Parallel Copying Garbage Collection
using Delayed Allocation

Elliot K. Kolodner* Erez Petrank?

IBM Haifa Resrach Lab

Abstract

We present a new approach to parallel copying garbage collection
on symmetric multiprocessor (SMP) machines appropriate for Java and
other object-oriented languages. Parallel, in this setting, means that
the collector runs in several parallel threads.

Our collector 1s based on a new idea called delayed allocation, which
completely eliminates the fragmentation problem of previous parallel
copying collectors while still keeping low synchronization, high effi-
ciency, and simplicity of collection. In addition to this main idea, we
also discuss several other ideas such as improving termination detec-
tion, balancing the distribution of work, and dealing with contention
during work distribution. Finally, we explain how the ideas presented
here can be extended to deal with generational copying garbage col-
lection and replication-based garbage collection. We believe that our
ideas can be generalized in a similar manner for other copying-based
garbage collection algorithms.
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1 Introduction

Java is an important new technology, especially as the language of internet
programming. This popularity is attributed to Java being a simple, object
oriented, secure, portable, and platform independent language. High perfor-
mance is a crucial property of any Java Virtual Machine (JVM), and since
Java provides automatic memory management and garbage collection, one
of the first candidates for performance improvements is to incorporate an
efficient allocator and garbage collector into the runtime.

Initially, Java was introduced as a technology for client machines on
the desktop. Recently, it has also gained popularity for server machines,
mainly because of its platform independence. Today’s characteristic server
platforms employ symmetric multiprocessors in order to increase their com-
puting power. The use of multiprocessors is also increasing for desktop
machines. Thus, taking full advantage of the multiprocessor is essential for
good Java performance on these platforms.

Many garbage collection algorithms, including advanced algorithms first
designed for uniprocessors, such as generational scavenging [22] and the
train algorithm [18], do not take advantage of a multiprocessor. In these
algorithms, all application threads are stopped while a single thread executes
the collector on a single processor and all other processors are idle. Thus,
these collectors are not appropriate for use on a multiprocessor. A parallel
garbage collector keeps all processors busy doing useful work even during
collection.

In this paper we present a design for a parallel collector. Our parallel
collector is appropriate both for Java and for other object oriented program-
ming languages on a multiprocessor.

Another way to use multiprocessors efficiently is to employ a concurrent
garbage collector. In such a collector, a single garbage collection thread
runs concurrently with the program threads (see for example [4, 1, 27, 9, 19,
10, 12, 11]). Potentially, all processors can be kept busy during collection.
However, as the number of processors and program threads increase, a single
garbage collector thread may not keep up with the allocation demands of
the many program threads (see for example [1, 12]), and the system may
end up being single threaded as it waits for the garbage collector to free
space. The scalability of the system depends on the collector being able to
collect as fast as the application allocates. Thus, a concurrent collector can
also benefit from the parallelization of the collector thread.



1.1 Contribution of this work

Before going on, let us define terminology for the rest of this paper. We
denote by parallel collection a collection which is run while the application
program is stopped and several parallel collectors perform the collection. We
denote by concurrent collection a collection performed by one or more col-
lector threads that run concurrently together with the application threads.

The main contribution of this work is the design of a parallel garbage
collector appropriate for Java and other object oriented languages on SMP
server machines. We present a parallel version (for SMP machines) of the
well known copying garbage collector introduced in [25, 14, 6]. The ad-
vantages of the copying garbage collection are the fact that the heap is
compacted in each collection, the low complexity of the algorithm which
touches only the live objects (rather than touching all heap as a mark &
sweep algorithm does), and the simplicity of allocation (controlled increase
of a pointer).

Our main new idea is delayed allocation during the parallel collection
(presented in Section 4.1). Using delayed allocation, a collector thread does
not copy an object immediately; rather, it waits until it has a group of ob-
jects, and then allocates memory for all objects in the group at once and
copies those objects. Delayed allocation completely eliminates the fragmen-
tation problem of previous parallel collectors [15, 8, 24, 16, 20]. This method
incurs low synchronization (as low as in previous work), it is simple (even
simpler than some of the previous solutions), and it is as efficient as previous
solutions.

Next, we extend the design to parallelize generational garbage collec-
tion [22]. A similar approach works for the train algorithm [18] as well.
Also, we discuss the extension needed to incorporate our algorithm into the
replication-based garbage collection of [27, 26]. We believe that our ba-
sic ideas can also be generalized to parallelize other copying-based garbage
collection algorithms.

In addition to this main contribution, we offer several new ideas for
designing a parallel copying garbage collector. First, we consider termina-
tion detection. An efficient termination detection is tricky and a previous
attempt to describe a termination detection protocol [13] was faulty. We
provide a correct and efficient termination detector for a parallel collector.
We also discuss work distribution: first, how to break the work into small
pieces to be jointly performed by the parallel collector threads, and second,
what machinery should be used to incur low contention on distributing the



pieces of work among the collector threads.

In addition to the aforementioned ideas, we also make several observa-
tions important for implementors of a parallel copying collectors. These
include items such as dealing with modern SMP memory coherence models,
and our list of design goals (in Section 2 below) that should be addressed
when designing such a collector.

1.2 Organization

We start in Section 2 with the design goals. In Section 3 we review the
sequential copying garbage collection. We start describing this work in Sec-
tion 4 with our main idea: the delayed allocation method. We go on with
discussing the work distribution. The machinery is described in Section 5.1,
and in Section 5.2, we discuss how the work should be partitioned to small
chunks. We continue with termination detection in Section 6. In Section 7
we extend the discussion to generational collection and finally, in Section 8
we talk about combining our algorithm with the replication-based garbage
collection.

