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Abstract: Vegetation leaf area index (LAI), height, and aboveground 
biomass are key biophysical parameters. Corn is an important and globally 
distributed crop, and reliable estimations of these parameters are essential 
for corn yield forecasting, health monitoring and ecosystem modeling. Light 
Detection and Ranging (LiDAR) is considered an effective technology for 
estimating vegetation biophysical parameters. However, the estimation 
accuracies of these parameters are affected by multiple factors. In this 
study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 
and 0.838, respectively) using the original LiDAR data (7.32 points/m2), 
and the results showed that LiDAR data could accurately estimate these 
biophysical parameters. Second, comprehensive research was conducted on 
the effects of LiDAR point density, sampling size and height threshold on 
the estimation accuracy of LAI, height and biomass. Our findings indicated 
that LiDAR point density had an important effect on the estimation 
accuracy for vegetation biophysical parameters, however, high point density 
did not always produce highly accurate estimates, and reduced point density 
could deliver reasonable estimation results. Furthermore, the results showed 
that sampling size and height threshold were additional key factors that 
affect the estimation accuracy of biophysical parameters. Therefore, the 
optimal sampling size and the height threshold should be determined to 
improve the estimation accuracy of biophysical parameters. Our results also 
implied that a higher LiDAR point density, larger sampling size and height 
threshold were required to obtain accurate corn LAI estimation when 
compared with height and biomass estimations. In general, our results 
provide valuable guidance for LiDAR data acquisition and estimation of 
vegetation biophysical parameters using LiDAR data. 

©2016 Optical Society of America 
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1. Introduction 

Vegetation height, leaf area index (LAI) and aboveground biomass (AGB) are key 
biophysical parameters for vegetation growth, yield forecasting, health monitoring, climate 
change and ecosystem modeling [1–3]. The accuracy of these models primarily depends on 
the accuracy of the key model input parameters [4]. Hence, accurate and reliable estimations 
of vegetation height, LAI and biomass are highly important [4–6]. LAI is defined as one half 
of the total leaf area per unit ground surface area [7], and LAI is an important structural 
parameter of vegetation ecosystems that controls many biological and physical processes, 
such as photosynthesis, respiration, transpiration and rainfall interception [8]. Aboveground 
biomass of vegetation is the total dry weight of living organic matter per unit area above the 
ground surface [9,10]. Vegetation biomass plays a critical role in global change and carbon 
cycle modeling and has been extensively applied to estimate vegetation productivity and 
terrestrial carbon stocks [11,12]. Crop height, LAI and biomass provide useful information 
that assists farmers in decision-making for irrigation, fertilizer application, and insect and 
weed infestation control [13]. Corn is one of the most important crops and is wide-spread in 
China. Therefore, the estimations of corn height, LAI and biomass have great significance in 
corn growth monitoring, yield forecasting and ecological modeling. 

Traditional direct measurements are the reliable methods for obtaining vegetation 
parameters (such as height, LAI and biomass) [5,14,15]. However, direct methods are labor-
intensive and time-consuming and frequently require destructive sampling [16,17]. Thus, 
direct methods are often costly and infeasible for large-area field measurements. Remote 
sensing technology provides a promising method for acquiring vegetation parameters over 
large areas [18] and is widely used in agriculture [19]. Using passive optical remotely sensed 
or radio detection and ranging (Radar) data, numerous investigations have been conducted on 
estimations of vegetation LAI [3,18], vegetation biomass [14,20,21] and vegetation height 
[2,22]. These vegetation parameters have been estimated primarily through empirical 
relationships between field observations and vegetation indices (VIs) calculated from 
remotely sensed data, such as the normalized difference vegetation index (NDVI), simple 
ratio (SR) and enhanced vegetation index (EVI). However, traditional remote sensing data 
encounter limitations in estimation of vegetation parameters due to the saturation problem of 
VIs, which is common in dense vegetation cover or high LAI areas [23,24]. Therefore, 
accurate estimation of vegetation height, LAI and biomass is a challenging task with passive 
optical remotely sensed data. 

