and also the allocation log itself, then we getno additional cache misses. Setting the chunk size to around around 1kbensures good behavior on most processors available today. In any case, onemust tune this parameter carefully. We suggest further means to improvelocality of reference later in Section 5.1.We proceed with the next synchronization issue: the parallel access ofobjects in from-space.4.2 Synchronizing access to from-spaceThe parallel access to from-space is the second obstacle that has to be prop-erly managed. It is possible that two collector threads will try to work onthe same from-space object, since they are scanning two di�erent parentsof this object in parallel. We would like to stress that the contention onfrom-space handling is of far lower likelihood than the contention on to-space allocation. For the latter, any two collectors copying any two objectscause contention on to-space allocation. Whereas only two collectors thattry to handle the very same object at the same time will face contention1One may choose to keep all sizes of all objects in the allocation records. This is agood idea if detecting the length of an object requires a few operations, and we do notwant to read this length in the from-space area twice.8



on from-space handling. This has indeed been reported as a small issuein previous works. Halstead [15] reports less than one conict per second(experienced with Concert Multilisp running on eight processors). This isthe reason why we don't feel there is a need for an advanced mechanismto handle these contentions. Our mechanism is simple (and standard) andallows a good distribution of work between the collectors.The data structure we keep consists of two bits per object, the work bitand the done bit, and also a separate list called the parents-log. The done bitindicates that the object was copied to to-space. This bit must also be usedin the sequential version of the algorithm. In some systems, it is possible totell whether a forwarding pointer was written in the header of the object,and in this case, the done bit is not needed. In addition to the done bit (orthe ability to tell whether a forwarding pointer has been written), we needan additional bit for our parallel version of the algorithm: the work bit.This bit indicates that the object is now being copied to to-space by somecollector and there is no need to copy it again. At the start of a collection,the work bit and the done bit are cleared at all objects.The parents-log contains records of parents whose pointers referencefrom-space and should be updated to reference the to-space copies. Wewill explain the need for the parents log later. Let us proceed with thealgorithm.Consider a collector thread that is scanning a pointer that references afrom-space object. Either the pointer resides in to-space or it is a mutatorroot. The collector has to copy the referenced object into to-space if it hasnot yet been copied, and then update the pointer. The collector reads thework and done bits in the son. If the done bit is set, then the collector onlyneeds to update the given pointer according to the forwarding pointer inthe son. Another possibility is that the work bit is not set. In this case,the collector has to perform the actual copy of the son into to-space. To dothis, the collector uses a synchronized operation (such as compare and swap)to set the work bit. We begin with describing the case that this operationsucceeded and the collector is now responsible for copying the object. Wewill deal later (in Subsection 4.2.1 below) with the two similar cases thatremain: The case that the collector failed to set the work bit (i.e., anotherprocessor won and is doing the copy) and the case that upon reading thebits of the son object, the collector found that the work bit was set but thedone bit was not set.So suppose the collector did set the work bit of the object. It then checksthe size of the object and adds a record to the allocation log containing the9



location of the pointer and the address of the from-space object. Also,the collector adds the object length to the accumulated size of the objectsregistered in the allocation log and checks if it is time to do the actualallocation, i.e., if the total size of objects in the allocation log has grown bigenough. If it is, the collector actually allocates the needed space and appliesthe records in the allocation log.2 Applying a record means: Copying therelevant object, setting the done-bit in the from-space copy, clearing thework-bit and done-bit in the to-space copy, and updating the parent pointerto reference the new copy in to-space.4.2.1 The parents logWe now return to the case that the collector has a pointer to update, but thepointed object is being handled by another collector thread. One cannot letthe collector wait till the other collector �nishes the update of the son, sincethis option could lead to deadlock. Instead, we use a global structure calledthe parents log in which the collector writes a request to later update thepointer. A record in the log contains the address of the pointer which shouldbe updated and the address of the son in from-space. The log is global (ratherthan being associated with an object), and the collector threads apply theparents log when they cannot �nd anymore objects to scan (usually, towardsthe end of the collection). We will discuss the work distribution and dealwith applying the parents log in Section 5.2.2 below.Synchronization to the parents log can be made negligible using bu�er-ing. Instead of updating the parents log each time a problematic pointer istraversed, the collector stores the parents-log-record in a local private bu�er.When several records have been accumulated, it adds the bu�er to the par-ents log in a synchronized manner. Thus, the parents-log becomes a list ofbu�ers, each of which, contains actual records of the parents log. Later, acollector applies the records in the log by removing a full bu�er from the logand applying the records in the bu�er. Synchronization is minimal since itoccurs only when bu�ers are added or removed from the log. The size of thebu�ers can be set as a parameter, tuned by the behavior of the applications.2We remark that locality considerations dictate that the log should be applied fromleast recently written record and back to the beginning.10