2 Design goals

We present the design goals for our parallel collector. The three major
goals are efliciency, scalablity and the preservation of the advantages of
sequential copying garbage collection. There are two aspects to efliciency:
latency and throughput. Low latency means that the application program
will be stopped for short pauses for garbage collection. However, we do not
want to reduce the pauses by paying an unbearable overhead cost for the
application program (for example, by making it perform a costly procedure
for each update). Thus, an algorithm is also judged by how much it reduces
the throughput of work in the system. We aim for high throughput. Many
times there is a tradeoff which we must settle between these two goals. Let
us go on with the more specific design goals.

1. Load balancing: Load balancing is always a crucial point in the
efficiency of a parallel algorithm. Efficiency suffers if some of the
processors are idle while the other processors perform the work.

2. Scalability: We would like the algorithm to achieve large speedup
on today’s SMP machine, and also to allow scalability to a bigger



number of processors in future SMP’s. One major consideration here
is to avoid contention when accessing shared resources.

3. Compaction: We would like to preserve the major advantage of
the sequential copying collector: the collection produces a compacted
heap.

4. Locality of reference: An important goal in the design is to try and
avoid cache misses as much as possible. A collector that incurs many
cache misses cannot be considered efficient.

5. Avoid synchronization: The parallel threads must synchronize while
distributing the work between them and while accessing mutual re-
sources. However, it is desirable to keep the synchronization points as
few as possible since performing any synchronized operation such as
a compare and swap instruction (even without incurring any conflict)
can be expensive.

6. Simplicity: Finally, we believe that the design should be simple. A
very complicated collector will probably not be used in practice.

Two remarks are in place. First, in many cases, there is a tradeoff between
the various goals. For example, for load balancing we will usually prefer to
cut the jobs to small pieces, but for small contention we would like to let the
threads work on large jobs before they have to synchronize again. In any
design, we must settle these tradeoffs, and we believe that a good design
leaves as many open parameters as possible so that the algorithm can be
adjusted to any specific local environment.

3 Sequential Copying Garbage Collection

In order to start discussing our ideas for parallel copying collection, let us
review the steps in the sequential copying collector [25, 14, 6].
1. Stop mutator threads;
2. Flip the roles of from-space and to-space;
3. Scan the roots in each mutator thread and also the global roots. For each
object referenced by a root (son of a root):
(a) If this son is not yet copied then
i. Copy son to to-space;
ii. Write a forwarding pointer in (the from-space copy of)) the son;



(b) Update the root pointer to point to the new copy of the son in fo-
space;
4. Scan to-space: For each son of an object in to-space:
(a) If this son is not yet copied then
i. Copy son to to-space;
ii. Write a forwarding pointer in the son;
(b) Update the pointer in the father object to point to the new replica
of the son in to-space;
5. Reclaim from-space area; 6. Release mutator threads;

4 Delayed allocation

The basic idea of the sequential algorithm is still used and we concentrate
on extending this algorithm to parallel collection. A naive parallelization
of the sequential algorithm would have each collector thread do part of
the scan. However, this leads to a bottleneck on the to-space allocation
pointer. Working with a single pointer is simple and elegant, but when
several collector threads perform the copies, they will heavily compete on
a single resource causing unacceptable contention. Other problems also
arise. For example, we don’t want several collector threads to copy the
same (popular) object several times, we have to distribute the parallel work
carefully, etc. We start with the allocation problem and go on to the other
problems in the following sections.

The goal is to prevent contention on the to-space allocation pointer for
each copy of an object. The first solution, used by Halstead [15] and Cram-
mond [8] was to partition to-space into n equal spaces, where n is the number
of processors, and let each processor allocate in its own private space. This
completely solves the contention on allocation but has a major drawback
(reported by Halstead): the allocation requests by the different processors
are not even and thus one processor gets stuck on failing allocation when
other processors have big empty spaces. Halstead suggested to ameliorate
the behavior of the system by letting each collector allocate a “chunk” of
memory and perform allocations inside the chunk privately. Namely, when
a collector needs to copy an object to to-space, then it actually allocates a
big area (a chunk), copies the object in hand, and keeps copying subsequent
objects to this private area until there is no more room and a new area
should be allocated.

This method, adopted by Miller and Epstein [24] following [23, 7] solves



the contention conflict problem for to-space allocations since these alloca-
tions become much less frequent. However, a new problem arises: the frag-
mentation of to-space. Recall that one of the major benefits of a copying
garbage collection is compaction of the heap. With this solution, we do not
compact the heap through the collection.

To solve the fragmentation problem, Imai and Tick [20] suggested let-
ting each processor manage several chunks, each used for a specific size of
allocation. Typical sizes are powers of two, and objects that fall in between
these sizes (such as an object of size 5) are allocated on the chunk that uses
the smallest power of 2 big enough to hold them (e.g., allocate 8 bytes to
keep an object of 5 bytes). The waste of space in their scheme is at most
half, and in practice much less. However, this scheme needs management
of the chunks and it complicates the solution. Also, it does not completely
overcome the fragmentation problem.