Light Detection and Ranging (LiDAR) is an active remote sensing technology [25]. Laser 
pulses emitted from LiDAR systems are able to penetrate into the vegetation canopy and 
acquire accurate three-dimensional structural information for the vegetation canopy. 
Therefore, LiDAR systems offer great potential for estimating vegetation parameters with 
high accuracy [26,27]. Many previous studies have shown that airborne LiDAR data are a 
highly effective data resource for estimating forest biophysical parameters and can reliably 
estimate forest LAI [23,28–32], height [33,34] and biomass [35,36]. Some research on 
estimating crop parameter was carried out using terrestrial laser scanning (TLS) [37–39], 
however, only a few studies have been conducted on estimations of crop biophysical 
parameters using airborne discrete-return LiDAR data [40,41]. For airborne discrete-return 
LiDAR, this scarcity can be attributed to three major factors. First, corn crops are quite short 
in height relative to forest vegetation. Because of limitations in the LiDAR techniques, the 
time-of-flight between the first and the last return is too short to detect. As a consequence, the 
elevation of the canopy and the ground cannot be accurately determined [42]. Second, crop 
vegetation is usually dense and uniform, and laser pulses have difficulty penetrating the 
canopy to the ground. The accuracies of DEMs (digital elevation models), DSMs (digital 
surface models) and LiDAR-derived vegetation parameters are low for short vegetation areas 
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[43]. Thus, LiDAR data with high accuracy and high laser/LiDAR point density are essential 
for acquiring reliable vegetation parameters and terrain characteristics. Because high point 
density means decreasing the flight altitude or speed or increasing the flight overlap, these 
changes will increase the flight time [44,45]. Thus, high point density incurs high LiDAR data 
acquisition costs, especially over large study areas. Therefore, knowledge of the appropriate 
LiDAR point density is important to make informed tradeoffs between the costs of data 
acquisition and the accuracy of information derived from LiDAR data. Certain previous 
researchers have investigated the effect of airborne LiDAR point density on estimates of 
forest vegetation parameters [45–50]. Jakubowski et al. [44] studied the effects of 17 different 
LiDAR point densities on forest structural parameters, and the results showed that reduced 
LiDAR point density could reliably estimate forest structural parameters. Similarly, Singh et 
al. [51] found that reduced point density could estimate biomass without compromising 
accuracy, and this observation is especially significant for reducing research costs over large 
area forest studies. However, to the best of our knowledge, no study has been conducted to 
explore the effects of airborne LiDAR point density on estimates of crop parameters. In 
addition to LiDAR point density, the sampling size of LiDAR data and the height threshold 
for separating ground returns and vegetation returns are also key factors that affect the 
estimation accuracy of crop biophysical parameters. Similarly, these two factors have been 
investigated for estimation of forest biophysical parameters [23,28,52]. However, we do not 
know whether the effects of sampling size and height threshold should be considered or 
whether there is an optimal sampling size and height threshold when estimating low corn LAI, 
height and biomass using discrete-return LiDAR data. Nonetheless, little research has been 
performed on corn vegetation. Moreover, for the same LiDAR data and study area, the 
differences of the optimal sampling size and height threshold for estimating vegetation LAI, 
height and biomass have not yet been conducted. Thus, it is still necessary to perform 
comprehensive research on the effects of LiDAR point density, sampling size and height 
threshold on the estimates of corn biophysical parameters. 

In this study, we explore the effects of LiDAR point density, sampling size and height 
threshold on the estimation accuracy of corn crop biophysical parameters (height, LAI and 
aboveground biomass). The specific objectives of this study are to: (1) extract various metrics 
from the airborne discrete-return LiDAR data, (2) estimate corn biophysical parameters using 
the metrics derived from LiDAR data, and (3) assess the effectives of different LiDAR point 
densities, sampling sizes and height thresholds on the estimation accuracy of corn biophysical 
parameters. 

2. Materials and methods 

2.1 Study area 

The study area is located in Zhangye City in Gansu Province of northwest China (38°50′N-
38°59′N, 100°20′E-100°28′E). This study is a component of the experimental Heihe Water-
shed Allied Telemetry Experimental Research (HiWATER) project and the scientific 
objectives of this project can been found in Li et al. [53]. The mean annual air temperature 
and precipitation are approximately 7.3 °C and 129 mm, respectively. The terrain in our study 
area is flat with a mean elevation of 1403 m above sea level. The main crops in this study area 
are corn, wheat and vegetables. 