4.3 Heap management for the applicationGarbage collection is tightly coupled with the heap manager. Note that ourmethod for to-space allocations during garbage collection is inappropriate formanaging the heap allocation by the mutators. Mutator allocations cannotbe delayed without delaying the mutator. Thus, we would like to add somewords on how the heap management can be implemented. We believe thatthe management must be simple and with low contention. However, wemust allow some fragmentation until the compaction of the next collection.We believe that Halstead's idea of memory-chunks is adequate for thiscase. Each mutator obtains a chunk and performs allocations for smallobjects in the chunk. When the chunk �lls, the mutator obtains anotherchunk. Synchronization with other mutators is required when obtaininga chunk. Large objects are allocated separately. To make sure that thefragmentation does not exceed an 1/8 of the heap, we de�ne large objectsto be those which are bigger than 1/8 the size of a chunk. Thus, at most1/8 of each chunk may be wasted.5 Work distributionLoad balancing is one of the more important issues in making parallel im-plementations run faster. Letting one processor do the work while otherprocessors are idle does not yield the bene�ts of a multiprocessor machine.Imai and Tick [20] were the �rst to take explicit care for balancing the loadof a parallel collector, and Endo et. al. [13] provided an enlightening mea-surements showing the strong inuence of load balancing on e�ciency3. Inthis section we discuss several issues related to load balancing. First, weneed to split the overall job into \job chunks" to be distributed betweenthe collector threads. Second, we must discuss the machinery needed todistribute the jobs. Namely, how does one collector thread that has \toomuch work", lets the other (less busy) collectors help. We start with themachinery and later, in Section 5.2, we discuss how to cut the heap scaninto \job chunks" properly.3Endo et. al. implemented a mark & sweep algorithm. In a mark and sweep algorithmthe collector marks all live objects, and later scans the whole heap and reclaims (sweeps)unmarked objects. Note that although this is not a copying algorithm, this algorithm alsoscans all live objects, and thus has similar behavior. See [21] for a detailed description ofmark & sweep algorithms. 11



5.1 MachineryLet us begin by noting that \work" in this setting means scanning the heapand a \chunk of work" to be executed means an area in the heap that hasto be scanned (it can be de�ned, for example, by providing a pointer to thebeginning of the area and its size).Imai and Tick used a global list of areas which held the areas to bescanned. Each collector worked on its private area, and when done, itsearched for a new area in the global list. Areas that need to be scannedare put in the list immediately upon creation. Access to the global list wassynchronized. Endo et. al. implemented the other extreme: They used nglobal lists, where n is the number of collector threads. Each collector hadits own global list, in which it puts areas to be scanned by other collectorthreads.We prefer an intermediate implementation. Keeping one list has thedisadvantage of contention: several threads try to add or remove items froma single list. Thus, it is reasonable to use more than one list. However,using many lists makes it ine�cient to look for jobs: One must traverse allcollectors to search for a job, especially if only a handful of jobs exist in thelists. We suggest using 2-4 lists independently of the number of collectors.Note that the number of lists can change dynamically. A collector threadthat notes contention on lists modi�cation may add a list, and a threadthat �nds empty lists may remove a list. These actions must be carefullyimplemented as these resources are shared by all collector threads.To add an area to the global lists, a collector thread chooses one ofthe lists at random and adds to that list synchronizing its access. Theprobability of a conict between two accessing threads is proportional tothe reciprocal of the number of lists. To remove an area, the thread mayrandomly choose a list and read it to see if there are available areas there.If not, it may proceed to the other lists and check them.Let us say a few words on locality of reference and load balancing. Dur-ing the collection, each collector scans an area and produces new areas toscan. (Recall that scanning includes copying objects into the to-space areaand these objects themselves must be scanned to update their pointers.)Adopting the ideas of Endo et. al. [13] for copying collectors has goodcaching behavior. Each collector thread prefers to scan areas that it haspreviously created (areas in its own global list). But since we don't want tokeep so many global lists, we suggest that each thread keeps the last areathat it has created and scans it himself. Namely, if a thread produces more12