Another reasonable enhancement, which we would like to point out, is
to treat big objects separately. For example, if an object is bigger than an
1/8 of the size of an area, then allocation is performed especially for this
object, and it is not copied into the current area used by the collector. As
a result of this treatment, the “holes” in to-space cannot be bigger than 1/8
the size of an area, since all objects copied into the area are smaller than
that. This parameter (the 1/8) can be optimized to trade between conflicts
frequency on allocation and the amount of fragmentation we expect.

However, we present a method in which the garbage collection outputs
a heap with no fragmentation at all. Our solution, the delayed allocation
method, is simpler than the Imai and Tick solution, and does not increase
the contention on allocation.

4.1 Our solution

The idea is to differentiate between regular allocation performed by the mu-
tators and the special allocation that the collector needs. When a mutator
allocates, the space must be assigned immediately to avoid delaying the mu-
tator. However, the collector’s allocations may be delayed. In our scheme,
a collector thread does not perform each allocation immediately when the
original algorithm dictates a copy. Instead, the collector thread keeps an
allocation log in which it records which copies should be performed. When-
ever a copy of an object from from-space to to-space is needed, the collector
thread adds a record to the allocation log in which it puts the from-space
address of the object and the to-space (or root) address of the cell pointing



to the object. Also, it updates the accumulated size of all objects mentioned
in the allocation log. This single number is kept at the beginning of the log.!

This accumulated size, i.e., the sum of all objects to be copied, is the
space needed to apply the allocation log. When the accumulated size is
big enough, e.g., a page, the collector actually applies the allocation log: it
allocates the exact space needed for all the objects, and then it copies the
objects.

Note that there is no fragmentation at all since the allocated space in
to-space exactly matches the space needed to copy the objects mentioned in
the log. Also, the frequency of conflicts and synchronized operations does
not increase. Finally , big objects do not require special care, and they fall
naturally into the framework set by delayed allocation.

One may think that delayed allocation has a disadvantage in foiling
locality of reference. For each object we start by looking at its header and
only (somewhat) later we copy it as a whole. So if the header is evacuated
from the cache, we get an additional cache miss. However, fixing reasonable
parameters (similar to previous work), eliminates this problem. If the cache
is big enough to hold all copied objects in a chunk twice (once for from-
space and once for to-space) and also the allocation log itself, then we get
no additional cache misses. Setting the chunk size to around around 1kb
ensures good behavior on most processors available today. In any case, one
must tune this parameter carefully. We suggest further means to improve
locality of reference later in Section 5.1.

We proceed with the next synchronization issue: the parallel access of
objects in from-space.

4.2 Synchronizing access to from-space

The parallel access to from-space is the second obstacle that has to be prop-
erly managed. It is possible that two collector threads will try to work on
the same from-space object, since they are scanning two different parents
of this object in parallel. We would like to stress that the contention on
Sfrom-space handling is of far lower likelihood than the contention on to-
space allocation. For the latter, any two collectors copying any two objects
cause contention on to-space allocation. Whereas only two collectors that
try to handle the very same object at the same time will face contention

'!One may choose to keep all sizes of all objects in the allocation records. This is a
good idea if detecting the length of an object requires a few operations, and we do not
want to read this length in the from-space area twice.



on from-space handling. This has indeed been reported as a small issue
in previous works. Halstead [15] reports less than one conflict per second
(experienced with Concert Multilisp running on eight processors). This is
the reason why we don’t feel there is a need for an advanced mechanism
to handle these contentions. Our mechanism is simple (and standard) and
allows a good distribution of work between the collectors.

The data structure we keep consists of two bits per object, the work bit
and the done bit, and also a separate list called the parents-log. The done bit
indicates that the object was copied to to-space. This bit must also be used
in the sequential version of the algorithm. In some systems, it is possible to
tell whether a forwarding pointer was written in the header of the object,
and in this case, the done bit is not needed. In addition to the done bit (or
the ability to tell whether a forwarding pointer has been written), we need
an additional bit for our parallel version of the algorithm: the work bit.
This bit indicates that the object is now being copied to to-space by some
collector and there is no need to copy it again. At the start of a collection,
the work bit and the done bit are cleared at all objects.

The parents-log contains records of parents whose pointers reference
Sfrom-space and should be updated to reference the to-space copies. We
will explain the need for the parents log later. Let us proceed with the
algorithm.

Consider a collector thread that is scanning a pointer that references a
from-space object. Either the pointer resides in to-space or it is a mutator
root. The collector has to copy the referenced object into to-space if it has
not yet been copied, and then update the pointer. The collector reads the
work and done bits in the son. If the done bit is set, then the collector only
needs to update the given pointer according to the forwarding pointer in
the son. Another possibility is that the work bit is not set. In this case,
the collector has to perform the actual copy of the son into to-space. To do
this, the collector uses a synchronized operation (such as compare and swap)
to set the work bit. We begin with describing the case that this operation
succeeded and the collector is now responsible for copying the object. We
will deal later (in Subsection 4.2.1 below) with the two similar cases that
remain: The case that the collector failed to set the work bit (i.e., another
processor won and is doing the copy) and the case that upon reading the
bits of the son object, the collector found that the work bit was set but the
done bit was not set.

So suppose the collector did set the work bit of the object. It then checks
the size of the object and adds a record to the allocation log containing the



location of the pointer and the address of the from-space object. Also,
the collector adds the object length to the accumulated size of the objects
registered in the allocation log and checks if it is time to do the actual
allocation, i.e., if the total size of objects in the allocation log has grown big
enough. If it is, the collector actually allocates the needed space and applies
the records in the allocation log.? Applying a record means: Copying the
relevant object, setting the done-bit in the from-space copy, clearing the
work-bit and done-bit in the to-space copy, and updating the parent pointer
to reference the new copy in to-space.