2.2 Field observations 

In this study, the field experiments were conducted on July 13th and 16th of 2012. The size of 
the field plot was a 5 m ×  5 m square. In each plot, the height values of 11 corn plants were 
measured using a measuring tape. Figure 1 illustrates the selected 11 corn plants for height 
measurements in a field plot. We placed two tapes in the field plot along and perpendicular to 
the ridge, respectively. Along the ridge, the measurement started from 0 m of the tape, and six 
plants were measured with about 1 m interval. However, perpendicular to the ridge, the 
measurement started from 0.5 m of the tape, and five plants were measured with about 1 m 
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interval. The mean of the corn height was calculated using these 11 height values, and this 
value was used as the field-measured height of the plot. Moreover, the number of plants in 
each field plot was counted to calculate the biomass of each plot. The LAI values were 
measured using the LAI-2200 Plant Canopy Analyzer (Li-COR, Inc., Lincoln, NE, USA) at 
the ground level. In the study area, we selected a range of corn plants with different heights 
and clipped them at the ground level. The height of each plant was measured in the 
laboratory, and all plants were oven dried at 75 °C until their weights reached a constant 
value. The empirical relationship (Eq. (1) between the plant heights and AGB values was 
established, and the R2 was 0.95 with RMSE of 15.8 g/plant. The single plant biomass was 
calculated using the field-measured height of each field plot. The biomass of each field plot 
was calculated by multiplying the number of plants for each plot and the biomass of a single 
plant for each plot. Therefore, the above-ground biomass density (g/m2) was obtained using 
the ratio of the plot biomass to the plot area (i.e., the plot biomass divided by 25 m2). For each 
plot, the center coordinate was determined using a Real Time Kinematic (RTK) Global 
Positioning System (GPS)-Trimble GPS (Trimble Navigation Ltd.). A total of 42 plots were 
measured for height, LAI and biomass. The summary statistics of the field-measured 
biophysical parameters for the 42 field plots are listed in Table 1. 

 129.72 131.16B H= ∗ −  (1) 

where B and H are the biomass (g/plant) and height (m) of a single plant, respectively. 

 

Fig. 1. Schematic diagram illustrating the selected 11 corn plants for height measurements. 

Table 1. Statistics of field-measured biophysical parameters at the plot level (n = 42). 

Biophysical parameter Minimum Maximum Mean Standard deviation 

LAI 1.28 4.69 2.75 0.84 

Height (m) 1.059 3.091 2.08 0.555 

Biomass (g/m2) 204.83 3039.82 1465.49 779.56 

2.3 LiDAR data acquisition and processing 

The LiDAR data used in this study were provided by HiWATER [54]. Airborne discrete-
return LiDAR data were collected on July 19, 2012 using a Leica Airborne Laser Scanner 
(ALS70) system, and the specific acquisition parameters of the LiDAR data in this study are 
shown in Table 2. The final LiDAR data sets were produced in a LiDAR data exchange 
format (LAS) and included x, y, z coordinates, return numbers and intensity values. For the 
study area, the average point density was 7.32 points/m2 with an average post spacing of 0.37 
m. A total of ten different point densities were applied to estimate the biophysical parameters. 
First, raw laser point clouds were pre-processed [55], and LiDAR data were subsequently 
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classified into ground and non-ground points using the LiDAR data post processing software 
(TerraScan, TerraSolid, Ltd., Finland). 

Table 2. LiDAR data acquisition parameters used in this study. 

Parameter Specification 

Flying altitude 1300 m 

Flying speed 60 m/s
Scan angle  ± 18° 
Flight-line overlap 60%
Laser wavelength 1064 nm 

To study the effect of different LiDAR point densities on estimates of biophysical 
parameters, the original LiDAR point density was thinned using Idaho State University’s 
BCAL LiDAR Tools (http://bcal.boisestate.edu/tools/lidar). In this study, the original LiDAR 
point density was reduced from 100% to 5% via a random selection method. The major 
advantage of the method was that it can maintain a uniform distribution of LiDAR data, 
which was also used by previous researchers [47,51]. In the same manner, the thinned LiDAR 
data were classified into ground and non-ground points. Table 3 shows the statistics for 
LiDAR point density and post spacing at 11 different point densities (i.e., ten reduced and one 
original point densities). For classified LiDAR data, DEMs with a 1.0 m grid size were 
produced using a triangulated irregular network (TIN) interpolation method. The normalized 
LiDAR data (i.e., relative height of LiDAR data) were derived by subtracting the DEM 
elevations from the laser point elevations. 