than one area, then it keeps the latest area for its future work and putsprevious areas in the global lists.5.2 Breaking the work into small piecesWe proceed with discussing how to break the collection into small pieces,which can be distributed between the collectors. We separate the two stagesin the scan: we deal with scanning the roots in Section 5.2.1 and withscanning to-space in Section 5.2.2.5.2.1 Scanning the rootsWe assume that marking roots for a single application thread is not a longtask and thus, there is no need to break this task into several small tasksand distribute them between the collector threads. In other words, eachcollector thread will scan the roots of a single application thread, and whendone, go on to scanning the roots of the next application thread. We stressthat even if the assumption is wrong, and scanning the roots of one of thethreads turns out to be a long task, the load balance will not be jeopardized.This is because once a collector thread cannot �nd a fresh mutator threadto scan roots for, it simply moves on to the next stage in which it scansto-space.We keep for each mutator (application) thread one bit: the scan bit,which indicates whether its roots are already being scanned. A collectorwhich is searching for a job goes over the mutator threads and reads theirscan bit. Once the collector thread makes a full pass over all mutator threadsand �nds that all the scan bits are set, the collector proceeds to next stage:Scanning to-space objects. If the collector �nds a scan bit which is notset, it uses a synchronized operation (such as compare and swap) to set thescan bit. If setting the bit failed, it goes on to reading the scan bit of thenext mutator thread. If the synchronized setting of the scan bit succeeded,then the collector thread starts scanning the roots of the mutator thread forwhich it has set the scan bit.Remark 5.1 In addition to the all the local roots of all the mutator threads,we must also scan the global roots, used by the system (or compiler, orinterpreter). We consider all global roots to be one task. Namely, in termsof work distribution for the collector, one may think of these roots as beingthe roots of some additional virtual thread.13



5.2.2 Scanning to-spaceHow do we partition the work into small \chunks" when we scan to-space?The most natural choice is to use the area sizes as output by the delayedallocation scheme (see Section 4.1). Recall that when the allocation logindicates the need to allocate an area bigger than a predetermined size,then this area is actually allocated and the log is applied. Once this areais created, it needs scanning, and may be added to the global lists. Theseareas indeed form the basic blocks for the collection. In addition, when acollector thread cannot �nd an area in the global lists, it tries to apply abu�er in the parents-log (see Subsection 4.2.1).Notice that as a bene�t to the way we create areas, we ensure that anarea consists of complete objects. Thus, it is easy to scan an area an objectat a time and identify the pointer �elds in the object.One drawback of the above choice of area sizes is that there is no limit onthe size of the area. We only know that it must be bigger than a predeter-mined size but the area can be very big. To solve this, we let each collectorreturn part of the area to the global lists if the area turns out to be toobig. Note the trade-o� between improving the load balancing and reduc-ing synchronization: cutting areas into smaller areas requires an additionalsynchronized access to the global lists.Let us �nish by pointing out an interesting phenomena: the naturaldynamics of the collection should automatically improve the load balancingamong the collector threads. What is the real amount of work that is doneon a given area in to-space? It depends not only on the size of the area, butalso on the number of pointers in the area, on the percentage of the sonsthat have been copied already, and on the size of the sons. When we reachthe end of the collection, we get that the average amount of work on eacharea decreases, since many sons have already been copied and the collectoronly needs to update the reference. But this is exactly the time that wewould like job chunks to be small, since at the end of the collection we don'twant one collector to work for a long time while the other collectors are idle.We prefer small chunks of work. Thus, the behavior of the system naturallybalances the load among the collectors.6 Terminating the collectionWhen do the collectors know that the collection has terminated? Termina-tion occurs when all the heap has been scanned, all live objects have been14



copied and all pointers have been updated to point into the to-space area.In practice, this means that the collectors �nish all jobs in the area lists,and �nish applying all records in the parents log.A collector can check that the area lists are empty and that the parentslog is empty, but it must also check that all the other collector threads areidle and not producing more work to be done. Furthermore, the check mustbe atomic since another collector thread may write a new area to the arealists, and later become idle. The issue of termination detection is error prone.In fact, a previous solution ([13], Section 4.2 there), for detecting terminationin a parallel mark & sweep collector, has a aw which we shortly describein Subsection 6.3 below.We present a modi�cation to the previously suggested termination detec-tion [13]. For simplicity of presentation, we describe the algorithm assumingstrong memory coherency and then (in Section 6.2 below) we discuss howto �x it for weak coherency.The data structure we use consists of1. One global ag called the detection ag initially cleared,2. A global word called the detector-id initially set to 0,3. A ag for each collector thread called the idle bit initially cleared,4. and one global ag called the global termination ag initially cleared.The detector-id should be big enough to contain any collector thread identityand one additional value that cannot be an identity (we denote this valueby 0).To support termination detection the collectors maintain their idle bit asfollows. Whenever the thread is not working, its idle bit is set. In particular,a thread sets its idle bit when it �nishes scanning its own areas, and hasto look for a new area to scan in a global list. It then scans the area listsand the parents log to look for a job. Once it detects a job candidate,it clears the idle bit and then it \competes" on the job by performing asynchronized operation (e.g., compare and swap) trying to remove the jobfrom its list (area list or parents log). If the collector fails to obtain thejob, it sets the idle bit again and continues the search. Finally, to supportthe termination detection, the collector threads also perform the followingoperation: whenever a collector thread adds a record (or bu�er) to the arealist or to the parents log then before the add operation, it sets the detection15