4.2.1 The parents log

We now return to the case that the collector has a pointer to update, but the
pointed object is being handled by another collector thread. One cannot let
the collector wait till the other collector finishes the update of the son, since
this option could lead to deadlock. Instead, we use a global structure called
the parents log in which the collector writes a request to later update the
pointer. A record in the log contains the address of the pointer which should
be updated and the address of the son in from-space. The log is global (rather
than being associated with an object), and the collector threads apply the
parents log when they cannot find anymore objects to scan (usually, towards
the end of the collection). We will discuss the work distribution and deal
with applying the parents log in Section 5.2.2 below.

Synchronization to the parents log can be made negligible using buffer-
ing. Instead of updating the parents log each time a problematic pointer is
traversed, the collector stores the parents-log-record in a local private buffer.
When several records have been accumulated, it adds the buffer to the par-
ents log in a synchronized manner. Thus, the parents-log becomes a list of
buffers, each of which, contains actual records of the parents log. Later, a
collector applies the records in the log by removing a full buffer from the log
and applying the records in the buffer. Synchronization is minimal since it
occurs only when buffers are added or removed from the log. The size of the
buffers can be set as a parameter, tuned by the behavior of the applications.

?We remark that locality considerations dictate that the log should be applied from
least recently written record and back to the beginning.
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4.3 Heap management for the application

Garbage collection is tightly coupled with the heap manager. Note that our
method for to-space allocations during garbage collection is inappropriate for
managing the heap allocation by the mutators. Mutator allocations cannot
be delayed without delaying the mutator. Thus, we would like to add some
words on how the heap management can be implemented. We believe that
the management must be simple and with low contention. However, we
must allow some fragmentation until the compaction of the next collection.

We believe that Halstead’s idea of memory-chunks is adequate for this
case. Each mutator obtains a chunk and performs allocations for small
objects in the chunk. When the chunk fills, the mutator obtains another
chunk. Synchronization with other mutators is required when obtaining
a chunk. Large objects are allocated separately. To make sure that the
fragmentation does not exceed an 1/8 of the heap, we define large objects
to be those which are bigger than 1/8 the size of a chunk. Thus, at most
1/8 of each chunk may be wasted.

5 Work distribution

Load balancing is one of the more important issues in making parallel im-
plementations run faster. Letting one processor do the work while other
processors are idle does not yield the benefits of a multiprocessor machine.
Imai and Tick [20] were the first to take explicit care for balancing the load
of a parallel collector, and Endo et. al. [13] provided an enlightening mea-
surements showing the strong influence of load balancing on efficiency®. In
this section we discuss several issues related to load balancing. First, we
need to split the overall job into “job chunks” to be distributed between
the collector threads. Second, we must discuss the machinery needed to
distribute the jobs. Namely, how does one collector thread that has “too
much work”, lets the other (less busy) collectors help. We start with the
machinery and later, in Section 5.2, we discuss how to cut the heap scan
into “job chunks” properly.

%Fndo et. al. implemented a mark & sweep algorithm. In a mark and sweep algorithm
the collector marks all live objects, and later scans the whole heap and reclaims (sweeps)
unmarked objects. Note that although this is not a copying algorithm, this algorithm also
scans all live objects, and thus has similar behavior. See [21] for a detailed description of
mark & sweep algorithms.
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5.1 Machinery

Let us begin by noting that “work” in this setting means scanning the heap
and a “chunk of work” to be executed means an area in the heap that has
to be scanned (it can be defined, for example, by providing a pointer to the
beginning of the area and its size).

Imai and Tick used a global list of areas which held the areas to be
scanned. Each collector worked on its private area, and when done, it
searched for a new area in the global list. Areas that need to be scanned
are put in the list immediately upon creation. Access to the global list was
synchronized. Endo et. al. implemented the other extreme: They used n
global lists, where n is the number of collector threads. Each collector had
its own global list, in which it puts areas to be scanned by other collector
threads.

We prefer an intermediate implementation. Keeping one list has the
disadvantage of contention: several threads try to add or remove items from
a single list. Thus, it is reasonable to use more than one list. However,
using many lists makes it inefficient to look for jobs: One must traverse all
collectors to search for a job, especially if only a handful of jobs exist in the
lists. We suggest using 2-4 lists independently of the number of collectors.
Note that the number of lists can change dynamically. A collector thread
that notes contention on lists modification may add a list, and a thread
that finds empty lists may remove a list. These actions must be carefully
implemented as these resources are shared by all collector threads.

To add an area to the global lists, a collector thread chooses one of
the lists at random and adds to that list synchronizing its access. The
probability of a conflict between two accessing threads is proportional to
the reciprocal of the number of lists. To remove an area, the thread may
randomly choose a list and read it to see if there are available areas there.
If not, it may proceed to the other lists and check them.

Let us say a few words on locality of reference and load balancing. Dur-
ing the collection, each collector scans an area and produces new areas to
scan. (Recall that scanning includes copying objects into the to-space area
and these objects themselves must be scanned to update their pointers.)
Adopting the ideas of Endo et. al. [13] for copying collectors has good
caching behavior. Each collector thread prefers to scan areas that it has
previously created (areas in its own global list). But since we don’t want to
keep so many global lists, we suggest that each thread keeps the last area
that it has created and scans it himself. Namely, if a thread produces more

12



than one area, then it keeps the latest area for its future work and puts
previous areas in the global lists.

