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1Abstract—The rapid increase of many disorders, such as
stroke, amyotrophic lateral sclerosis (ALS) or various other
spinal cord injuries, strongly affects the society. This results in
growing need for the improvement of communication methods
in order to enable quick and efficient interaction with the
environment, where in some particularly difficult cases this
may be the only possible communication way. Therefore Brain-
Computer Interfaces (BCI) seem to be an excellent solution not
only for the, above mentioned - severe cases, but also for non-
disabled, healthy users. The main purpose for the research
presented in this paper was to invent easy, but efficient method
for the analysis of the EEG signals and its implementation for
the control purpose. As the implementation of EEG signals in
BCI systems has become recently more and more popular
within the last few years, lots of similar solutions have been
developed. The method developed by the authors of this paper
presents an innovative approach in analysis of the
electroencephalographic signals. The proposed method is novel
not only because of its efficiency, but also because of the choice
of the applied equipment. The signal processing method was
implemented on an embedded platform, so all the limitations of
the embedded systems had to be taken into consideration. The
proposed solution also enables customisation of the analysing
criteria by using a threshold function in order to enable
adaptation for various specific applications. In the carried out
study only signals with limited information have been
processed. The invented method is based on basic mathematical
operations only. Neither filtering nor sophisticated signal
processing methods were used.

Index Terms—Brain-computer interaction, control,
embedded systems, signal processing.

I. INTRODUCTION

Research interest on the BCI technology have rapidly
grown over the past two decades (Fig. 1) [1], [2]. Multiple
studies have proved that not only people, but also animals,
are able to use signals generated by the brain in order to
communicate with a computer (or any other external
environment) [2]. BCI is a powerful control tool in the user-
system interaction, especially for physically impaired, who
are not able to perform simple tasks such as using keyboard
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or mouse [1]. Implementation potential of BCI systems is
incredibly huge – from medical applications for user in
various physical conditions to recreational use such as
gaming [1]–[4]. It is important to mention that the analysis
of various biomedical signals (in particular these generated
by the brain) is a very challenging task due to the high
complexity of the human body and their non-stationary
character [5], [6]. Also low signal-to-noise ratio decreases
the ability to decode every human mental state or
intention [3].

Fig. 1. Rapidly growing interest in BCI technology [1].

Increasing interest in improving control methods for users
in various physical conditions is of the great concern of
many research groups. Although there is a great amount of
highly effective BCI systems, they are usually too complex
to be implemented in an embedded system. The method
presented in this paper shows an innovative approach, where
no traditional, statistical, complex signal processing methods
were applied, and also no filtering was done. It is also
important to mention that as well the potential
implementation of the proposed method and as the applied
equipment is neither expensive nor difficult, as it uses
simple, easily available on the open market, inexpensive
hardware - Emotiv EPOC headset [7]. The proposed method
uses only basic mathematical operations (such as addition,
subtraction, multiplication and division) – it gives the
possibility to implement the proposed solution in almost
every environment without taking its computing power
limitations into account. It also enables easy translation of
the proposed method into almost any programming
language, which greatly expands its usability. The applied
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algorithm is based on the implementation of the two main
analysis components – analysis in the time- and in the
frequency-domain. Experiments involved participation of
adult, healthy subjects and the signals were recorded during
imagery left- and right-hand movements.

II. MOTIVATION

The BCI-based communication can be an excellent
solution, which is able to significantly improve quality of life
of users with various levels of disability [4], [8]. In some
cases the improvement relies on making possible to perform
trivial tasks such as controlling a mouse or simple staying in
touch with friends via various social network applications.
BCIs also enable efficient and quick control of a wheelchair
or a robot [8]. The main motivation for the research
presented in this paper is a result of the rapidly growing
amount of disability caused by stroke – ranging ca. 16
million cases each year [4]. The most effective solutions are
unfortunately based on invasive BCI systems, in which
electrodes are surgically implanted into the motor cortex [9].
The current non-invasive solutions tend to be still to slow
and unreliable, what makes them hard for a day-to-day use
[10]. The impact, various injuries have on patients, arose the
demand on new diagnostics and solution, which could
improve their both physiological and psychological
condition.