ag. Intuitively, the detection ag is set to indicate that there is activity inthe system and termination has not been reached yet.A collector starts termination detection if the job market is empty. Tocheck termination, the thread checks the global detector id. If it is not set(i.e., equals 0), the thread competes (compare and swap) on writing its idto the detector id. If it succeeds, it clears the detection ag. It then goesover all lists to verify that they are empty (area lists and parents log) andgoes over all other threads to check that they are idle. Next, it checks thatthe detection ag is still cleared, and if all the above hold then it decidesthat termination was detected. In this case, it sets the global terminationag, clears the detector id to 0 and halts.When a thread wants to check termination and the detector id has an-other thread id, the thread waits until the detector id is reset to zero. Whenit is, the collector thread checks the global termination ag. If the ag isset, the thread halts. Otherwise, it competes on the detector id to start itsown termination detection.6.1 A few words on correctnessLet us say a few words on why this termination detection is correct. Notethe course of detection. The detector thread starts by verifying that alljob lists are empty and afterwards it veri�es that all collector threads areidle. Clearly, if the collection indeed terminated then a detecting threadwill detect it: collector threads cannot �nd jobs so they will all remainidle, and the lists of jobs will remain empty. Thus, any detector will detecttermination and halt.It remains to show that no thread will ever halt if the collection is notyet over. The reader should �rst convince herself that if the collection is notyet over, then at any point in time there must be some non-idle collectorthread or some job hanging on some list. We skip the details. The problemis in the check is non-atomic. Suppose that the collection is not done yet,and let us check if the collector can erroneously decides to terminate. If thecollector �nds any non-empty job list or any non-idle collector thread, thenit does not terminate. We will argue that if the collection is not over whenthe detector thread �nishes the test and the detection ag is not raised, thenit is not possible that the detector will �nd all lists empty and all idle bitsset.To show this claim we stress again the order of the checks. The emptinessof the lists is checked before the idleness of the collectors is checked. Consider16



the time between these two checks. If at that time one of the lists is notempty then we are done: this list was empty when the detector threadchecked it and now it is not. Therefore, an action of adding to the lists wastaken, and the detection ag must be also set and the detection will fail. Sowhen the detector thread starts to check the idle bits we may assume thatall lists are empty. If during the check of the idle bits a job is added to thelists by any of the collector threads then again the detection ag is set andthe detection fails. So we may also assume that while the detector checksthe idle bits of all collector threads the job lists remain empty.Now, if the lists are empty and remain empty, then no collector threadcan clear its idle bit: a collector clears its idle bit only when attempting toget a new job from the job lists. So each collector may either be idle now orbecome idle. But no collector can stop being idle and become active. Butwe also assumed that the collection is not over, and since all job lists areempty, then there must be a collector thread that is not idle throughout thedetection. this collector will ne noted by the detector thread, which will notdetect termination.6.2 The memory coherence modelLet us say a few words on the behavior of the detection algorithm on modernmultiprocessors, e.g., Power-PC, Sparc, Alpha, and Pentium. these architec-tures typically do not provide strong memory coherency. Namely, the orderof updates executed by Processor P1 is not necessarily the order viewedby Processor P2. Thus, the solution outlined above does not work withoutmodi�cation. For example, think of a thread that raises the detection ag,adds an area to the area list, and later becomes idle. It is possible that al-though the setting of the idle bit of the thread is visible to other processors,the setting of the detection ag is not yet visible, making detectors on otherprocessors erroneously terminate.Thus, in a multiprocessor environment with a weak memory coherencemodel, a modi�cation is needed in the algorithm. On all such multiproces-sors, there is a synchronization instruction (such as sync on the Power-PC,membar on SPARC, and wbinvd on the Pentium.) These instructions typi-cally provide the following guarantee: all updates in the instruction streambefore the execution of the sync operation, will appear in the view of allprocessors before all updates that appear after the execution of the sync op-eration. Such an operation is expensive (as all synchronization operationsare). 17