Table 3. Statistics of LiDAR point density and post spacing at the plot level (n = 42). 

Percentage of 
original point 
density 

Point density (points/m2) Post spacing (m) 
 

Minimum Maximum Mean Minimum Maximum Mean 

5 0.11 0.85 0.37 1.08 3.02 1.64 

10 0.21 1.66 0.74 0.78 2.18 1.16 

20 0.42 3.33 1.47 0.55 1.54 0.82 

30 0.64 5.02 2.21 0.45 1.25 0.67 

40 0.85 6.69 2.94 0.39 1.08 0.58 

50 1.10 8.35 3.69 0.35 0.95 0.52 

60 1.31 10.01 4.42 0.32 0.87 0.48 

70 1.52 11.68 5.16 0.29 0.81 0.44 

80 1.73 13.38 5.89 0.27 0.76 0.41 

90 1.95 15.04 6.63 0.26 0.72 0.39 

100 2.16 16.70 7.32 0.24 0.68 0.37 

2.4 Predictor variables from LiDAR data 

Common LiDAR metrics used to estimate vegetation biophysical parameters are the 
maximum height and mean height of vegetation returns, percentiles of LiDAR heights and 
proportion of canopy returns. None of the LiDAR metrics are always optimal variables for 
estimating vegetation biophysical parameters for the different vegetation types, LiDAR data, 
environments and study areas. Therefore, in this study, we calculated a variety of LiDAR 
metrics to establish the optimal predictive model for vegetation biophysical parameters (Table 
4). 

A number of studies have indicated that the sampling size for the LiDAR data [52,56] and 
the height thresholds for discriminating vegetation points from ground points [28,57] have a 
great effect on the estimation accuracies of vegetation parameters. As a consequence, we also 
conducted a study to assess the effects of data sampling sizes and height thresholds on the 
estimation accuracies of vegetation biophysical parameters. We used a range of radius plots 
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(from 1.5 m to 6.5 m incremented by 0.5 m) to extract the normalized laser points that 
correspond to the field-measured plots. Subsequently, for all extracted plots, LiDAR metrics 
were calculated using a range of height thresholds (from 0.0 m to 0.3 m incremented by 0.05 
m). In this study, the R_cover metric, which represents the fractional canopy cover, was 
calculated using Eq. (2). 

 
(

_
)canopy

all

R co e
h

r
N

v
N

=  (2) 

where R_cover is fractional canopy cover with sampling radius r at a height threshold of h, 
Ncanopy is the number of canopy returns where LiDAR height is greater than h m, Nall is the 
total number of returns. 

Table 4. LiDAR-derived metrics for estimating biophysical parameters. 

LiDAR metrics Description 

H_max Maximum of LiDAR height 

H_mean Mean of LiDAR heigh 

H_sd Standard deviation of LiDAR height 

H_var Variance of LiDAR height 

H_cv Coefficient of variation of LiDAR height 

H_p (10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99) percentile of LiDAR height 

R_cover 
Percent of canopy returns (canopy returns / total 
returns), a description of fractional canopy cover 

2.5 Estimations of biophysical parameters 

In our study, the biophysical parameters of corn were estimated based on empirical 
relationships. To investigate the nonlinear relationships between biophysical parameters and 
LiDAR metrics, all LiDAR metrics and biophysical parameters were log transformed. The 
selection of the optimal predictive variable is an important step for estimating biophysical 
parameters. In this study, the performances of the LiDAR-derived metrics were tested using 
simple linear regression analysis and partial least squares (PLS) regression. PLS regression 
was performed using the PLS extension module for SPSS Statistics. PLS regression is a 
multivariate statistical method, closely related to principal components regression (PCR) [58]. 
PLS regression can effectively overcome multicollinearity problems of LiDAR metrics that 
are often faced in multiple linear regression [59,60]. The Variable Importance in the 
Projection (VIP) values are calculated as a weighted sum of squares of the PLS loadings for 
each variable. VIP values measure the contribution of each predictor variable in fitting the 
PLS model, and variables with VIP values > 1 were considered in our study [61,62]. All 
prediction models were developed based on the regression relationships between field-
observed biophysical parameters (42 plots) and all LiDAR-derived metrics (Table 4) with a 
range of LiDAR point densities (from 100% to 5% of original point density), sampling sizes 
(from 1.5 m to 6.5 m incremented by 0.5 m) and height thresholds (from 0.0 m to 0.3 m 
incremented by 0.05 m). We compared the predictive results of the developed models to 
determine the optimal predictor variable, sampling size and height threshold for estimating 
each of the biophysical parameters (height, LAI and biomass). 