5.2 Breaking the work into small pieces

We proceed with discussing how to break the collection into small pieces,
which can be distributed between the collectors. We separate the two stages
in the scan: we deal with scanning the roots in Section 5.2.1 and with
scanning to-space in Section 5.2.2.

5.2.1 Scanning the roots

We assume that marking roots for a single application thread is not a long
task and thus, there is no need to break this task into several small tasks
and distribute them between the collector threads. In other words, each
collector thread will scan the roots of a single application thread, and when
done, go on to scanning the roots of the next application thread. We stress
that even if the assumption is wrong, and scanning the roots of one of the
threads turns out to be a long task, the load balance will not be jeopardized.
This is because once a collector thread cannot find a fresh mutator thread
to scan roots for, it simply moves on to the next stage in which it scans
to-space.

We keep for each mutator (application) thread one bit: the scan bit,
which indicates whether its roots are already being scanned. A collector
which is searching for a job goes over the mutator threads and reads their
scan bit. Once the collector thread makes a full pass over all mutator threads
and finds that all the scan bits are set, the collector proceeds to next stage:
Scanning to-space objects. If the collector finds a scan bit which is not
set, it uses a synchronized operation (such as compare and swap) to set the
scan bit. If setting the bit failed, it goes on to reading the scan bit of the
next mutator thread. If the synchronized setting of the scan bit succeeded,
then the collector thread starts scanning the roots of the mutator thread for
which it has set the scan bit.

Remark 5.1 In addition to the all the local roots of all the mutator threads,
we must also scan the global roots, used by the system (or compiler, or
interpreter). We consider all global roots to be one task. Namely, in terms
of work distribution for the collector, one may think of these roots as being
the roots of some additional virtual thread.

13



5.2.2 Scanning to-space

How do we partition the work into small “chunks” when we scan to-space?
The most natural choice is to use the area sizes as output by the delayed
allocation scheme (see Section 4.1). Recall that when the allocation log
indicates the need to allocate an area bigger than a predetermined size,
then this area is actually allocated and the log is applied. Once this area
is created, it needs scanning, and may be added to the global lists. These
areas indeed form the basic blocks for the collection. In addition, when a
collector thread cannot find an area in the global lists, it tries to apply a
buffer in the parents-log (see Subsection 4.2.1).

Notice that as a benefit to the way we create areas, we ensure that an
area consists of complete objects. Thus, it is easy to scan an area an object
at a time and identify the pointer fields in the object.

One drawback of the above choice of area sizes is that there is no limit on
the size of the area. We only know that it must be bigger than a predeter-
mined size but the area can be very big. To solve this, we let each collector
return part of the area to the global lists if the area turns out to be too
big. Note the trade-off between improving the load balancing and reduc-
ing synchronization: cutting areas into smaller areas requires an additional
synchronized access to the global lists.

Let us finish by pointing out an interesting phenomena: the natural
dynamics of the collection should automatically improve the load balancing
among the collector threads. What is the real amount of work that is done
on a given area in to-space? It depends not only on the size of the area, but
also on the number of pointers in the area, on the percentage of the sons
that have been copied already, and on the size of the sons. When we reach
the end of the collection, we get that the average amount of work on each
area decreases, since many sons have already been copied and the collector
only needs to update the reference. But this is exactly the time that we
would like job chunks to be small, since at the end of the collection we don’t
want one collector to work for a long time while the other collectors are idle.
We prefer small chunks of work. Thus, the behavior of the system naturally
balances the load among the collectors.

6 Terminating the collection

When do the collectors know that the collection has terminated? Termina-
tion occurs when all the heap has been scanned, all live objects have been
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copied and all pointers have been updated to point into the to-space area.
In practice, this means that the collectors finish all jobs in the area lists,
and finish applying all records in the parents log.

A collector can check that the area lists are empty and that the parents
log is empty, but it must also check that all the other collector threads are
idle and not producing more work to be done. Furthermore, the check must
be atomic since another collector thread may write a new area to the area
lists, and later become idle. The issue of termination detection is error prone.
In fact, a previous solution ([13], Section 4.2 there), for detecting termination
in a parallel mark & sweep collector, has a flaw which we shortly describe
in Subsection 6.3 below.

We present a modification to the previously suggested termination detec-
tion [13]. For simplicity of presentation, we describe the algorithm assuming
strong memory coherency and then (in Section 6.2 below) we discuss how
to fix it for weak coherency.

The data structure we use consists of

1. One global flag called the detection flag initially cleared,

2. A global word called the detector-id initially set to 0,

3. A flag for each collector thread called the idle bit initially cleared,

4. and one global flag called the global termination flag initially cleared.

The detector-id should be big enough to contain any collector thread identity
and one additional value that cannot be an identity (we denote this value
by 0).

To support termination detection the collectors maintain their idle bit as
follows. Whenever the thread is not working, its idle bit is set. In particular,
a thread sets its idle bit when it finishes scanning its own areas, and has
to look for a new area to scan in a global list. It then scans the area lists
and the parents log to look for a job. Once it detects a job candidate,
it clears the idle bit and then it “competes” on the job by performing a
synchronized operation (e.g., compare and swap) trying to remove the job
from its list (area list or parents log). If the collector fails to obtain the
job, it sets the idle bit again and continues the search. Finally, to support
the termination detection, the collector threads also perform the following
operation: whenever a collector thread adds a record (or buffer) to the area
list or to the parents log then before the add operation, it sets the detection
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flag. Intuitively, the detection flag is set to indicate that there is activity in
the system and termination has not been reached yet.