Returning to our termination detector, note that we have to take care ofthe following course of events: A collector sets the detection ag, it puts ajob in some list, and may later become idle. We make the collector performa sync operation after setting the detection ag and just before putting ajob in the list. This makes sure that any thread that detects terminationmay �nd a collector thread idle only after his view contains the setting ofthe detection ag performed by that collector.6.3 A aw in a previous termination detection protocol [13]A previous termination detection protocol [13] relies only on a detection ag,without the detector id. We argue here that this detection is not correct. Intheir scheme, a detecting thread (or process) clears the detection ag, andstarts checking for idleness of the system. Any activity in the system impliessetting the ag. After the detector observes no activity in the system, thethread veri�es that the detection ag was not set and then halts.The problem is that even if there is an activity in the system whichcauses the ag to be set, at a later time, another collector thread may startdetecting termination and clear the ag just before the �rst detector looks atthe ag again. Thus, the second detector misleads the �rst detector to thinkthat the ag was not set throughout the detection, and the �rst collectorterminates erroneously.7 Extension to GenerationsGenerational garbage collectors rely on the assumption that many objectsdie young. Thus, if we partition the heap to an area containing the youngobjects and an area that contains the old objects, then it is useful to collectthe garbage in the young area more frequently.Generational collectors (introduced in [22]) divide the heap into two ormore generations (or parts) and the younger the generation the more fre-quently it is collected. New objects are allocated in the youngest generationwhich is collected whenever an allocation fails. Some of the surviving ob-jects (the older objects) are promoted to the next generation. When thepromotion fails because there is not enough space, the next generation isalso collected and some of the surviving objects are promoted to an oldergeneration and so forth.Since we collect only a part of the heap, we have to know which objectsin the rest of the heap point into the part of the heap containing the gen-18



erations that we are collecting. These pointers are called inter-generationalpointers. Usually, when we collect a generation we also collect all the gen-erations that are younger than that generation. The primary reason is thatwe only need to scan pointers from old generations to younger generations.The number of such pointers is typically small and thus, generational collec-tions can use a data structure to maintain an (almost) updated list of theseinter-generational pointers. The reader may �nd a detailed description ofthe possible options for recording inter-generational pointers and promotionpolicies in Jones and Lins [21].In the following sections we generalize the ideas developed so far and con-struct a parallel collector for generational scavenging. We consider a simplescheme in which there are two generations (young and old), and both arecollected by a copying collector. When collecting the old generation we col-lect the (much smaller) young generation as well, i.e., the full heap. Thus,for the old generation, we can use the standard copying collection discussedin previous sections, and we concentrate on how the young generation iscollected. The avenues we use to make the scheme parallel depend on thespeci�c way in which inter-generational pointers are recorded. In this pa-per, we follow a simple scheme based on [30, 17], which we describe below.Although we discuss a speci�c design, our ideas can be easily modi�ed tosuit other variants of generational scavenging.There has been no previous work on parallel generational collection. Theclosest is the work of Miller et al. [24, 23, 7], which divide the heap into astatic area and a dynamic area. However, there was no promotion of objectsnor recording of intergenerational pointers. See [24] for details.7.1 Maintaining inter-generational pointersWe use two generations and the inter-generational pointers are kept using acombination of card marking and a remembered set as in [17]. The remem-bered set contains the locations of all inter-generational pointers as recordedin the last collection. In addition, the heap is divided into cards (e.g., 1kbin size), and we keep a table indicating which cards were updated since thelast collection. Thus, the inter-generational pointers appear either in the re-membered set or in cards that are marked. It is the mutator responsibilityto mark each card while the card is updated.In order to �nd inter-generational pointers, the collector checks the dirtycards and the remembered set in order to remove entries in the rememberedset that are outdated (i.e., those that have been changed by the muta-19



tors) and add entries for pointers that were modi�ed and are now inter-generational. We refer the reader to a forthcoming paper [3] for a methodto e�ciently combine card marking with remembered sets when more thantwo generations are used.7.2 Scanning the roots of the young generationScanning the roots for the young generation includes both scanning the mu-tators roots and the inter-generational pointers. In the non-generationalcase, we have suggested in Section 5.2.1 not to spend much e�ort on main-taining the load balance while scanning the roots, since collector threads thatcannot �nd work on the roots scan can continue with the scan of to-spaceand do not become idle. This approach may still be good for generationalcollection. Thus, we may let one collector go over the card marking andover the remembered set and scan the relevant pointers. The other collec-tors scan the mutators roots and then move on to scan to-space. This isprobably the �rst solution to be implemented.However, a problem may come up in this special case of the young gen-eration collection. First, the scanned heap (the young generation) is small,and so, scanning it may end quickly. Second, the work on scanning themarked cards and the remembered set may turn out long. Thus, the loadmay become unbalanced eventually: all threads wait for the special collectorthread, which scans the inter-generational pointers. This collector threadbecomes the bottle neck. Thus, We would still like to suggest some simpleways to partition the work of marking the inter-generational roots amongseveral collectors.Decrease delayed allocation limit: One very simple change is to decreasethe limit on the delayed allocation (see Subsection 4.1 above). In this way,the special collector will produce work more often and this may be enoughto keep the other collectors busy. This �x is trivial and this parameter canbe modi�ed dynamically by unemployed collectors. Note that here we tradethe frequency of synchronization with the load balance.Partition the work on delayed allocation: A more signi�cant change(although still simple), is to partition the operation associated with the de-layed allocation into two. The collector that produces the allocation log doesnot apply the log once the actual allocation has to be performed. Namely,we let the special collector that scans the inter-generational pointers �llan allocation log and then another collector takes the log and applies therecords in the log while the special collector goes on in producing the next20