2.6 Accuracy assessment 

In this study, the estimation accuracy of the biophysical parameters was assessed based on 
commonly used statistical indicators, such as the coefficient of determination (R2), the 
adjusted coefficient of determination (adj.R2) and the root mean squared error (RMSE) and 
relative RMSE (RMSEr) [Eq. (3)]. For all predictive models, these indicators were produced 
using SPSS statistical software (version 20). Because all field-measured data were used to 
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establish regression models, no additional data were available to validate the predictive values 
of the developed models. Therefore, the leave-one-out cross-validation (LOOCV) method was 
used to validate the predictive power of the models. The LOOCV is an efficient method for 
assessing the generalization ability of the predictive model [60]. The RMSE from the LOOCV 
(RMSEcv) was calculated using Eq. (4), and a low RMSEcv value indicates good predictive 
power of the model [30,63]. 

 r

RMSE
RMSE

y
=  (3) 

where y is the mean of the field-observed biomass. 
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where yi is the field-observed biomass of sample i, ŷi is the predicted-biomass of sample i, and 
n is the total number of samples. 

3. Results and discussion 

3.1 Estimations of biophysical parameters 

First, we estimated corn height, LAI and aboveground biomass using the original LiDAR 
point density to explore the potential of LiDAR data for estimating these biophysical 
parameters. We performed a simple linear regression analysis and PLS regression analysis 
between the field-observed biophysical parameters (42 plots) and all LiDAR metrics. In 
fitting the PLS model, only variables with VIP values > 1 were used (Fig. 2). For the single 
variable, the optimal predictor variables for estimating LAI, height and biomass were 
R_cover, H_mean and H_mean, respectively. The best predictive results for a range of 
sampling sizes and height thresholds are shown in Table 5. Figure 3 indicates the relationships 
of the predicted biophysical parameters against field-observed corn biophysical parameters 
for the best prediction models using the highest LiDAR point density (7.32 points/m2). The R2 
values for the best predictive model of LAI, height and biomass were 0.80 (RMSEr = 13.7%, 
p < 0.0001), 0.874 (RMSEr = 9.6%, p < 0.0001) and 0.838 (RMSEr = 21.7%, p < 0.0001), 
respectively. The PLS regression analysis method improved the predictive accuracies of corn 
LAI, height and biomass, and the R2 improved by 1.5%, 4.9% and 4%, respectively, 
compared with the single linear regression, although the improvements were marginal. In 
addition, we found that the optimal sampling size (radius) and height threshold were different 
for estimating the different biophysical parameters. The optimal sampling radius and height 
threshold were 4.0 m and 0.15 m, respectively, for the LAI estimation, but for the height and 
biomass estimation, 3.0 m and 0.10 m were the optimal values. Both the optimal sampling 
radius and height threshold for the LAI estimation were greater compared with those of the 
height and biomass estimations. In this study, all R2 values for the estimation models of three 
biophysical parameters were greater than or equal to 0.788, which showed strong 
relationships between the field-observed physical parameters and LiDAR-derived metrics. 
Moreover, for all predictive models, the RMSEcv values derived from LOOCV cross-
validation were in agreement with their RMSE values, which showed that the estimation 
models of biophysical parameters developed using LiDAR data had good predictive ability. In 
general, discrete-return LiDAR data were able to reliably estimate the corn LAI, height and 
aboveground biomass in our study. Therefore, LiDAR data have great potential for estimating 
biophysical parameters of crops. 
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Fig. 2. VIP values of LiDAR-derived metrics in fitting the PLS model. 