A collector starts termination detection if the job market is empty. To
check termination, the thread checks the global detector id. If it is not set
(i.e., equals 0), the thread competes (compare and swap) on writing its id
to the detector id. If it succeeds, it clears the detection flag. 1t then goes
over all lists to verify that they are empty (area lists and parents log) and
goes over all other threads to check that they are idle. Next, it checks that
the detection flag is still cleared, and if all the above hold then it decides
that termination was detected. In this case, it sets the global termination
flag, clears the detector id to 0 and halts.

When a thread wants to check termination and the detector id has an-
other thread id, the thread waits until the detector id is reset to zero. When
it is, the collector thread checks the global termination flag. If the flag is
set, the thread halts. Otherwise, it competes on the detector id to start its
own termination detection.

6.1 A few words on correctness

Let us say a few words on why this termination detection is correct. Note
the course of detection. The detector thread starts by verifying that all
job lists are empty and afterwards it verifies that all collector threads are
idle. Clearly, if the collection indeed terminated then a detecting thread
will detect it: collector threads cannot find jobs so they will all remain
idle, and the lists of jobs will remain empty. Thus, any detector will detect
termination and halt.

It remains to show that no thread will ever halt if the collection is not
vet over. The reader should first convince herself that if the collection is not
yvet over, then at any point in time there must be some non-idle collector
thread or some job hanging on some list. We skip the details. The problem
is in the check is non-atomic. Suppose that the collection is not done yet,
and let us check if the collector can erroneously decides to terminate. If the
collector finds any non-empty job list or any non-idle collector thread, then
it does not terminate. We will argue that if the collection is not over when
the detector thread finishes the test and the detection flag is not raised, then
it is not possible that the detector will find all lists empty and all idle bits
set.

To show this claim we stress again the order of the checks. The emptiness
of the lists is checked before the idleness of the collectors is checked. Consider
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the time between these two checks. If at that time one of the lists is not
empty then we are done: this list was empty when the detector thread
checked it and now it is not. Therefore, an action of adding to the lists was
taken, and the detection flag must be also set and the detection will fail. So
when the detector thread starts to check the idle bits we may assume that
all lists are empty. If during the check of the idle bits a job is added to the
lists by any of the collector threads then again the detection flag is set and
the detection fails. So we may also assume that while the detector checks
the idle bits of all collector threads the job lists remain empty.

Now, if the lists are empty and remain empty, then no collector thread
can clear its idle bit: a collector clears its idle bit only when attempting to
get a new job from the job lists. So each collector may either be idle now or
become idle. But no collector can stop being idle and become active. But
we also assumed that the collection is not over, and since all job lists are
empty, then there must be a collector thread that is not idle throughout the
detection. this collector will ne noted by the detector thread, which will not
detect termination.

6.2 The memory coherence model

Let us say a few words on the behavior of the detection algorithm on modern
multiprocessors, e.g., Power-PC, Sparc, Alpha, and Pentium. these architec-
tures typically do not provide strong memory coherency. Namely, the order
of updates executed by Processor P, is not necessarily the order viewed
by Processor P,. Thus, the solution outlined above does not work without
modification. For example, think of a thread that raises the detection flag,
adds an area to the area list, and later becomes idle. It is possible that al-
though the setting of the idle bit of the thread is visible to other processors,
the setting of the detection flag is not yet visible, making detectors on other
processors erroneously terminate.

Thus, in a multiprocessor environment with a weak memory coherence
model, a modification is needed in the algorithm. On all such multiproces-
sors, there is a synchronization instruction (such as sync on the Power-PC,
membar on SPARC, and wbinvd on the Pentium.) These instructions typi-
cally provide the following guarantee: all updates in the instruction stream
before the execution of the sync operation, will appear in the view of all
processors before all updates that appear after the execution of the sync op-
eration. Such an operation is expensive (as all synchronization operations
are).
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Returning to our termination detector, note that we have to take care of
the following course of events: A collector sets the detection flag, it puts a
job in some list, and may later become idle. We make the collector perform
a sync operation after setting the detection flag and just before putting a
job in the list. This makes sure that any thread that detects termination
may find a collector thread idle only after his view contains the setting of
the detection flag performed by that collector.

6.3 A flaw in a previous termination detection protocol [13]

A previous termination detection protocol [13] relies only on a detection flag,
without the detector id. We argue here that this detection is not correct. In
their scheme, a detecting thread (or process) clears the detection flag, and
starts checking for idleness of the system. Any activity in the system implies
setting the flag. After the detector observes no activity in the system, the
thread verifies that the detection flag was not set and then halts.

The problem is that even if there is an activity in the system which
causes the flag to be set, at a later time, another collector thread may start
detecting termination and clear the flag just before the first detector looks at
the flag again. Thus, the second detector misleads the first detector to think
that the flag was not set throughout the detection, and the first collector
terminates erroneously.

7 Extension to Generations

Generational garbage collectors rely on the assumption that many objects
die young. Thus, if we partition the heap to an area containing the young
objects and an area that contains the old objects, then it is useful to collect
the garbage in the young area more frequently.

Generational collectors (introduced in [22]) divide the heap into two or
more generations (or parts) and the younger the generation the more fre-
quently it is collected. New objects are allocated in the youngest generation
which is collected whenever an allocation fails. Some of the surviving ob-
jects (the older objects) are promoted to the next generation. When the
promotion fails because there is not enough space, the next generation is
also collected and some of the surviving objects are promoted to an older
generation and so forth.