BCI systems also enable interaction with no dependence
on traditional motor output pathways of the human nervous
system, therefore the brain intention can be effectively used
for the control purpose due to the relatively short delays
(several hundred ms only) [11]. For severely impaired users
this may be the only possible communication way [12]. The
reason for the study presented in this paper was a strong
need for quality of life improvement of users with various
disabilities and to create an inexpensive, easily available and
efficient Brain-Computer Interface. The carried out research
and its results improve independence of a disabled person.
The proposed method was realised using the Emotiv EPOC
gaming headset, which – in opposite to many other systems -
is quite affordable and easily accessible [7].

III. BACKGROUND RESEARCH

Nowadays numerous research centres are working
towards new BCI technologies using various techniques,
signal processing methods and equipment [1], [13], [14],
although the first approaches on the BCI studies were noted
back in 1977, so nearly 40 years ago [10]. In 1988 a first
(visual) paradigm based on P300-evoked potentials was
reported by Farwell and Donchin [15]. Early 1990s brought
a lot of new BCI paradigms such as Visual Evoked Potential
(VEP), developed by Sutter in 1992 [16]. For the BCI
system development various equipment is being applied,
such as: electrocorticography (ECoG), intra-cortical
electrodes (ICE), functional near-infrared spectroscopy
(fNIRS), functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), and (the most popular)
electroencephalography (EEG) [1], [17], where ECoG and
ICE apply invasive recording techniques, which require
surgical sensors implantation. It is also important to mention
BCI systems based on fNIRS and fMRI, which measure

brain activity indirectly according to cerebral blood flow,
however these are very inconvenient and expensive for
implementation [1], [18].

Most of the non-invasive BCI systems presented in the
literature are based on medical EEG equipment, whereas this
study was based on a gaming headset – Emotiv EPOC [7].
The application of the Emotiv EPOC has recently become
very popular, mostly because of its price. In a study [19]
similar to the one carried out by this paper's authors also the
Emotiv EPOC was applied, however in that case channels
O1, O2, P7 and P8, instead of F3 and F4 only, were used. In
that project also the α-frequency was investigated. For the
signal processing purpose the Fast Fourier Transform (FFT)
was applied. The results were satisfactory [19].

Most of the BCI systems apply statistical methods, such as
Bayesian frameworks, where the appropriate frequency
bands are probabilistically selected [3], [20]. Controls
accuracy is one of the key indicators of a BCI system’s
efficiency. It is also possible to divide non-invasive BCIs
into the four main categories: SSVEP-based (Steady State
Visually Evoked Potentials), imagery-based, ERP-based
(Event-Related Potential) and P300-based. The BCI system
conception proposed by [21] and based on motor imagery
movement, enabled to achieve the average control accuracy
of 76 %, whereas the SSVEP-based BCI had a much better
average accuracy of 92 %. This could give a clue that for the
BCI purpose the SSVEP paradigm could be much more
appropriate. It is also important that in that project – less
training was given to SSVEP subjects than to motor imagery
research participants. Also a P300-BCI was analysed, with
the average result (surprisingly low) of 72 %. System
proposed by [22] was tested on three healthy participants
and four stroke victims, where overall BCI classification
error rate was very high – 89.4 %. What is important – there
was no difference between the healthy and the impaired
patients [23]. Despite numerous experiments carried out in
the BCI area, some cases of so-called 'BCI-illiteracy' were
observed, where ca. 10 %–25 % users were unable to use
BCI systems at all. The technology applied for BCI –
whether it was SSVEP, P300 or SMR1 – did not matter,
although very little research was carried out regarding the
aspect of the 'BCI-illiteracy' [12], [14].

In the BCI system presented in this paper no filtering at all
was applied, which is quite unusual as almost all other
similar solutions use it in order to obtain the desired
frequency band. Some of the systems apply spatial filtering,
which becomes more and more popular [3], [24]. The BCI
designed and developed by the authors of that paper is based
on µ-waves, which frequency is similar to the one of the α
(approx. 8 Hz–12 Hz). The literature contains example of
various interfaces based on other brain waves, such as γ- or
β-frequency bands. The study goal of the γ-based BCI was to
differentiate between left- and right-wrist movements. In that
project spatial filtering was also applied, where the
electroencephalographic signal was transferred into a spatial
pattern and then it was applied to the RBF-classifier (Radial
Basis Function). The efficiency of the proposed method,
where the type of movement imagery was recognised, was
very high – 89 %. Unfortunately the study was carried on
only five subjects, so the results are not fully reliable [24].
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SSEVP-based BCIs are told to provide the fastest and
most reliable service among non-invasive solutions, where
the average accuracy is extremely high – 95.3 % [12], [25]–
[27].