Table 5. LAI, height and aboveground biomass estimation accuracies using single linear 
and PLS regression methods from the original LiDAR point density data (n = 42). 

Regression 
method 

R2 adj.R2 RMSE RMSEcv 
RMSEr 
(%) 

Sampling 
radius (m) 

Height 
threshold 
(m) 

Single regression 0.788 0.782 0.388 0.40 14.1 4.0 0.15 

PLS regression 0.800 0.795 0.376 0.389 13.7 4.0 0.15 

Single regression 0.833 0.829 0.230 (m) 0.237 (m) 11.1 3.0 0.10 

PLS regression 0.874 0.871 0.199 (m) 0.205 (m) 9.6 3.0 0.10 

Single regression 0.806 0.801 347.74 (g/m2) 356.98 (g/m2) 23.7 3.0 0.10 

PLS regression 0.838 0.834 317.76 (g/m2) 325.07 (g/m2) 21.7 3.0 0.10 
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Fig. 3. Scatterplots of the predicted biophysical parameters against field-observed corn 
biophysical parameters and regression lines of the best prediction models for (a) LAI, (b) 
height, and (c) AGB. Solid lines indicate the best-fit regression line. Dotted lines denote the 
1:1 line. 

3.2 Effects of LiDAR point density on estimates of biophysical parameters 

To investigate the effects of LiDAR point densities on the estimates of biophysical 
parameters, we estimated the corn LAI, height and biomass based on different sampling sizes 
(from 1.5 m to 6.5 m in radius) and height thresholds (from 0.0 m to 0.3 m incremented by 
0.05 m). In this study, we used a single LiDAR variable to study the effects of LiDAR point 
densities on estimates of biophysical parameters, although multiple LiDAR variables 
produced higher estimation accuracy for corn height and biomass. Eleven different LiDAR 
point densities (from 0.37 to 7.32 points/m2) (Table 3) were used to estimate the corn 
biophysical parameters. Figure 4 shows the changes of R2 and RMSE of the estimation 
models for three biophysical parameters across different LiDAR point densities. We found 
that, for three biophysical parameter models, the R2 values did not monotonically increase or 
decrease with increasing LiDAR point density (Fig. 4). When the lowest point density (0.37 
points/m2) was used, R2 values of 0.492, 0.720 and 0.677 were obtained for estimating LAI, 
height and biomass, respectively (Table 6). Nevertheless, all three biophysical parameters 
achieved a relatively high estimation accuracy (R2 = 0.607, 0.807 and 0.778, respectively) 
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when using 10% of the original LiDAR point density (0.74 points/m2). For the LAI 
estimation, the highest accuracy was obtained using the highest LiDAR point density (7.32 
points/m2). A rapid decline in the estimation accuracy of corn LAI could be observed when 
the LiDAR point density was reduced to values below 2.94 points/m2. Nevertheless, the 
decrease of point density from 7.32 points/m2 to 2.94 points/m2 did not considerably reduce 
the estimation accuracy of LAI. The maximum difference of R2 (29.6%) for the LAI 
estimation model was noted between LiDAR point densities of 7.32 points/m2 and 0.37 
points/m2 (Table 6). For the height and biomass estimations, however, the highest accuracies 
were obtained using 70% of the original point density (5.16 points/m2). Moreover, the 
reduced LiDAR pulse densities, except for 0.37 points/m2, had less effect on the estimation 
accuracy of corn height and biomass. The results showed that the LiDAR point density could 
be reduced from 7.32 points/m2 to 0.74 points/m2 to estimate corn height and biomass, and 
reasonable results were still produced. The maximum differences of R2 for the height and 
biomass models were 12% and 15.2%, respectively, which occurred between densities of 5.16 
points/m2 and 0.37 points/m2 (Table 6). We found that a relatively higher LiDAR point 
density was required to acquire accurate LAI estimates, but accurate height and biomass 
estimates could be produced using a lower LiDAR point density. In general, the reduced 
LiDAR point density could be used to estimate the biophysical parameters with reasonable 
results or without markedly reducing the estimation accuracy. This result was similar to the 
findings of Jakubowski et al. [44]. From Fig. 4, we also found that simply increasing LiDAR 
point density might be sometimes ineffective for improving the estimation accuracy of 
biophysical parameters. In addition, the costs of data acquisition significantly increase as the 
point density increases, especially for large-area LiDAR data collection. Therefore, LiDAR 
data should be collected according to the research cost, study coverage and research purposes 
to obtain an acceptable trade-off between the point density and cost of data acquisition. 