allocation log. Here we trade the frequency of synchronization and localityof reference with the load balancing.A real partition of work: To go further in partitioning the work of thespecial collector, we suggest to partition the cards between the collectorssuch that each collector scans its assigned cards and updates the relevantpart of the remembered set.7.3 Scanning the heapTo actually scan the roots and the heap we use the same techniques as inSections 3 { 6 above. Let us concentrate on the di�erences. The major dif-ference is that the objects are not copied to a single space anymore, but theyare either copied to the to-space part of the young generation or promoted.In the more general case of several generations, there are even more than twopossible destinations. We adopt the following policy. Each collector keepsan allocation log for each of the destinations into which it actually needsto copy objects. So if a copy to a speci�c generation has to take place, thecollector appends a record to its allocation log that is associated with thecorresponding generation. If the collector does not currently hold an allo-cation log for that generation, then it creates a new log for that generation.In general, we expect less conicts in this case since the collectors competeon more than one pointer. Thus, the limit on the size needed to actuallyallocate could be made smaller.7.4 The train algorithmWe would like to point out that our scheme also �ts the train algorithm [18,28]. There, the young generation may be collected together with a car fromthe old generation. Again, remembered sets and card marking can be used torecord inter-generational pointers (a detailed discussion on this combinationfor the train algorithm appears in [3]). Almost the same algorithm (as above)can be used for a parallel version of the train algorithm: Delayed allocationwith separate logs for each new location and work distribution as describedin this section.8 Replication-based collectionIn a concurrent collector, one or more collector threads run concurrently withthe mutator threads. Most concurrent collectors require a synchronization21



point, where all mutators are stopped (hopefully) briey initiate and/or�nish the collection cycle. This kind of collector was �rst presented by Baker[4] for copying collectors and were further studied in several subsequentpapers (see for example [1, 27, 9, 19]). A similar approach for mark &sweep collection was also well studied (see for example [10, 12, 11]). For acomplete survey on this line of research see [21]. Let us explain how ourparallel collector can be combined with a concurrent copying collector.As an example, we choose to extend the replication-based garbage col-lection of [27, 26]. Two aspects of this extension are interesting. First,making the collector run in parallel when the application is stopped to �n-ish a collection cycle. Using a single collector thread would be wasteful: allprocessors but one would be idle during the pauses. Second, we would likethe concurrent collector, which runs concurrently with the application, torun in several parallel threads. This is useful when the allocation rate ofthe parallel application is high and outpaces the work of a single collectorthread. Increasing the e�ciency of the concurrent collector (by making itparallel) avoids long interruptions to the application by collecting unusedobjects faster.We choose replication-based garbage collection as an example only. Thesame ideas can be implemented for other concurrent copying garbage col-lectors such as [4, 1, 5].8.1 Replication-based collectionThe replication-based collector [27, 26] starts a collection cycle by switchingthe names of the semi-spaces from-space and to-space without stopping themutator threads. While the mutators keep running and operating on from-space, the collector replicates the live objects from the from-space area intothe to-space area. Finally, the mutator threads are stopped and their rootsare updated to point to the replicated objects in the to-space area.The problem is that while the replication is executed, objects in from-space keep on changing and this has to be reected in the to-space replica.In order to make the replica consistent, the mutators log all modi�cations toa mutation-log. The collector updates the replica according to the mutationlog. In case a pointer is modi�ed, its sons are scanned as well. Once themutation log is processed (i.e., all its records were applied by the collectoron the replica), the collector may stop the mutator threads for a pause inwhich the collector processes the mutation log again (additional entries mayhave been appended until the mutators stopped) and updates the mutator22