Despite many successful implementations of the BCI
systems, the potential applications are still very limited [10].
The results were not fully sufficient as the most current BCI
systems are still not able to adapt to the changes in users'
conditions [9], [10].

As the most popular BCIs are imagery- and SSVEP-based
systems, numerous studies were carried out in order to
improve their accuracy. In both cases the systems required
some initial training to enable the control. In [26] the
accuracy of both feet imagery movement recognition was
nearly 100 %. In that case β burst in the frequency band of
15 Hz–10 Hz was induced by imagery foot movement. This
method is very quick and efficient, but requires long training
period and is almost impossible to apply for naive subjects.

Another very popular BCI system is the solution based on
SSVEP (mentioned in the previous part of this section) [12],
[25], [26]. The SSVEP-BCI, in opposite to the one based on
imagery movement, does not require much initial training.
However it needs some external stimuli, like for example a
blinking light. It also entails a very high rate of false positive
(FP) detections, especially during breaks or in long-lasting
resting periods [26].

The existence of the µ-rhythm was widely discussed and
quite often, because of the similar frequency values, taken as
a specific type of the α-rhythms. Interest on µ-frequency
oscillations appeared for the first time in the 1950s. These
rhythms can be observed in response to the execution of
actions, also during imagery movements [28], [29].

IV. METHODOLOGY

The BCI technology was primarily designed for
rehabilitative purposes for users with various disabilities
[30]. This is because the major goal of any BCI system is to
record and later use this recorded brain activity for the
control purposes [31]. The popularity of the BCI systems,
which is constantly growing, is giving more and more
implementation opportunities and started to overtake the
entertainment, especially gaming market. The most popular
devices - Emotiv and NeuroSky – were designed typically
for the entertainment purpose, also because they are handy,
portable and inexpensive [32]. In Fig. 2 simplified general
structure of a BCI system was presented and the Fig. 3
illustrates the simplified block scheme of the proposed BCI
system.

A. BCI Hardware – Emotiv EPOC
There are various EEG-based BCI systems available on

the market, where the clinical research systems contain large
amount of electrodes (up to 256), what enables a very high
density [30]. However the complexity does not always go in
hand with the proposed system's efficiency, especially in
case the system is to be implemented on an embedded
platform. For this study purpose the choice of the Emotiv
EPOC (EEG) headset seems to be the optimal solution, as
the device is inexpensive, portable, efficient and easily
available. It consists of 14 saline and 2 reference electrodes.

The data is transferred via Bluetooth to the computer [7],
[31]. The 14 saline electrodes are placed on scalp. The
sampling rate of the device is rather poor – 128 Hz, what
cannot be compared with the clinical equipment. The
bandwidth is between 0.2 Hz and 45 Hz, which is enough for
study purpose.

Fig. 2. General structure of a typical BCI system [8].

Fig. 3. Simplified BCI system.

B. Conducted Experiments
The system presented in this paper is based on analysis

and processing of µ-rhythms, which oscillate between 8 Hz
and 13 Hz. The µ-rhythms reflect the response to the
execution of actions. It is also possible to find them during
imagery motor movements of both hands [28], [29]. The µ-
rhythms can be measured over the visual cortex with spectral
peak energies. Various physiological manipulations such as
motor activity – real and imagined can cause the appearance
of the µ-rhythms [33]. The motor imagery tasks involve
imagination of movement of the appropriate part of the
body, which results in activation of the sensorimotor cortex
[4], [21]. The research was carried out in real-life conditions
in order to measure its real efficiency. During the experiment
simple visual stimulating application was used and the
signals were recorded from the electrodes placed on scalp in
F3 and F4 position (see Fig. 4).

Fig. 4. Left: F3 and F4 electrodes placement, according to the 10-20 EEG
electrodes placement standard; Right: F3 and F4 electrodes placement in
Emotiv EPOC headset.