Since we collect only a part of the heap, we have to know which objects
in the rest of the heap point into the part of the heap containing the gen-
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erations that we are collecting. These pointers are called inter-generational
pointers. Usually, when we collect a generation we also collect all the gen-
erations that are younger than that generation. The primary reason is that
we only need to scan pointers from old generations to younger generations.
The number of such pointers is typically small and thus, generational collec-
tions can use a data structure to maintain an (almost) updated list of these
inter-generational pointers. The reader may find a detailed description of
the possible options for recording inter-generational pointers and promotion
policies in Jones and Lins [21].

In the following sections we generalize the ideas developed so far and con-
struct a parallel collector for generational scavenging. We consider a simple
scheme in which there are two generations (young and old), and both are
collected by a copying collector. When collecting the old generation we col-
lect the (much smaller) young generation as well, i.e., the full heap. Thus,
for the old generation, we can use the standard copying collection discussed
in previous sections, and we concentrate on how the young generation is
collected. The avenues we use to make the scheme parallel depend on the
specific way in which inter-generational pointers are recorded. In this pa-
per, we follow a simple scheme based on [30, 17], which we describe below.
Although we discuss a specific design, our ideas can be easily modified to
suit other variants of generational scavenging.

There has been no previous work on parallel generational collection. The
closest is the work of Miller et al. [24, 23, 7], which divide the heap into a
static area and a dynamic area. However, there was no promotion of objects
nor recording of intergenerational pointers. See [24] for details.

7.1 Maintaining inter-generational pointers

We use two generations and the inter-generational pointers are kept using a
combination of card marking and a remembered set as in [17]. The remem-
bered set contains the locations of all inter-generational pointers as recorded
in the last collection. In addition, the heap is divided into cards (e.g., 1kb
in size), and we keep a table indicating which cards were updated since the
last collection. Thus, the inter-generational pointers appear either in the re-
membered set or in cards that are marked. It is the mutator responsibility
to mark each card while the card is updated.

In order to find inter-generational pointers, the collector checks the dirty
cards and the remembered set in order to remove entries in the remembered
set that are outdated (i.e., those that have been changed by the muta-
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tors) and add entries for pointers that were modified and are now inter-
generational. We refer the reader to a forthcoming paper [3] for a method
to efficiently combine card marking with remembered sets when more than
two generations are used.

7.2 Scanning the roots of the young generation

Scanning the roots for the young generation includes both scanning the mu-
tators roots and the inter-generational pointers. In the non-generational
case, we have suggested in Section 5.2.1 not to spend much effort on main-
taining the load balance while scanning the roots, since collector threads that
cannot find work on the roots scan can continue with the scan of to-space
and do not become idle. This approach may still be good for generational
collection. Thus, we may let one collector go over the card marking and
over the remembered set and scan the relevant pointers. The other collec-
tors scan the mutators roots and then move on to scan to-space. This is
probably the first solution to be implemented.

However, a problem may come up in this special case of the young gen-
eration collection. First, the scanned heap (the young generation) is small,
and so, scanning it may end quickly. Second, the work on scanning the
marked cards and the remembered set may turn out long. Thus, the load
may become unbalanced eventually: all threads wait for the special collector
thread, which scans the inter-generational pointers. This collector thread
becomes the bottle neck. Thus, We would still like to suggest some simple
ways to partition the work of marking the inter-generational roots among
several collectors.

Decrease delayed allocation limit: One very simple change is to decrease
the limit on the delayed allocation (see Subsection 4.1 above). In this way,
the special collector will produce work more often and this may be enough
to keep the other collectors busy. This fix is trivial and this parameter can
be modified dynamically by unemployed collectors. Note that here we trade
the frequency of synchronization with the load balance.

Partition the work on delayed allocation: A more significant change
(although still simple), is to partition the operation associated with the de-
layed allocation into two. The collector that produces the allocation log does
not apply the log once the actual allocation has to be performed. Namely,
we let the special collector that scans the inter-generational pointers fill
an allocation log and then another collector takes the log and applies the
records in the log while the special collector goes on in producing the next
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allocation log. Here we trade the frequency of synchronization and locality
of reference with the load balancing.

A real partition of work: To go further in partitioning the work of the
special collector, we suggest to partition the cards between the collectors
such that each collector scans its assigned cards and updates the relevant
part of the remembered set.

7.3 Scanning the heap

To actually scan the roots and the heap we use the same techniques as in
Sections 3 — 6 above. Let us concentrate on the differences. The major dif-
ference is that the objects are not copied to a single space anymore, but they
are either copied to the to-space part of the young generation or promoted.
In the more general case of several generations, there are even more than two
possible destinations. We adopt the following policy. Each collector keeps
an allocation log for each of the destinations into which it actually needs
to copy objects. So if a copy to a specific generation has to take place, the
collector appends a record to its allocation log that is associated with the
corresponding generation. If the collector does not currently hold an allo-
cation log for that generation, then it creates a new log for that generation.
In general, we expect less conflicts in this case since the collectors compete
on more than one pointer. Thus, the limit on the size needed to actually
allocate could be made smaller.

7.4 The train algorithm

We would like to point out that our scheme also fits the train algorithm [18,
28]. There, the young generation may be collected together with a car from
the old generation. Again, remembered sets and card marking can be used to
record inter-generational pointers (a detailed discussion on this combination
for the train algorithm appears in [3]). Almost the same algorithm (as above)
can be used for a parallel version of the train algorithm: Delayed allocation
with separate logs for each new location and work distribution as described
in this section.