 

Fig. 4. Changes in R2 and RMSE with point densities for (a) LAI, (b) height, and (c) AGB. 
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Table 6. Estimation accuracies of LAI, height and biomass with varying point density. 

pa db 
LAI Height Biomass 

R2 adj.R2 RMSE RMSEr R2 adj.R2 RMSE RMSEr R2 adj.R2 RMSE RMSEr 

5 0.37 0.492 0.479 0.599 21.8 0.720 0.710 0.297 14.3 0.677 0.669 448.75 30.6 

10 0.74 0.607 0.507 0.528 19.2 0.807 0.803 0.247 11.9 0.778 0.772 371.91 25.4 

20 1.47 0.661 0.653 0.490 17.8 0.798 0.793 0.252 12.1 0.780 0.774 370.52 25.3 

30 2.21 0.626 0.617 0.514 18.7 0.825 0.820 0.235 11.3 0.800 0.795 353.20 24.1 

40 2.94 0.741 0.734 0.428 15.6 0.774 0.768 0.267 12.8 0.751 0.745 393.51 26.9 

50 3.69 0.746 0.740 0.424 15.4 0.816 0.812 0.241 11.6 0.780 0.775 370.06 25.3 

60 4.42 0.773 0.767 0.401 14.6 0.827 0.823 0.234 11.3 0.800 0.795 352.79 24.1 

70 5.16 0.750 0.743 0.421 15.3 0.840 0.836 0.225 10.8 0.829 0.824 326.66 22.3 

80 5.89 0.745 0.739 0.424 15.4 0.815 0.810 0.242 11.6 0.784 0.778 367.18 25.1 

90 6.63 0.767 0.761 0.406 14.8 0.826 0.821 0.235 11.3 0.795 0.790 357.60 24.4 

100 7.32 0.788 0.782 0.388 14.1 0.833 0.829 0.230 11.1 0.806 0.801 347.74 23.7 
a  p represents percentage of original point density; b d represents point density (points/m2) 

3.3 Effects of LiDAR data sampling size on estimates of biophysical parameters 

We estimated corn LAI, height and biomass using the original LiDAR point density with a 
range of sampling sizes (from 1.5 m to 6.5 m in radius). Figure 5 shows the effects of LiDAR 
data sampling size on the estimation accuracies of the biophysical parameters. From 1.5 m to 
6.5 m sampling sizes, the lowest accuracy was found at 1.5 m for all three biophysical 
parameter models. However, the optimal LiDAR data sampling sizes for estimating corn LAI, 
height and biomass were 4.0 m, 3.0 m and 3.0 m in radius, respectively, and the greatest 
differences in R2 for the estimation models of the three vegetation parameters were 11.2%, 
11.5% and 11.4%, respectively. As clearly shown in Fig. 5, the R2 values always increased 
before reaching a peak, and subsequently began to decline. When the sampling size was 
smaller, there were insufficient ground returns to produce accurate DEMs, which would 
therefore affect the estimation accuracy of corn physical parameters. While a larger sampling 
size was used, the estimates of corn physical parameters could not effectively characterize the 
actual values of the field-measured plots. In short, the estimation accuracy of corn biophysical 
parameters using LiDAR data was affected by sampling sizes, and similar results were found 
by previous researchers [28,52]. Moreover, our findings indicated that the optimal sampling 
radius for the LAI estimation was greater than those of the height and biomass estimations. 
Therefore, the optimal sampling size differed due to different biophysical parameters, 
vegetation types, geographical settings and LiDAR data. Therefore, to improve the estimation 
accuracy of biophysical parameters from LiDAR data, the optimal sampling size should be 
determined based on data from the study area. 
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Fig. 5. Effects of varying sampling sizes on the estimation accuracy of biophysical parameters 
(a) LAI, (b) height, and (c) AGB. The estimation models were constructed based on the 
original LiDAR point density of 7.32 points/m2. 