The participants had to follow the instructions, which
involved imagery left and right hand movement. Twenty
healthy, adult subjects were tested.
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Fig. 5. Sample ERD recorded during motor imagery of the left and the
right hand [33].

(a)                         (b)
Fig. 6. Scalp maps of the left-hand (a) and right-hand (b) motor imagery
[34].

Figure 5 presents sample ERD (event-related
desynchronisation) recorded during motor imagery of both
left and right hand. The raw EEG signals were recorded
from one subject only and were filtered with band-pass
filters. The signals were obtained from the C3 and C4
channels [33]. In Fig. 6 scalp maps of left- and right-hand
imagery motor actions were presented.

C. Customised Method for Pattern-Recognition Purpose
Arguably, the data representing brain activity gathered by

the headset might be used in many various ways for the
purpose of recognition as to what this activity is all about.
Also, for the control purposes one can use signal from a
particular electrode or a selection of electrodes. The
electrodes F3 and F4 that were used while carrying out the
described experiments were selected deliberately with full
awareness that they provide information about the planning
stage of an activity.

In entertainment-sector BCI libraries /applications, the
brain waves are processed in a specific manner. The output
(control) commands /scripts rely on run-time comparison of
the current brain activity with a set of pre-registered signal
patterns stored in some sort of database. Depending on the
comparison results, the best match is being identified, and a
specific activity (to which the matching signal is mapped)
can be then executed. However, in this approach the
accuracy of the signal recognition strongly depends on many
objective factors, such as signal and pattern quality (that may
be dependent on the conditions in which they were
acquired), as well as on selecting one of many existing
pattern recognition methods [3], [20], [24], [25], [27] that
would suit best the application domain, hardware (headset)
quality, etc.

If the system is supposed to be portable and/or
implementable on an embedded platform, among many
available signal recognition methods only these methods that
require possibly the least resources and processing power
should be considered. This excludes or at least significantly
reduces possibility of using a very popular artificial
intelligence based methods (e.g. in: [3], [20], [35], [36]) as
well as equally popular methods that are based on
evolutionary algorithms [37], [38] or even these originating

from games theory domain [12], [39], [40]. In some cases
none of the existing methods meets the system and/or
application-specific criteria thus in such a case the only
solution is to develop a custom method of signal recognition.
The most resource-constrained embedded systems typically
allow the application developer to access the system
resources using a low-level programming language (such as
C/C++ or even assembly). These programming languages,
especially assembly, allow quite an advance code
optimisation. Making the signal recognition method
/algorithm structure easily implementable via set of
elementary (machine) assembly instructions (such as
addition, subtraction, multiplication or division) may greatly
improve the code optimisation and result in a very efficient
and lightweight executional code. Taking all the
requirements and limitations into account we proposed a
method of signal recognition based on calculation of a
normalised value of signal similarity level that comprises of
only elementary machine instructions. On the other side, due
to the fact of using the normalised values of the signal
samples, the method always returns the similarity level
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where a = [0, 1]; b = 1 – a.
Closer look at (1) reveals that the proposed signal

recognition method has averaging property, which assures
lesser sensitivity to disturbances affecting the compared
signals. By the normalised (related to maximum) values of
signal and pattern values in time and in frequency domain
were denoted. The two coefficients a and b are used as
weighting coefficients which can be used ultimately to
decide as to in what proportion the time and frequency
components of signal and pattern should be included while
calculating the signals similarity level. Setting the a value to
a = 0.5, both (time and frequency) components will be
considered equally important, whilst setting a = 1.0 will lead
to excluding the frequency component from calculations thus
limiting the signal similarity level to similarity in the time
domain only.

Using the normalised values of signal and pattern is very
convenient because it guarantees that the signals similarity
level takes values within a strictly defined range: ε = [0, 1) ,
where ε = 0 means that both, signal and pattern, are identical
whilst ε → 1 indicates that the difference between signal and
pattern is increasing. The normalised value of the signals
similarity level can be used as a tuning (/configuration)
parameter. As it is not very likely that the signal and pattern
will ever be identical (for the considered signal in a form of
brain waves), thus at the application level any signal can be
qualified as equal to the pattern signal as long as the
similarity value will remain below a threshold value. Via
increasing the threshold value a wider range of signals will
be qualified as equal to the pattern signal (thus potentially
increasing the number of false positive errors) whilst
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decreasing the threshold value may lead to disqualifying a
signal that is very similar to the pattern signal (and thus
potentially increasing the number of false negative errors).
Wise selection of the threshold value may allow to tune up
the whole algorithm and will leave some space for (user-
specific) customisation of the sensitivity level.