8 Replication-based collection

In a concurrent collector, one or more collector threads run concurrently with
the mutator threads. Most concurrent collectors require a synchronization

21



point, where all mutators are stopped (hopefully) briefly initiate and/or
finish the collection cycle. This kind of collector was first presented by Baker
[4] for copying collectors and were further studied in several subsequent
papers (see for example [1, 27, 9, 19]). A similar approach for mark &
sweep collection was also well studied (see for example [10, 12, 11]). For a
complete survey on this line of research see [21]. Let us explain how our
parallel collector can be combined with a concurrent copying collector.

As an example, we choose to extend the replication-based garbage col-
lection of [27, 26]. Two aspects of this extension are interesting. First,
making the collector run in parallel when the application is stopped to fin-
ish a collection cycle. Using a single collector thread would be wasteful: all
processors but one would be idle during the pauses. Second, we would like
the concurrent collector, which runs concurrently with the application, to
run in several parallel threads. This is useful when the allocation rate of
the parallel application is high and outpaces the work of a single collector
thread. Increasing the efficiency of the concurrent collector (by making it
parallel) avoids long interruptions to the application by collecting unused
objects faster.

We choose replication-based garbage collection as an example only. The
same ideas can be implemented for other concurrent copying garbage col-
lectors such as [4, 1, 5].

8.1 Replication-based collection

The replication-based collector [27, 26] starts a collection cycle by switching
the names of the semi-spaces from-space and to-space without stopping the
mutator threads. While the mutators keep running and operating on from-
space, the collector replicates the live objects from the from-space area into
the to-space area. Finally, the mutator threads are stopped and their roots
are updated to point to the replicated objects in the to-space area.

The problem is that while the replication is executed, objects in from-
space keep on changing and this has to be reflected in the to-space replica.
In order to make the replica consistent, the mutators log all modifications to
a mutation-log. The collector updates the replica according to the mutation
log. In case a pointer is modified, its sons are scanned as well. Once the
mutation log is processed (i.e., all its records were applied by the collector
on the replica), the collector may stop the mutator threads for a pause in
which the collector processes the mutation log again (additional entries may
have been appended until the mutators stopped) and updates the mutator
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roots. The pause for the final update (flip) is supposed to be short. Note
that when a pointer is modified by an application of the mutation log, its
descendants must be traced (in the same manner that other live objects are
traced).

8.2 Enhanced collector for multiprocessor machine

We first concentrate on the part of the collection in which the mutators
are stopped and the collector finishes the cycle. This step is sensitive to
the implementation of the mutation log: do we record the details of the
mutation or just its location. More specifically, one option is to record
the from-space address, which was updated, together with the new value
to be put in the to-space replica. To apply the log, the collector writes
the recorded value to the corresponding address in the to-space area. The
second option, is to only record the from-space address in the log. Later, the
collector uses this address to read the updated value from the from-space
area and copies it to the to-space area. Memory coherence considerations,
which we do not discuss here, dictate using the second option. See [2] for
details. Thus, we stick to the second option. Furthermore, it is suggested in
[2] to use a buffering method to implement the log. Namely, the mutators
add mutation-records to a private buffer and only upon filling a buffer, a
mutator adds the full buffer to the mutation log. Later, the collector takes
full buffers from the log and applies the records in the buffer. Adopting
this method yields another advantage of less synchronization overhead: the
collector must only synchronize once per buffer and not for each record in
the log. Furthermore, since the values are not stored in the mutation record,
no further synchronization is required for updating the values. It is possible
that two collectors compete on writing to the same to-space address (since
the log may hold more than one record with updates to this address), but
this is no cause for concern, since the two collectors are guaranteed to write
the same value to that address: the value that appears at the given from-
space address.

It remains to take care of scanning modified pointers. Here we need
to synchronize the processors to do the scanning in parallel. The simplest
option is to let only one of the collectors do the scans. This assumes that
these scans are quick. So we let all collectors but one apply the mutation
log in parallel, while the special collector accepts requests for scanning and
performs the scans. However, in case the scannings are long and the single
collector method yields an imbalanced work distribution, one must go back
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to implementing the full parallel copying collection as described in Sections
4 — 6 above.

Our second interest is in making the concurrent collector parallel. It
is sometimes useful to run the concurrent collector (that runs concurrently
with the application) on several collector threads so that it can compete with
(parallel) applications that make extensive allocations. The algorithm we
suggest in this paper is suitable for this purpose. Note that the concurrent
collector of [27, 26] does the copying collection under the assumption that
there is no application running concurrently. Only later, the mutation log
is used to fix the collection with the modifications that were applied on
the heap during the collection. Thus, our algorithm can be applied as is.
One additional operation is applying the mutation log, which is a simple
operation as discussed above, and which requires little synchronization. The
scans that are implied by pointer modifications can be done by the collectors
that discovers them or be added to the global lists for load balancing.

9 Conclusions

We introduced a design for a parallel copying garbage collector, which com-
pletely eliminates fragmentation, and is nevertheless efficient, low on syn-
chronization, and simple. Our collector distributes the work with low syn-
chronization overhead and has an efficient termination detection mechanism.
We extended the collector to generational collection (including the train al-
gorithm) and replication-based algorithm. We plan to prototype this collec-
tor as part of a JVM on a multiprocessor platform.
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