roots. The pause for the �nal update (ip) is supposed to be short. Notethat when a pointer is modi�ed by an application of the mutation log, itsdescendants must be traced (in the same manner that other live objects aretraced).8.2 Enhanced collector for multiprocessor machineWe �rst concentrate on the part of the collection in which the mutatorsare stopped and the collector �nishes the cycle. This step is sensitive tothe implementation of the mutation log: do we record the details of themutation or just its location. More speci�cally, one option is to recordthe from-space address, which was updated, together with the new valueto be put in the to-space replica. To apply the log, the collector writesthe recorded value to the corresponding address in the to-space area. Thesecond option, is to only record the from-space address in the log. Later, thecollector uses this address to read the updated value from the from-spacearea and copies it to the to-space area. Memory coherence considerations,which we do not discuss here, dictate using the second option. See [2] fordetails. Thus, we stick to the second option. Furthermore, it is suggested in[2] to use a bu�ering method to implement the log. Namely, the mutatorsadd mutation-records to a private bu�er and only upon �lling a bu�er, amutator adds the full bu�er to the mutation log. Later, the collector takesfull bu�ers from the log and applies the records in the bu�er. Adoptingthis method yields another advantage of less synchronization overhead: thecollector must only synchronize once per bu�er and not for each record inthe log. Furthermore, since the values are not stored in the mutation record,no further synchronization is required for updating the values. It is possiblethat two collectors compete on writing to the same to-space address (sincethe log may hold more than one record with updates to this address), butthis is no cause for concern, since the two collectors are guaranteed to writethe same value to that address: the value that appears at the given from-space address.It remains to take care of scanning modi�ed pointers. Here we needto synchronize the processors to do the scanning in parallel. The simplestoption is to let only one of the collectors do the scans. This assumes thatthese scans are quick. So we let all collectors but one apply the mutationlog in parallel, while the special collector accepts requests for scanning andperforms the scans. However, in case the scannings are long and the singlecollector method yields an imbalanced work distribution, one must go back23



to implementing the full parallel copying collection as described in Sections4 { 6 above.Our second interest is in making the concurrent collector parallel. Itis sometimes useful to run the concurrent collector (that runs concurrentlywith the application) on several collector threads so that it can compete with(parallel) applications that make extensive allocations. The algorithm wesuggest in this paper is suitable for this purpose. Note that the concurrentcollector of [27, 26] does the copying collection under the assumption thatthere is no application running concurrently. Only later, the mutation logis used to �x the collection with the modi�cations that were applied onthe heap during the collection. Thus, our algorithm can be applied as is.One additional operation is applying the mutation log, which is a simpleoperation as discussed above, and which requires little synchronization. Thescans that are implied by pointer modi�cations can be done by the collectorsthat discovers them or be added to the global lists for load balancing.9 ConclusionsWe introduced a design for a parallel copying garbage collector, which com-pletely eliminates fragmentation, and is nevertheless e�cient, low on syn-chronization, and simple. Our collector distributes the work with low syn-chronization overhead and has an e�cient termination detection mechanism.We extended the collector to generational collection (including the train al-gorithm) and replication-based algorithm. We plan to prototype this collec-tor as part of a JVM on a multiprocessor platform.10 AcknowledgmentWe thank Alon Adir for explaining to us the memory coherence model onthe IBM Power-PC.References[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection onstock multiprocessors. ACM SIGPLAN Notices, 23(7):11-20, 1988.24



[2] A. Azagury, E. K. Kolodner, and E. Petrank. A Note on the Imple-mentation of Replication-Based Garbage Collection for MultithreadedApplications and Multiprocessor Environments. Preprint, January 1998.[3] A. Azagury, E. K. Kolodner, E. Petrank, and Z. Yehudai. CombiningCard Marking with Remmebered Sets: How to Save Scanning Time.Preprint, March 1998.[4] Henry G. Baker. List processing in real-time on a serial computer. Com-munications of the ACM, 21(4):280-94, 1978. Also AI Laboratory Work-ing Paper 139, MIT, 1977.[5] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly par-allel garbage collection. ACM SIGPLAN Notices, 26(6):157-164, 1991.[6] C. J. Cheney. A non-recursive list compacting algorithm. Communica-tions of the ACM, 13(11):677-8, November 1970.[7] A. J. Cortemanche. MultiTrash, a parallel garbage collector for Multi-Scheme. Bachelor's thesis, MIT Press, January 1986.[8] J. Crammond. A garbage collection algorithm for shared memory parallelprocessors. International Journal Of Parallel Programming, 17(6):497-522, 1988.[9] D. L. Detlefs. Concurrent, atomic garbage collection. In Topics in Ad-vanced Language Implementation chapter 5, pages 101-134. Th MITPress 1991.[10] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, andE. F. M. Ste�ens. On-the-y garbage collection: An exercise in cooper-ation. Communications of the ACM, 21(11):965-975, November 1978.[11] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collectionfor multiprocessor systems. In Conference Record of the Twenty-�rst An-nual ACM Symposium on Principles of Programming Languages, ACMSIGPLAN Notices. ACM Press, 1994, pages 113-123.[12] D. Doligez and X. Leroy. A concurrent generational garbage collectorfor a multi-threaded implementation of ML. In Conference Record ofthe Twentieth Annual ACM Symposium on Principles of ProgrammingLanguages, ACM SIGPLAN Notices. ACM Press, January 1993.25