3.4 Effects of height threshold on estimates of biophysical parameters 

Corn LAI, height and biomass were estimated using the original LiDAR point density (7.32 
points/m2) based on a range of height thresholds (from 0.0 m to 0.3 m). Figure 6 shows the 
effects of height thresholds on the estimation accuracy of the biophysical parameters. The 
optimal height thresholds for estimating LAI, height and biomass were 0.15 m, 0.10 m and 
0.10 m, respectively. Compared with the estimations of height and biomass, the LAI 
estimation needed a larger height threshold to obtain the highest estimation accuracy. The 
maximum difference in R2 for the LAI estimation models was 10.3%, which occurred 
between 0.15 m and 0.30 m height thresholds. However, the maximum differences in R2 for 
the height and biomass estimation models were 2.4% and 3.9%, respectively, which occurred 
between 0.10 m and 0.30 m height thresholds. The height threshold was used to separate 
ground and vegetation returns. The optimal height threshold improved estimation accuracies 
of corn LAI, height and biomass. Therefore, the effects of height threshold should be 
considered when estimating corn biophysical parameters using discrete-return LiDAR data. If 
the height threshold was smaller, the effects of underlying ground cover could not be 
effectively reduced. If the height threshold was larger, too many vegetation returns would be 
classified as ground points. Thus, a suitable height threshold is essential and can improve the 
estimation accuracies of the biophysical parameters. Similar to the optimal sampling size for 
LiDAR data, the optimal height threshold also differed for different vegetation types, LiDAR 
data, environments and study areas. Therefore, the optimal height threshold in our study 
cannot be directly used for other vegetation types or study areas, but the methods proposed in 
this study can be applied to other similar studies. 
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Fig. 6. Effects of varying height thresholds on the estimation accuracy of biophysical 
parameters (a) LAI, (b) height, and (c) AGB. The estimation models were constructed based on 
the original LiDAR point density of 7.32 points/m2. 

4. Conclusions 

In this study, we investigated the effects of LiDAR point density, sampling size and height 
threshold on the estimation accuracy of corn biophysical parameters (LAI, height and 
biomass). First, the potential of discrete-return LiDAR data for estimating corn biophysical 
parameters was explored. All R2 values for the developed models were greater than or equal 
to 0.788. In addition, we validated all estimation models using the LOOCV cross-validation 
method, and the results indicated good predictive ability for the models. For the single 
variable, the optimal predictor variables for estimating LAI, height and biomass were 
R_cover, H_mean and H_mean, respectively. A study was conducted on the effect of varying 
LiDAR point density (from 0.37 to 7.32 points/m2) on the estimation accuracy of corn LAI, 
height and biomass. For corn height and biomass estimations, the highest LiDAR point 
density (7.32 points/m2) did not produce the best estimation accuracies, but good accuracy 
was observed at a point density of 5.16 points/m2. Although the best accuracy of LAI 
estimation was produced at the highest point density, the LAI estimation accuracy did not 
always improve with increasing point density. The effects of the LiDAR data sampling size 
and height threshold on estimation accuracy were assessed using the original point density. 
The results showed that the sampling size and height threshold have marked effects on 
estimation accuracy of three parameters. Moreover, the optimal sampling size and height 
threshold for estimating LAI were greater than those for height and biomass. 

In general, the estimation accuracies for corn LAI, height and biomass were affected not 
only by LiDAR point density but also by LiDAR data sampling size and height threshold. The 
results indicated that the estimation accuracy did not increase significantly or could even 
decrease if the LiDAR point density exceeded a certain level. Thus, a high LiDAR point 
density did not always produce a high estimation accuracy for the corn biophysical 
parameters, and a low point density could be used to reliably estimate the biophysical 
parameters. Therefore, a trade-off should be expected between point density and estimation 
accuracy to achieve a cost-efficient result. The optimal sampling sizes and height thresholds 
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were varied for estimation of different biophysical parameters; these values should be 
determined based on collected LiDAR data and field-observed data and cannot be used 
directly in other studies. However, the methods proposed in this study, including the methods 
of corn biophysical parameters estimation using LiDAR data, and the determination of the 
optimal LiDAR data sampling size and height threshold, can be used for similar studies. 
Overall, our results provide reliable information for researchers studying crops or similar 
vegetation types when using LiDAR data. 
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