V. RESULTS

The accuracy in a typical BCI system is significantly
important. The efficiency of the pattern-recognition method
presented in this paper was quite high – 84.7 %. In Fig. 7
left- (top) and right-hand (bottom) imagery movement
signals are presented. Left-hand signals were recorded from
the electrode placed on F4 position, where the right-hand
from the F3-electrode. The signals falsely matched. False
positive and false negative results are a big issue in pattern
recognition process of almost all biomedical signals.

Fig. 7. Sample 1 – left-hand – F4 (top), right-hand – F3 – false positive.

Fig. 8. Sample 2 – both right-hand imagery movement signals –
ε = 0.8704.

Fig. 9. Sample 3 – left-hand – F4 (top), right-hand – F3 – ε =1.402.

Figure 8 illustrates an example of correctly recognised
signals, where both right-hand imagery tasks were correctly
identified and the ε value was 0.8704. The correct signals’
identification can also be noticed in Fig. 9, where two
different signals where compared. One of the biggest
concern in analysis of biomedical signals, in particular EEG
signals, is that the signals have a very low amplitude and
there is not much differentiation between the sides of the
body. Theoretically the ‘hand areas’ on the brain are largely

separated in the sensorimotor cortex, so the potential evoked
patterns should be easier classified. Further research plans
include improvement of the signal processing method in
order to reduce the amount of ‘false positive’ and ‘false
negative’ results.

VI. SUMMARY AND FUTURE WORK

The proposed method of signal /pattern recognition may
prove its usability particularly in the embedded systems do-
main where an embedded system is some sort of core
control- ling device. Although these systems are currently
much more powerful than it was in the past, they are still
seen as resource-constrained in comparison to even a mid-
range PC computer. The accuracy of the proposed pattern
recognition method, tested on left- and right-hand imagery
movements recorded from the electrodes placed on F4 and
F3 positions, was relatively high – 84.7 % .

This work has raised some challenges and questions about
the efficiency while using cheap EEG amplifiers such as the
Emotiv EPOC headset. The use of basic mathematical
operations for the signal processing purposes is (according
to the literature study) is a novel approach in the BCI area,
where very complex, sophisticated signal processing
methods are usually applied. The whole study consisted of
three stages. The very first stage – relied on building a
customised EEG equipment. The device consisted of two
channels C3 and C4. Tests conducted on the device proved
that the quality of the design was not satisfactory and the
recording accuracy was very low. The gained signals were of
very poor quality. Using professional, medical equipment
(Stage 2) supposed to enable recording of good quality EEG
signals. Unfortunately – the medical equipment was too
sensitive and the obtained signals were very noisy. The final
stage of the study provided some satisfactory results, as the
analysed EEG signals did not contain the full information
and the applied filtering did not improve the results. Also for
analysis of two different signals – the better results were
achieved in a noisy environment. Adopted tools for signal
processing could be more sophisticated, although it might
lead to prohibitive computational burdens, in particular in
the embedded systems. Also using Emotiv EPOC headset
had some disadvantages – as its accuracy was not very high
and it also pre-processed the data.

The proposed signal processing method should be
improved and applied to other bio-signals, such as EMG
(Electromyography) or EOG (Electrooculography) in order
to make it more versatile for potential users [21], [22]. Using
electromyography signals or eye tracking could significantly
improve the overall HCI system efficiency, as it would be
used as back-up control data [21]. A very interesting way to
improve the proposed, motor imagery BCI system is to
combine various techniques in order to increase its
effectiveness. It is also important to mention that only very
few publications have described tests conducted on a hybrid,
versatile BCI. A hybrid BCI applies simultaneously P300
and SSVEP activities.

There is still a long way to go before the BCI will be fully
reliable and effective. It is also still uneasily available and
too expensive [16]. And this should be changed.
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