[13] T. Endo, K. Taura, and k. Yonezawa. A Scaleable Mark-Sweep GarbageCollector on Large-Scale Shared-Memory Machines. Proceedings ofthe SC97: High Performance Networking and Computing, Nov. 1997.Web access: http://www.supercomp.org/sc97/proceedings/TECH/ENDO/INDEX.HTM.[14] R. R. Fenichel and J. C. Yochelson. A Lisp garbage collector for virtualmemory computer systems. Communications of the ACM, 12(11):611-612, November 1969.[15] R. H. Halstead. Multilisp: A language for concurrent symbolic com-putation. ACM Transactions on Programming Languages and Systems,7(4):501-538, October 1985.[16] M. Herlihy and J. E. B. Moss. Lock-free garbage collection for mul-tiprocessors. IEEE Transactions on Parallel and Distributed Systems,3(3), May 1992.[17] A. L. Hosking and J. E. B. Moss. Remembered Sets Can Also PlayCards. In OOPSLA'93 Workshop on Garbage Collection and MemoryManagement. Washington, DC, September 1993.[18] R. L. Hudson and J. E. B. Moss. Incremental garbage collection formature objects. In Yves Bekkers and Jacques Cohen, editors. Proceed-ings of International Workshop on Memory Management, volume 637 ofLecture Notes in Computer Science, 1992. Springer-Verlag.[19] L. Huelsbergen and J. R. Larus. A concurrent copying garbage collectorfor languages that distinguish (im)mutable data. In the Fourth AnnualACM Symposium on Principles and Practice of Parallel Programming,volume 28(7) of ACM SIGPLAN Notices, 1993. pages 73-82.[20] A. Imai and E. Tick. Evaluation of parallel copying garbage collectionon a shared-memory multiprocessor. IEEE Transactions on Parallel andDistributed Systems, vol 4, no. 9, September 1993.[21] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms for Auto-matic Dynamic Memory Management. John Wiley & Sons, July 1996.[22] H. Lieberman and C. E. Hewitt. A Real Time Garbage Collector Basedon the Lifetimes of Objects. Communicaitons of the ACM, 26(6), pages419-429, 1983. 26



[23] James S. Miller. MultiScheme: A Parallel Processing System Basedon MIT Scheme. PhD thesis, MIT Press, 1987. Also Technical ReportMIT/LCS/402.[24] James S. Miller and B. Epstein. Garbage collection in MultiScheme. InUS/Japan Workshop on Parallel Lisp, LNCS 441, pages 138-160, June1990.[25] M. L. Minski. A Lisp Garbage Collector Algorithm Using Serial Sec-ondary Storage. Technical Report Memo 58 (rev.), Project MAC, MIT,Cambridge 1963.[26] S. Nettles and J. O'Toole. Real-time replication-based garbage collec-tion. In Proceedings of SIGPLAN'93 Conference on Programming Lan-guages Design and Implementation, volume 28(6) of ACM SIGPLANNotices, Albuquerque, New Mexico, June 1993. ACM Press.[27] S. Nettles, J. O'Toole, D. Pierce and N. Haines. Replication-Based In-cremental Copying Collection. In Bekkers and Cohen, editors. Proceed-ings of International Workshop on Memory Management, volume 637 ofLecture Notes in Computer Science, St Malo, France, 16-18 September1992. Springer-Verlag.[28] J. Seligmann and S. Grarup. Incremental mature garbage collectionusing the train algorithm. In O. Nierstras, editor. Proceedings of 1995European Conference on Object-Oriented Programming, Lecture Notesin Computer Science. Springer-Verlag, August 1995.[29] G. L. Steele. Multiprocessing Compactifying Garbage Collection. Com-munications of the ACM 18(9): 495-508, 1975.[30] D. Ungar. Generation Scavenging: A Non-disruptive High PerformanceStorage Reclamation Algorithm. Proceedings of the ACM Symposium onPractical Software Development Environments, ACM SIGPLAN NoticesVol. 19, No. 5, May 1984, pp. 157-167.27


